

 www.teatimewithtesters.com December 2012|2

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com December 2012|3

Created and Published

by:

Tea-time with Testers.
Hiranandani, Powai,
Mumbai -400076

Maharashtra, India.

Editorial and Advertising

Enquiries:

Email: editor@teatimewithtesters.com
Pratik: (+91) 9819013139
Lalit: (+91) 9960556841

This ezine is edited, designed and published by
Tea-time with Testers.

No part of this magazine may be reproduced,
transmitted, distributed or copied without prior written

permission of original authors of respective articles.

Opinions expressed in this ezine do not necessarily

reflect those of the editors of Tea-time with Testers.

mailto:editor@teatimewithtesters.com

 www.teatimewithtesters.com December 2012|4

Edi torial new

Eyes wide OPEN

On the evening of 31st December, I was waiting for a friend in my apartment’s lobby.

Tired of waiting for him I took out my phone and started playing Angry Birds. My society’s

watchman was just passing by and sound coming out of my phone made him curious.

With that curiosity the guy came to me, observed me playing for a while and asked if I

could give him one chance to play. Without hesitation I gave him my phone and also

helped him with the controls etc. I didn’t fail to observe the excitement on his face while

he was playing the game. He was a fast learner and quickly got command over the game.

In the end Sudhir (his name) asked me with same curiosity, “Sir, how much is the cost of

this phone?” I told him the price. His face which looked bright earlier suddenly turned

pale and he said that he needed to go. When I asked he managed to smile and said,

“That’s my six months’ salary, sir!”

I had no answer and I let him go. Sudhir was gone but he unknowingly made me think

about the incident.

That day I learned that richness is a relative thing. Most of us want to become rich, richer

or may be richest and there is nothing wrong about it. The thing is, we only think of

getting rich but most of us never think ‘as compared to whom?’ we want to.

And same applies for becoming great at things too. One can be a good tester than his

colleague or many other testers at his work place. But should that be enough? How

about getting better than those testers who have earned name and reputation in global

testing community?

There was a time when I used to say, “I want to be a better tester.” But that better had

no meaning because I had no clue as compared to whom I wanted to be better.

Call it my luck or reward of my work but I’m glad to tell that I got to spend a whole

week with James Bach this December. Yes, The James Bach. Apart from learning lessons

from his Rapid Software Testing class I learned a lot many things from him.

And most importantly, now I know as compared to whom I wish to be a good tester.

In this 2013 and for many years ahead, I will work hard to reach there. As compared to

whom are you planning to be better this year, by the way?

Wish you a great 2013 with lots of success.

 Yours Sincerely,

- Lalitkumar Bhamare

editor@teatimewithtesters.com

file:///F:\Tea-time%20with%20%20Testers\Magazine\Mag%20versions\March%202012%20Issue\editor@teatimewithtesters.com
http://twitter.com/Lalitbhamare
mailto:fndlalit@yahoo.co.in?subject=Editorial Inquiry
http://www.facebook.com/fndlalit

 www.teatimewithtesters.com December 2012|5

Dear Lalit,

I love what you've done with IF. It's an excellent guide for testers. I grew up with a copy of Kipling's poem on my

bedroom wall. It's particularly good that you took out the references to "men." That was fine in the 19th Century,

but the testing profession would be in awful shape if it was limited to men.

I'm particularly pleased that "intelligence" has turned out to be a theme of all the articles in the issue. I know that

all the graduates of our Problem Solving Leadership workshop will really appreciate that theme. Next to the

attributes of character as captured in your version of "IF," intelligence is the next essential attribute of the best

testers.

Ben Kelly makes it clear that Zombies possess no intelligence, or if they do, they don't use it . And having

intelligence that you don't use is, I think, even more stupid than just being stupid in the first place. Thanks, Ben,

for point out what we often overlook, as when we believe that a tester does enough just to be smart yet not use

those smarts.

Intelligence is not something simple, nor is it something possessed only by individuals. Jansson and Nolmark

provide something of a menu for an intelligent team. I hope all your readers read their menu and ask themselves

how they and their team measure up on this recipe for intelligence. I hope future issues have more examples of

intelligent teams–and how they got that way.

Joel M. is right on target, as usual, when he relates "QA intelligence" to "military intelligence." He promises to tell

us more in future issues. I'm looking forward to his keeping his promise.

And then, T Ashok winds up this remarkable issue by proving an extremely specific example of one approach to

intelligent problem solving. One of many, I think, and I hope we'll see more approaches in the coming year's

issues.

- Gerald M. Weinberg

We love it when you write to us.

To send your letters, write to us at

editor@teatimewithtesters.com

mailto:editor@teatimewithtesters.com

 www.teatimewithtesters.com December 2012|6

 topIndex P Quicklookfinal i INDEX

The Rise of the Intellectual Indian Tester - 19

Balancing Time with Cross-Browser Testing -33

It's time to turn kill Switch On -37

Master Test Plan – the strategic side of testing –

40

Year++. Stay young, Have fun. – 47

 www.teatimewithtesters.com December 2012|7

I mage: www.bigfoto.com

NEWS

Highest profile software failures of 2012

By net-security.org

SQS compiled a list of the worst software failures over the past 12 months. This year‘s annual survey
is based on major software failures throughout 2012 and highlights the continuing problems faced by

the financial and banking sector, which have dominated the software glitch top ten lists over the past
three years.

In the 2012 survey, financial services software glitches represent five of the top ten. Legacy systems in

banks and trading firms are not being updated or replaced due to financial constraints and this is one
major cause of failure.

1. Software glitch costs trading firm $440million in 45 minutes

A trading firm‘s newly-installed software resulted in a $440 million loss after it rapidly bought and sold
large volumes of over a hundred different stocks in 45 minutes using a flawed software algorithm that

bought the shares at market price then sold at the bid price - instantly losing a few cents on each
trade. The rapid trades pushed the price of the stocks up, resulting in spectacular losses for the trading

firm when it had to sell the overvalued stocks back into the market at a lower price.

http://www.bigfoto.com/

 www.teatimewithtesters.com December 2012|8

2. Leading securities markets’ operator

A stock trading business launching its initial public offering on its own trading system was forced to

withdraw its IPO after an embarrassing computer glitch caused a serious technical failure on its own
exchange. A system problem occurred as soon as the exchange tried to open the ticker symbol of the

stock, failing to roll into a continuous trading pattern as it was supposed to, halting the trading on the
stock before it had even started trading.

3. Stock Exchange IPO trading of social media g iant falls flat

Technology problems affected trading in millions of shares of a popular social media website, after
software glitches caused a malfunction in the trading system‘s design for processing orders and

cancellations, meaning orders were processed incorrectly, if at all. Trades in as many as 30 million
shares were affected by the glitch.

4. US elections’ vote glitch sees nomination problems

Computer problems drew complaints across the US during the 2012 elections, with numerous problems
with voting machine glitches reported by voters. An example was touch-screen errors automatically

changing the vote from one candidate to another and not allowing voters to reselect or correct the
error.

5. Airline’s software glitch strands travelers for the third time

For the third time in 2012, a computer glitch wreaked havoc on thousands of travelers with a US
airline, delaying flights for hours. A glitch in the dispatch system software resulted in hundreds of

delayed flights across the US and internationally. The two hour outage held up 636 of the 5,679
scheduled flights and resulted in 10 flights being cancelled altogether.

6. Security staff shortage at international sports event

An internal computer systems problem resulted in miscalculation of the number of security staff
required to support an international sports event this summer. This internal staff rostering glitch

resulted in members of the armed forces being drafted in to act as security staff.

7. Teething problems for new revenue service software system

After upgrading its software and revenue service system, at an estimated cost of $1.3 billion through

2024, to promote e-filing of tax returns, the US revenue service saw delays in handling electronic tax
returns, with 85 per cent of refunds delayed by 23 days+.

 www.teatimewithtesters.com December 2012|9

8. Gambler loses winnings to computer virus

A gambler, who was under the impression he‘d won just over $1 million, was told by a High Court that,

despite his anticipated windfall showing in the online game he had played, he was not a millionaire
after all. A software error mistakenly reported his winnings as much higher than they actually were

and, due to this contingency being covered in the game‘s terms and conditions, he could not legally
claim his anticipated prize.

9. Utility customers in the dark over late notice and incorrect payment charges

An Australian energy company sent thousands of customers late payment charges for bills they didn't
receive due to a computer glitch, while a Germany utility company overcharged 94,000 of its

customers due to a computer glitch that incorrectly charged exit fees, costing the energy supplier
$2.24 million in settlement payouts.

10. Leap year bugs disrupt banking and healthcare payment systems

A leading multinational corporation‘s cloud computing service outage, which affected Governments and
consumers, was caused by the additional day in February this year. The same leap year date bug also

affected an Australian payment system used by the health industry, resulting in 150,000 customers
being prevented from using private health care cards for medical transactions for two days.

mailto:contact@teatimewithtesters.com

 www.teatimewithtesters.com December 2012|10

How would you like to reach over 19,000 test professionals across

101 countries in the world that read and religiously follow

“Tea-time with Testers"?

How about reaching industry thought leaders, intelligent managers

and decision makers of organizations?

At "Tea-time with Testers", we're all about making the circle

bigger, so get in touch with us to see how you can get in touch with

those who matter to you!

ADVERTISE WITH US

To know about our unique offerings and detailed media kit

write to us at sales@teatimewithtesters.com

Want to connect with right audience?

mailto:sales@teatimewithtesters.com

 www.teatimewithtesters.com December 2012|11

https://www.dropbox.com/s/mpyr2g27pocgqto/TTwT%202013%20Gift%20Calendar.zip

 www.teatimewithtesters.com December 2012|13

 Intelligence, or Problem-Solving Ability (Part 2)

FACETS OF PROGRAMMING INTELLIGENCE

Adaptability, then, is required for all sorts of intelligent behavior. Behavior which, though mental, only

requires carrying out a set of fixed rules is not properly considered intelligent. It might better be carried
out by machines than by people. Not that carrying out a set of fixed rules cannot be an important part

of intelligent behavior. On the contrary, a programmer who cannot add two numbers together without
extraordinary difficulty is heavily handicapped in the race for better problem solving, unless, of course,

he turns his handicap into an asset by developing shortcuts that bypass the arithmetic he cannot do.

To a great extent, problem-solving technique is idiosyncratic, if only because certain people can do
certain things better than others. Each person, if he is intelligent, tends to look for methods of solution

that depend on his best qualities and avoid his weakest. As a specific example of such a quality,
consider the facet of memory.

There is no doubt that memory is one of the most important aspects of intelligence for a programmer—

if he can but harness it. Memory helps a programmer in many ways, not the least of which is by
enabling him to "work" on problems when he does not have all his papers in front of him. Consider this

anecdote related by a programmer about how he solved a problem while lying in bed:

 www.teatimewithtesters.com December 2012|14

The problem was given to me by a programmer I encountered yesterday morning at the computing

center. He said he had the problem since last April (it is now January). The problem was not very
serious, but it had puzzled him on and off since then, and everything he tried failed to work. It was a

PL/I program, and the trouble was in the format of the output. He had established an ON ENDPAGE

unit, but it only worked at the end of the first page and when it was raised by SIGNAL. After the first

page, the listing just went on from page to page without producing the headings he wanted.

I checked the PAGESIZE he was using, and his job control cards—to see if he had some strange
carriage control situation. I checked the position of the ON-unit, but obviously it was executing once.

Were there any switches in it? Nothing. The only unusual thing I found was that he had used a PUT
SKIP to print the heading, not a PUT PAGE as I ordinarily do. I pointed out to him that this explained

why the heading he had printed failed to go on the top of the page. But, after testing a number of other
hypotheses, I knew I wasn't going to find the major trouble. I showed him how he could get the right

output, using a test of LINENO to raise ENDPAGE.

That satisfied him, but l knew l couldn't put my mind at rest until I understood what was happening.

I put the problem out of my mind, but when I went to bed last night, my mind seemed clear, so I
decided to work on it as I lay there. I reconstructed the whole situation mentally—the coding and the

output. When my eyes are closed and I am in a quiet place, I can call up the picture of any program I
am currently working on— even one like this, which I had seen only once. I scanned the output in my

mind and tried to imagine what kind of program would produce this output . After reviewing my
hypotheses from the morning and rejecting each on carefully considered grounds, I decided to look for

something new.

The strange element, I felt in scanning over the program, was the PUT SKIP in the ON-unit. This stood
out in my image the more frequently I scanned it, for I never did that. Never? In that case, perhaps it

was causing the difference. But why would starting a page in a different way cause the end of the page
to be missed? Well, how is the end of a page detected? By being so many lines from the top. But how is

the top determined? I realized I didn't know that answer precisely, so I speculated on possible
alternatives. By this time, I knew I was on the right path, and I simply considered each alternative in

turn, imagining the action each would produce in this program.

Finally, when I worked through the action under the hypothesis that only PAGE (or possibly LINE, which
did not apply in this case) could start a new page, I realized the problem. PUT SKIP in the ON-unit did

not start a new page—the line number simply kept increasing and no new end of page was ever
reached because no new page had ever been started. Satisfied that I had solved the problem, I went

immediately to sleep. This morning, I made this test case to demonstrate my conjecture, and you can
see that it is precisely as I say.

Without the aid of a fine memory, this programmer might never have solved this problem—and learned

something new— because he might never have seen this program again. On the other hand, if he did
not have this kind of memory, he probably never would have attempted this approach to the problem.

He might, instead, utilize his cleverness at creating critical test cases to solve the problem using the
computer. For his inadequate memory, he would substitute an actual copy of the problem program—
which is nothing to be ashamed of.

Indeed, by attacking the problem on the machine, this poor-memory programmer might have the

solution to the problem before going home, leaving his sleep untroubled by bugs. Which method is
superior? We really cannot give an answer in isolation. If, for example, machine access is poor, the

second programmer will be at a disadvantage. If, on the other hand, everyone is working overtime and

 www.teatimewithtesters.com December 2012|15

barely has time for sleep, let alone quiet reflection, the first programmer will never get to show his

brilliance. Naturally, it would be best to have both abilities to an equal extent and to apply each as is
appropriate to the problem and the overall situation. Short of that, we must make the best of what we

have.

Just as different working conditions favor the application of different forms of intelligent behavior, so do
different programming phases give different programmers a chance to shine. For example, when we are

making the overall design of a program, what we most need is the ability to create new programming
ideas and to screen them on the basis of broad principles. Examples of such screening ideas are

symmetry of structure and generality of function—one leads to simple coding of difficult problems and
the other leads to the solution of difficult problems with simple coding. Still, these critical abilities are

useless if there is a paucity of ideas to which to apply them. "Nothing" cannot be criticized. Thus, a
programmer lacking in either ability—creativity or selectivity—will be handicapped in attempting to

design programs.

When coding, however, different abilit ies come to the fore. Instead of the broad, sweeping mind, the

mind which is clever at small things now excels. Then, when testing, the programmer must switch to
yet another group of gifts—particularly the eye for wholeness, or gestalt.

Consider the following tale:

I was eating breakfast and reading an article by Stephen Spender called "The Making of a Poem." On

page 120,I reached the end of one section and set the book down to put some more sugar on my
cereal. When I picked the book up again to start reading a section called "Memory," I immediately had

a feeling that there was something wrong in the first sentence which started:

"If the art of concentrating in a particular way ..."

I felt, more or less simultaneously, that the trouble was in the word "particular" and that it involved a
misprint.

The misprint, however, was rather confusing for I sensed that it was a letter inversion but I also

sensed—a little bit more weakly, though, I have a definite impression of that—that there was a letter
missing. I examined the word "particular"—which, by the way, I often mistype as "particluar"—first for

the inversion and, failing to find that, for the omitted letter. I spent a rather long time looking for the
error—I could measure that because I ate five or six spoonfuls of cereal in the process, the amount I

ordinarily eat between sips of water. But I could not find anything wrong, and when l reached for the
water glass, I was rather confused.

The water glass was empty, so I set down the book and went to the sink to fill it. Upon returning, I

drank some water, picked up the book, and started to read. I finished the paragraph without further
difficulty, but when I commenced reading the next, I immediately saw that the line:

"All poets have this highly devolped sensitive apparatus ..." contained the misprint of the word

"devolped," which stood in the same position in that sentence as "particular" had stood in the first
sentence of the preceding paragraph. I had the right impression, but I had "focused" wrongly.

Although this error was in printing, its discovery and location followed very closely the process by which

many programming errors are found. First, there is only the gestalt, a general feeling that something is

out of place without any particular localization. Then follows the ability to shake loose from an
unyielding situation—the ability to change one's point of view, even by employing external devices such

as going for a glass of water. Then, however, one must go from the general to the particular—

 www.teatimewithtesters.com December 2012|16

"focusing," as it was called here. Although one does not find errors efficiently by a detailed search of

each line, or word, or character, the ability to get down to details is essential in the end.
Thus, for debugging, an almost complementary set of mental powers is needed. No wonder good

debuggers are so rare!

Even more of a rarity is the good documented Documentation difficulties come from many sources. In
the first place, if the program is not well written, there is not much that documentation can do to

resuscitate it. Since programmers usually document their own productions, the good documenter has to
be a good programmer to begin with—and then he must add the capacity to express himself verbally

and graphically. Finally, he must have the patience to work out those last few ambiguities in his
documentation—for the last 5 percent of the work makes the document 100 percent better.

to be continued in next issue…

 www.teatimewithtesters.com December 2012|17

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

TTWT Rating:

Jerry‘s another book The Psychology of

Computer Programming is known as the first

major book to address programming as an

individual and team effort.

―Whether you're part of the generation of the

1960's and 1970's, or part of the current

generation . . . you owe it to yourself to pick up

a copy of this wonderful book.‖ says

Ed Yourdon, Cutter IT E-Mail Advisor

Sample of this book can be read online here.

To know more about Jerry‘s writing on software

please click here .

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com December 2012|18

Speaking Tester’s Mind

 www.teatimewithtesters.com December 2012|19

Michael bol ton

Time

janet
Fiona

James B ach

To be a tester is to be a thinker. Testing is not just pressing keys and looking at the screen. Testing is

pondering and learning and interacting with a product for the purpose of discovering important and

hidden truths about it. Testers are troublefinders.

Strictly speaking, this process cannot be scripted. A scripted process is one that is determined in

advance of its execution. One drawback of a fully scripted test process is that it can only find problems

that were specifically and precisely anticipated at the time the script was produced. But when we test we

need to find unanticipated problems, too. We want to find all the problems that matter. Another reason

testing cannot be scripted is that human curiosity, learning, and confusion—all of which are crucial to a

test process—cannot be reduced to an algorithm. Complex problem solving, in general, involves

substantial tacit as well as explicit skill.

This brings me to my topic: the Indian testing industry. It is commonly believed in the West that Indian

testers cannot work without scripts; that they cannot think in rich and deep ways while testing.

Meanwhile, in the last twenty years, in the West, a small but passionate and growing community of

testers has been engaged in an intellectual testing. (This is not the "agile testing" movement. I'm

referring to the community that calls itself the Context-Driven School. We focus on skills that allow us to

operate effectively in any context.)

 www.teatimewithtesters.com December 2012|20

Intellectual testers don‘t need notes pinned to their sleeves in order to take action. We design and re-

design our own tests, as we go. We are systems thinkers, creative thinkers, and critical thinkers. This is

not exactly new, but we brought a new element to it: systematic and collaborative skill development.

For the first years of this revolution, India played no role in the Context-Driven movement. It was a dark

continent. That has now changed.

My First Visit

My introduction to India left me with mixed feelings. I visited Bangalore the first time, nine years ago, at

the behest of two of my clients. Both large American companies, they had outsourced some of their

testing, but were disappointed with the result. The way my clients described their Indian vendors: they

weren't testers at all. They were, at best, script jockeys. This is what my community calls ―factory

school‖ testing. (My community calls itself the Context-Driven School. We focus on skills that allow us to

operate effectively in any context.)

Check around the Internet. Talk to test managers. This is a common story. You‘ll hear it all over:

―Upper management forced us to outsource to India, and those testers suck. (eye roll and sigh.) Oh

well, there‘s nothing to be done.‖

And so I went to India. But what I found surprised me. This is what I wrote in 2003, just after I

returned:

I have met quite a few such sharp testers in the U.S. and UK. But, in India I expected to find

polite, silent students. I expected that they would be intelligent, but timid about engaging

mind-to-mind with me in class, especially when what I’m teaching flies in the face of most

traditional advice about testing that they have read and heard.

What I found instead were testers who quickly warmed to the challenges I made. They did

speak up. They didn’t challenge me with the same intellectual swagger typical of testers in,

say, England, but they responded to my questions and found novel answers to problems I

posed them. In several of the exercises, solutions were proposed that I had not heard from

anyone else since I started teaching in 1995.

Like most testers, they have not yet developed their potential. But I no longer believe there

are important cultural obstacles to hold them back. So, don’t be surprised if in a few years

the Indians start getting the reputation as insightful, penetrating testers.

I admitted I was wrong about Indian testers. My brother Jon discovered the same thing and blogged

about it six years later, when he trained an Indian team of his own.

They loved exploring, were not shy, talked over each other, even gaggled like

kindergarteners eager to show each other as if it was show-and-tell time. It was amazing,

and it was as easy as a key being turned in a lock.

 www.teatimewithtesters.com December 2012|21

Indian Testers Are Not Stupid… So Why Do They Test Badly?

Imagine someone who owns a sports car with a 350-

horsepower engine, and yet pulls it around with an

elephant—not because gasoline is expensive, but

because he thinks turning on the engine would seem

arrogant, presumptuous, and maybe the sound of the

motor could disturb the neighborhood.

That‘s my feeling about Indian testers. I met lots of

smart people in my Bangalore testing classes. But I

got the impression they didn’t feel it was polite to

think like a tester.

Indian culture is not an anti-intellectual culture. But it is a somewhat hierarchical, family-oriented,

service culture. Good Indians listen to their parents and do their duty as they see it. This attitude also

affects their sense of what is polite to say to the boss (or parent or foreign client as the case may be).

They want to say ―yes‖ even when they feel the honest answer would be ―no‖ or ―I don‘t understand.‖

This can give the impression of evasiveness in a technical project. Good testers say unpopular,

important truths. Testing is a service occupation, yet a misguided sense of service—not wanting to

annoy the boss—can ruin the process.

That‘s one reason for the trouble. Here are some others:

1. English is not the first language of many people in India, making communication inherently

difficult in an industry dominated by English speakers.

2. Outsourcing is inherently difficult, but since India is such a popular outsourcing destination, the
problems of outsourcing become unfairly confused with the problem of being Indian.

3. A culture that routinely employs another culture is likely to begin thinking of itself as more
―senior.‖ It is in a position of power and experience, regardless of its actual competence.

Therefore, Western companies may be predisposed to thinking of their foreign vendors as
confused and timid.

4. No one ever taught them how to test. This is not specific to India, of course, but when combined

with cognitive biases known as Actor-Observer Asymmetry and Trait Ascription Bias (I‘m sure I
don‘t need to explain these, because you are good at Google, too) it creates the impression that

those guys over there, who happen to be Indian and who seem to be incompetent, are more
incompetent than our own people (even though they aren‘t) and are incompetent because they

are Indian (even if Indian heritage has nothing to do with it).

Taken together, I actually felt this was good news for India. Because it‘s fixable.

Yes, yes, it seemed clear to me that Indian testers, in general, were pretty bad—but that‘s just

like testers everywhere else. And yes Indian culture looked like a mild handicap, and certainly

test outsourcing was particularly hard to do well under the best of circumstances.

http://en.wikipedia.org/wiki/Trait_ascription_bias

 www.teatimewithtesters.com December 2012|22

But even so, I saw a wonderful potential there, once testers in India began to wake themselves

up. I figured it would take a few years.

The Coming of Pradeep

Indeed, it took two years, as I reckon, before the transformation began to happen. It came into my life

in the form of a particular man.

January 10
th

, 2006

Dear James,

Surprising why a stranger addressing you as 'dear', well the reason being we both share

something in common - Testing. I introduce myself as Pradeep Soundararajan from Bangalore,

India who happened to look through www.satisfice.com.

With that quirky intro, Pradeep requested to become my student. I like having students, but my time is

limited, so I gave him an assignment that would require him to do a lot of work: I asked him to test a

web site, expecting not to hear from him again. Instead, he completed it the next day.

At that time, I was in the middle of a very intense court case, with very little t ime to spare. It would take

Pradeep 98 days, sending me 19 reminders, before I got around analyzing his work. When I did, I was

pleased with I found, and very impressed with his determination. I decided to invest in him.

I don‘t necessarily charge money to teach testing. Instead, I provide coaching and support to people

who have the drive to keep sending me reminder emails. Also, I help people who inspire me, and one

thing that inspires me is when they turn around and help others. Pradeep became one of those students;

he was a catalyst for the new wave of testing enthusiasts, centered in Bangalore.

Very soon after he contacted me he started a blog, partly to share his testing ideas and partly to

practice writ ing in English. His blog was a call to Indian testers to wake up, and some testers heard his

call and responded. He held meetings and taught classes. A new, small, Indian testing community was

born. Now it seems like there are a lot of Indian tester blogs devoted to fostering testing skills, but

Pradeep was the first of those. He deserves a lot of credit for that, and many of the bloggers he inspired

have now come to me for coaching, too.

Another factor that helped was the arrival of the Black Box Software Testing online class. Created by

Cem Kaner, with the support of some of my materials, it is a demanding multi-week testing learning

experience. People all over the world have signed up for it, including many in Ind ia. Between Pradeep‘s

preaching, online resources, remote coaching by Context-Driven testing guys like me, and the BBST

class, any ambitious tester in India can now get the support he needs to thrive.

http://www.satisfice.com/

 www.teatimewithtesters.com December 2012|23

India as a Testing Cuisine

My exposure to Pradeep and others such as Ajay Balamurugadas, Meeta Prakash, Shrini Kulkarni, and

Parimala Hariprasad, began to change and broaden my perception of Indian culture and its potential role

in building great testers. I began to see the possibilit ies of Indian testing against the backdrop of

thousands of years of philosophy and history.

Please bear in mind that my excitement about India is not a comment on any other culture. Just as I like

to eat at Japanese and Italian restaurants, I also enjoy Indian food very much. This is not to say that

there‘s anything wrong with traditional American cooking. In the same way, although I am an American

tester, and I appreciate the advantages that American culture brings to the test process, I also am

excited about how I can be a better tester by learning about India.

I have dabbled in the study of India for years. Only recently have my studies become focused. I‘m

interested in the relationship between ―thinking like an Indian‖ and ―thinking like a tester.‖ I‘d love to

see a few Indian testing heroes stand up and do this study better than I ever could, but to get you

started, here are some of the elements that can inform excellence of Indian testing:

 India is a plural society that knows how to adapt.

Where else can we find so many people, with so many different religions and sects, living so

close together with so little violence? Nowhere. Growing up amidst such diversity may help

Indians in technical life, too. Testing requires us to bring together competing ideas and

interests.

 India is especially patient in the face of chaos.

To a Western eye, Indian cities are an utter mess; a tsunami of dysfunction. But somehow

they seem to work, and even thrive. What sort of mind must be required to tolerate living

there? Imagine that same mind encountering chaos in a test project. It may be easier for

Indian testers to remain calm through the long parade of outrageous bugs.

 India understands service, loyalty, and reverence.

India is a family and clan-oriented culture. They are generally more comfortable with

hierarchy than we are in the west. Whereas this may be a drawback for independent creative

thinking, it may a boon when it comes to daily motivation and reliability—as long as the

needs and tasks of testing can be framed in terms of service.

 India has its own tradition of Epistemology.

Epistemology is the branch of philosophy concerned with how we know what we think we

know. One of the great concerns in Hindu and Buddhist tradition is distinguishing reality

from illusion. So, it should not surprise us that India has an ancient tradition of logical,

skeptical, and scientific thought that actually pre-dates the Greeks. Most Indians don‘t study

 www.teatimewithtesters.com December 2012|24

it and don‘t even know about it, but it‘s there as a source strength for those who do,

because testing is nothing more than applied Epistemology.

 India has a rich tradition of heuristic learning.

Treasures of Indian literature include the Mahabharata (and Bhagavad Gita), Thirukural,

Arthashastra, Panchatantra, and the Buddhist and Nyaya Sutras. Something all of these

have in common is the practice of teaching through the consideration of opposing ideas and

outright paradoxes. This fosters what I call heuristic learning, which develops the ability to

make complex judgments where no clear right answer exists. Testing requires that sort of

thinking, because of the impossibility of complete testing.

 India understands that excellence is achieved through struggle.

One of the differences between India and America is that here in America the culture expects

instant gratification. Both in the everyday social order and the spiritual literature of India,

however, great outcomes are expected to take time and work. This is important because it

requires a long, daily struggle, and much experience, to develop deep testing skills.

I would like to thank Michael Bolton and Mary Alton for their help with art and editing. In part 2 of this

article, I will describe my return to India after nine years. I taught at Intel, and Barclays, re-visited

Mindtree, and spent several days with Pradeep and the crew at Moolya. The star of Indian testing is

rising.

James Marcus Bach is a software tester, author, trainer and consultant. He is a

proponent of Exploratory testing and the Context-Driven School of software

testing, and is credited with developing Session-based testing.

His book "Lessons Learned in Software Testing" has been cited over 130 times

according to Google Scholar, and several of his articles have been cited dozens of

times including his work on heuristics for testing and on the Capability Maturity

Model. He wrote numerous articles for IEEE Computer.

Since 1999, he works as independent consultant out of Eastsound, Washington.

He is an advisor to the Lifeboat Foundation as a computing expert.

Follow James on Twitter @jamesmarcusbach or know more about his work on

satisfice.com

http://satisfice.com/

 www.teatimewithtesters.com December 2012|25

Do YOU have IT in you what it takes to be GOOD Testing Coach?

We are looking for skilled ONLINE TRAINERS for Manual Testing, Database Testing and Automation Tools like Selenium,

QTP, Loadrunner, Quality Center, JMeter and SoapUI.

TEA-TIME WITH TESTERS in association with QUALITY LEARNING is offering you this unique opportunity.

If you think that YOU are the PLAYER then send your profiles to trainers@qualitylearning.in .

Click here to know more

mailto:trainers@qualitylearning.in
http://www.qualitylearning.in/
http://www.qualityjobsportal.com

 www.teatimewithtesters.com December 2012|26

Image courtesy : MMVI New Line Production

 www.teatimewithtesters.com December 2012|27

Hi Guiding Star,

The article "The Testing Dead - The Zombie Menagerie" episode 1 in the Oct 2012 issue stated that it is a

mistake for QA Engineers to position themselves as the gatekeepers of the software release decis ion and

are "confused" if they take the blame when some bugs go into production. Those are fine statements but

in reality testing is typically the last step in the development process and other teams do look to the testing

team for final sign off. And typically when some bugs do go into production it's because the testing team

didn't cover those scenarios in there testing.

I am interested in knowing ways the testing team can solve these two dilemmas and not just mere

rhetoric. What specific advice can you provide for the testing teams to not become gatekeepers and not

get blamed for production issues?

Thank you for taking the time to answer.

- Chinh Q. Tran

"The article "The Testing Dead - The Zombie Menagerie" episode 1 in the Oct 2012 issue stated that it is a

mistake for QA Engineers to position themselves as the gatekeepers of the software release decision and

are "confused" if they take the blame when some bugs go into production."

Not quite.

I said that it is a mistake for Software Testers to position themselves as the

(http://trenchescomic.com/tales/post/13028) gatekeepers of quality and the release decis ion. I also said

that 'The Confused' are people who believe they are doing quality assurance but are in fact software

testers. They tend to enjoy grandiose titles such as 'QA Engineer' despite not doing QA and not being an

engineer. Quality Assurance and Software testing are related disciplines, but they are

(http://www.testingeducation.org/a/TheOngoingRevolution.pdf) not synonymous (see page 6 and beyond).

This comes back to what a software tester's role is at a fundamental level. The role of a software tester is

to reveal information about the product and its artifacts to people that matter. Their role is to inform their

audience (be it project manager, team leader, programmers, analysts, site producer etc) about what they

know, what they suspect, what they have done, what they have not been able to do. They need to do it in

such a way that it is (http://testjutsu.com/2011/09/framing-your-tests-framing-your-audience) meaningful

to that audience.

Hunting for bugs and finding information about product stability is frequently part of a tester‘s role. It does

not follow however, that their job is to declare the product bug free, nor is it to fall on their sword should

bugs make it to production. The release decision involves more than an understanding of the technical

aspects of the product or project. There are business aspects that the software tester is generally not privy

to. I think it is folly for a tester to assume they know enough to put themselves in this position.

"in reality testing is typically the last step in the development process and other teams do look to the

testing team for final sign off."

I have worked in organizations where this was generally accepted to be the case. My first steps have

always been to help disabuse my peers of these misguided notions. Testing begins when testers can help

uncover information that is useful to their audience. Analyzing and questioning designs is testing.

Challenging assumptions around behaviour and usability is testing. Comparing design wireframes to

previous versions or accepted industry norms is testing. Sitting with a developer as they code and asking

questions is testing.

http://trenchescomic.com/tales/post/13028
http://www.testingeducation.org/a/TheOngoingRevolution.pdf
http://testjutsu.com/2011/09/framing-your-tests-framing-your-audience

 www.teatimewithtesters.com December 2012|28

Testing is not a finite process at the end of which is a green light to release. It is a continuous proces s of

uncovering information, challenging assumptions, learning, reporting up until
(http://www.developsense.com/blog/2009/09/when-do-we-stop-test/) the point where testing is done.

The release decision should be left to the people who are paid to make it - typically the project manager or
the person(s) they report to. Your job as a tester is to inform them about risk from a technical standpoint

so they can add that to their knowledge of the business needs in order to make an educated decision. By
all means make recommendations about the stability of the product based on what you know about it, but

allowing them to abdicate responsibility for the release decis ion is fraught with peril.

"and typically when some bugs do go into production it's because the testing team didn't cover those

scenarios in there(sic) testing."

Typically? I'm not so sure. I suggest that your statement is a typical conclusion that some people in our
industry arrive at and I think that is precisely because testers who are confused about their role position

themselves as quality gatekeepers, or are ignorant about their role and allow themselves to be positioned
there. 'You said it was good to go. It obviously isn't good to go, so you are at fault'. Sound familiar?

I'm certainly not saying that the testing team should shirk responsibility. If there are issues that make it to

production that a tester (or testing team) could and should have found during their work, then they need
to put their hand up for it. Is it a possibility that the testers missed something? Sure. There are an infinite

number of alternate possibilities also. It's possible that the initial design was flawed and not corrected. It's
also possible that differences between testing environments and production meant some issues were not
revealed until after release. It could be that a crash only occurs with a certain set of key combinations or

that a compiler issue causes a crash after an action is performed for the 256th time. Software quality is
everyone's responsibility. Part of your job might be to help jog people's thinking about what could go

wrong. It doesn't mean you take responsibility for doing their thinking for them also.

What specific advice can I give you not to become a quality gatekeeper and not get blamed?

Being aware that this is a stupid place for a tester to be is a good start. Helping your peers become aware
of this is better.

If you are in a situation where people are looking to you as a software tester to make the release decision,

then you probably have your work cut out for you. It's likely there's a culture that exists in that company
that sets the expectation and it will be up to you to help change it. There's no magic set of steps you can
take to make this happen.

My first suggestion would be - if you are a software tester, stop calling yourself anything with the words

'Quality Assurance' in it, and call yourself a 'Software Tester'. It seems a small thing, but it is powerful. It
will help you have some of the difficult conversations you're going to need to have, and it will help your

peers better understand your role.

It will be a process of building relationships and education to varying degrees. It may well be a slow

process. It will likely make a lot of people uncomfortable (including you). You will encounter resistance,

possibly hostility, possibly even accusations of shirking your responsibility. You need your peers to

understand that your role is to reveal and share useful information. Not to make promises that the

software is bullet proof. You will need to help them understand that software quality is the responsibility of

everyone working on it. That goes for design as much as it does implementation. As a tester, you are not

making changes. You're informing other people about issues and they are making changes. You can

perhaps influence quality. There's nothing you can do as a tester to assure it.

Get better with your (http://testjutsu.com/2011/10/pull-reporting-push-reporting/) test reporting. Learn

how to add value beyond 'this passed, this failed'. Understand what information your audience needs and

give it to them in a way that is useful to them. If you can be seen as a skilled knowledge worker and not a

grudgingly accepted cog in the software development process, then you may start changing some minds.

Ultimately, it's up to you to determine how best to do this in your organization.

- Ben Kelly

http://www.developsense.com/blog/2009/09/when-do-we-stop-test/
http://testjutsu.com/2011/10/pull-reporting-push-reporting/

 www.teatimewithtesters.com December 2012|29

I just finished reading Gojko Adzic‘s latest book Impact Mapping and here are some impressions this

book left on me.

Things that I liked:

• Look, Feel and Style

Being a magazine designer myself, I always try to keep the design easy to read and appealing

enough to keep the reader engaged with the idea. ‗Impact Mapping‘ won my heart with its simple
yet appealing design. Appropriate use of cartoons has made it even more interesting.

• Problem Analys is and Explanation

Thing I liked most in this book is ‗excellent problem analysis and the way it has been explained to

readers‘. Gojko‘s analysis around failures in software development reveals his rich experience and
study on this subject.

• Narration

It‘s not just enough to know the solution to any problem but it‘s equally important to be able to

explain/present it in a manner that others will understand and give it a thought.

I liked the way Gojko has explained his idea of Impact Maps. Each topic is well-connected with the
other one and that helped me to stay away from confusion.

https://twitter.com/gojkoadzic
http://www.amazon.com/Impact-Mapping-software-products-projects/dp/0955683645/ref=cm_rdp_product
http://www.amazon.com/Impact-Mapping-software-products-projects/dp/0955683645/ref=cm_rdp_product

 www.teatimewithtesters.com December 2012|30

• The Concept

I won‘t tell you what Impact Mapping is all about (because Gojko has done that job well and it

would be great experience to learn it via his book itself). But yes, if you are fond of mind-mapping
and if visual techniques attract you then you‘ll certainly like the idea and you‘ll like it even more

once you try your hands out (I feel).

I liked the concept, especially because it‘s a powerful tool to find out whether you are doing right
things at right time and with right set of resources, or not. It can also help to address/identify the

‗Problem of many‘, if you get it right.

[Hint - Gojko Adzic (with David Evans) had written an article ‗Visualising Quality‘ in July’11 issue
of Tea-time with Testers. I feel that part of that article can give you slight idea about Impact
Mapping :-)]

Things that I would have loved to see:

• It‘s not necessary but IMO, some addit ional real life examples (from simple to complex)

could have helped readers to re-check with their interpretation of the idea. Or may be some
‗Try this Out‘ kind of exercise (wherever applicable) could have been an added advantage.

• I am passionate tester and I would have loved to get some special tips for testers on how
testers can make effective use the concept. Especially, where testing teams operate

separately and not as a part of development team.

Conclusion:

Professionals with experience of (or inclination towards) Agile development methodology are
surely going to like this book because it provides simple yet powerful solution to majority of

problems that Agile teams often face.

If your organization follows that iterative approach or if it is planning to adopt Agile development
methodology then this book is a must read.

Hope you find this review helpful.

- Lalitkumar Bhamare

http://issuu.com/teatimewithtesters/docs/tea-time_with_testers_july_2011__year_1__issue_vi

 www.teatimewithtesters.com December 2012|31

 www.teatimewithtesters.com December 2012|32

In the School of Testing

 www.teatimewithtesters.com December 2012|33

martin janson B ERNICE

Let’ s talk testing

SPE

Lets talk testing

During this cross-browser testing series, I shared information gathered from many testers on how they
approach cross-browser testing. You can read those articles in the June, July, and August 2012 issues.

Based upon the feedback received on them, I decided to write a couple more articles to address a few
more areas. We all know that we will never have the amount of time to test that we want. Now your

company adds cross-browser testing, but may not increase your testing time by much. Therefore, one
area I would like to touch upon is how to minimize some of your testing across browsers. For the final

part of this series, I will share a couple of mind maps that I find useful in organizing my testing.

What browsers do you test?

Most likely you will be provided with a list of browsers that need to be supported. Our first thought is we
need to test all of them. But do you? Some browsers (i.e., Chrome and Safari) use the same webkit that

may eliminate testing certain browsers or allow you to sample the testing across them. Have a
conversation with your technical employees to review the supported browsers and any similarities
between them. Understand any potential risks to reducing testing. From this information, determine if

you can eliminate testing a browser.

Review this decision with the department who is in charge of the cross-browser project to gain buy-in on
any reduction to testing approaches. You do not want to surprise them at the end by telling them you

did not test a browser. If they have concerns not supported by the technical employees, propose a
compromise. Test one of the browsers and test any identified bugs in the second browser and perform a

level of sampling. For example, test some of the critical areas that passed testing in the first browser to
ensure it works in the second. Basically you want to gather sufficient testing evidence to support

eliminating testing a browser.

Remember, your level of cross-browser testing should be based upon risk and not testing everything in
all browsers. If you can eliminate or sample the testing across similar browsers you can save a

tremendous amount of time.

 www.teatimewithtesters.com December 2012|34

IE

IE is still a popular browser though it is getting serious competition from Chrome. Often we are asked to
test several versions of IE. Again this can become very time-consuming. A good question to ask your

team: "what is the risk if we do not test everything on all supported versions of IE?"

• What intelligence could we gather to help answer this question through testing?

• What conversations could you have with the developers?

• If there are risks, can you identify the specific areas of your product at risk?

• Can the testers have different versions of IE? For example, if the testers were all on IE7, only have

some of them upgrade to IE8 and IE9. This allows testing across 3-versions with the understanding that
new functionality and bug fixes will not be tested across all versions unless a specific risk has been

identified.

Reducing testing time across browsers

It is important to understand how your product responds to the difference between the browsers. In

some cases you may only perform a smoke test that you can open the functionality across browsers with
a simple test or two. In other situations you will need to perform more testing because the risk between

the code and browser is greater. In these cases, talk with the developers to understand the risks. Then
determine if one of the following strategies is feasible to reduce testing time:

• Split your testing activit ies across supported browsers. A spreadsheet may help you manage what

features / tests are being performed on each browser.

• Conduct your testing on your main browser supported. Identify the core or crit ical tests that should be
performed across the other browsers. Identify these tests based upon conversations with the developer

and the history of problems encountered across browsers. Also consider the crit ical functionality to the
clients to ensure risks are mitigated.

• Do some browsers require less testing because a small percentage of your clients are using the
browser? Can you test those browsers last in case you run out of time? Or define a smaller subset of

tests?

• Understand if the browsers all fail in the same manner. Are you encountering problems in one browser
that you are not seeing in the other browsers? How can you use this information to better target testing?

• Are the developers writing code to identify which browser to fix cross-browser problems? How does

that change your testing approach?

Chrome and FireFox

Chrome and FireFox do not support multiple vers ions of their browsers eliminating the need to test

across versions. When an update is available for Chrome, a little arrow icon is displayed on the toolbar.

There is an update option and you will need to restart your browser. Firefox automatically updates its

browsers. They are installed when you restart Firefox. If that does not happen, you can manually update
it by going to the Help menu and selecting ―About Firefox‖. For both browsers you can learn more about

how they provide updates by going to their support page.

 www.teatimewithtesters.com December 2012|35

Product Vulnerability

When you perform your first cross-browser testing, gather as much intelligence on the types of problems

found and the associated browser(s). Examples of problems include information shifting on the screen;
font size too large or small; extracts not created; and information not saved correctly. It can be helpful

to store this information in a spreadsheet or database. I like to categorize these problems to better
understand what percentage of the problems are look and feel, data, and functionality. From this

information you can identify the minimum subset of testing you should perform based upon the coding
risk such as JavaScript and type of risk such as look and feel.

You may have to test over several releases that go to production to gather your initial intelligence. This
is an ongoing process because over time your recommendations can change. However, after a few

releases you may need to gather less intelligence unless a new coding technique is introduced such as
JavaScript or adding new browsers. When that happens, perform a gap analysis to understand any

potential risks to determine testing approach.

Product Vulnerability Spreadsheet

I like to use a spreadsheet to track the intelligence we are gathering on cross-browser testing. But just

as important, I perform hands on testing across the browsers and discuss with the testers what they are
witnessing in testing. Be careful to not make all your decisions based upon the spreadsheet or database.

I often get a better understanding of the risks we are facing through discussions rather than
spreadsheets and numbers.

Data I tend to collect: browser and version; test build; date; tester; category; product area (i.e., report

name, module name); priority of the fix; and brief description of the problem. You may consider adding
other columns such as coding technique used (i.e., JavaScript, HTML).

Opportunity Costs

Whenever identifying testing strategies and approaches, there is always an opportunity cost of your
decision. If you extensively test all browsers when it is not warranted what was the opportunity cost?

What testing did you reduce or not perform that may have identified new risks or important bugs?

Security

One area I did not discuss in my series was security and cross-browser testing. Ajay Balamurugadas

brought this to my attention and I am glad he did since it is important. Many products allow you to set
security or permissions levels for a user. He may have permissions to perform all functions (i.e., create,

edit, load data) while another user may only be able to view information or interact with a subset of the
product. Perform a series of tests with different permission levels to see if you encounter any problems

across browsers. Identify a sample of your bugs and retest with different permissions to see if you get
the same results.

Since time is always short when testing, gathering initial intelligence related to security and permissions

will help identify future testing.

 www.teatimewithtesters.com December 2012|36

Bernice Niel Ruhland is a Software Testing Manager

for a software development company with more than

20-years experience in testing strategies and execution;

developing testing frameworks; performing data

validation; and financial programming. To complete her

Masters in Strategic Leadership, she conducted a

research project on career development and onboarding

strategies. She uses social media to connect with other

testers to understand the testing approaches adopted

by them to challenge her own testing skills and

approaches.

The opinions of this artic le are her own and not

reflective of the company she is employed with.

Bernice can be reached at:

LinkedIn:

http://www.linkedin.com/in/bernicenielruhland

Twitter: bruhland2000

G+ and Facebook: Bernice Niel Ruhland

A click here will take you there 

http://www.linkedin.com/in/bernicenielruhland
https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com December 2012|37

l ev

When a high-frequency trading (HFT) glitch causes a crash on Wall Street, the results are felt

immediately. Investors‘ faith in the market weakens, pink slips are handed out, and, during it all, one
unlucky company helplessly watches its value plummet. It‘s like a runaway train on Wall Street, and
no one is quite sure how to stop it.

The SEC recommended ―kill switches‖ be placed on the trading networks to immediately shut down

any rogue algorithm or trader. But this is a jury-rigged attempt to fix the problem without examining
the underlying causes of why the crashes are happening in the first place.

To actually fix the problems we‘re having on Wall Street, financial firms will need to maintain a high

level of software quality while their trading systems are being built. This explains why these crashes
are becoming more and more common -- we‘re regulating the traders, and ignoring the software.

The architectural diversity that gives modern business applications their unique power and f lexibility

comes at a cost of staggering complexity. Quite simply, the complexity of modern business
applications exceeds the capability of any single individual or team to understand all of the potential
interactions among the components, let alone the languages and technologies deployed.

Organizations are now faced with the devastating impact of architecturally complex engineering
violations.

An architecturally complex violation is a structural flaw involving interactions among multiple

components that might reside in different application layers. Whatever component causes the
violation is typically in or around an architectural hot spot.

So, how can firms and other organizations prevent architecturally complex defects in their software?

This article will answer the most basic questions about these defects, as well as offer advice to
prevent them.

 www.teatimewithtesters.com December 2012|38

• Why do architecturally complex violations take more effort to fix?

They are multi-component and therefore require a lot more files to fix than a code-level violation.

Reported data indicates that, frequently, as many as 20 different modifications to files are required to
remediate a s ingle architecturally complex defect.

• Why are architecturally complex violations more costly to fix?

These defects are more expensive to fix because they involve interactions between multiple tiers of
the application often written in different languages and hosted on different platforms. These

violations require much more involvement and coordination across teams to ensure that the fix is
resolved system-wide.

• Why are architecturally complex violations worse as they cross phases?

Since complex violations are more likely to persist into operations, they are more likely to cause
operational problems than the single component violations that tend to get caught earlier. And they

take more testing to detect in the first place.

• What is the map of decay, and how is it used?

A map of the most frequently fixed relationships among architectural hotspots reveals the
architecture of decay. But it also presents a roadmap to guide high-value remediation and the

greatest opportunities to restore the structural health of an application. Big problems are often the
result of several interacting weaknesses in the code, none of which caused the problem by itself.

Preventing application-level defects requires analys is of all the interactions between components of
heterogeneous technologies. Reliably detecting software quality problems requires an analysis of

each application component in the context of the entire application as a whole – an evaluation of
application quality rather than component quality.

Maintaining high software quality using the tips above seems like the best way to eliminate the
growing problem that high-frequency trading has brought to the market. But that‘s not something

most firms want to hear -- and they‘re not going to ask for more regulation anytime soon either.
They‘re concerned about getting their programs to run faster and trade smarter … and that‘s about it.

And that‘s unfortunate, because crashes like Knight Capital and NYSE will continue to become more

common until Wall Street realizes that it is no longer in control of the monster trading network it has
created. And unless we want rogue algorithms bouncing stock prices around like a schooner in a

hurricane, we need to ensure architectural quality in our financial systems before it‘s too late.

Lev Lesokhin

Executive Vice President, Strategy and Market Development

Lev Lesokhin is responsible for CAST's market development, strategy, thought leadership, and

product marketing worldwide. He has a long career in IT and apps dev, a passion for making
customers successful, building the ecosystem, and advancing the state of the art in business

technology. Lev comes to CAST from SAP, where he was Director, Global SME Marketing. Prior to
SAP, Lev was at the Corporate Executive Board as one of the leaders of the Applications Executive

Council, where he worked with the heads of applications organizations at Fortune 1000 companies to
identify best management practices.

http://www.castsoftware.com/

http://www.castsoftware.com/

 www.teatimewithtesters.com December 2012|39

are you one of those

#smart testers who

know d taste of #real

testing magazine…?

 then you must be telling your friends about ..

 Tea-time with Testers Don’t you ?

 Tea-time with Testers !
first choice of every #smart tester !

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com December 2012|40

Master Test Plan – the strategic side of testing

There are many software organizations where the term QA refers to a group of testers who randomly

receive builds from the developers and proceed to ―play‖ with the system in order fish out the bugs.

In some cases these engineers use some informal flows or scripts to base their tests but these

documents are not even close to a testing strategy or test plan of any sort.

We all agree that one of the main objectives of the QA team is to rid the product of the most important

and disruptive bugs, but doing it completely Ad-Hoc and without a good preparation is the most
ineffective and inefficient way to go about this process.

 www.teatimewithtesters.com December 2012|41

The common testing project is composed of 4 phases:

a. Planning

b. Preparation

c. Execution

d. Post-analysis

In this post I will focus on the planning stage, since I believe this is the most important phase and
the one that we take for granted the most.

So now we can start with 2 big questions:

- What do we need to plan?

AND

- How do we go about planning it?

The answer to both questions is the MTP or Master Test Plan (also known as Software Test Plan,

Testing Strategy, etc). The MTP is both a document and a process; by this I mean that at the end of
the day you will have a document you can look at and admire (you may even hang it on the wall!),

but not less important is the process you need to follow to create and communicate all the aspects
that conform the document with all its sections.

What makes a good MTP?

Each company has different needs and thus each will require a different MTP template. The important
thing is to understand that this document will represent your Scope of Work (SOW) for the specific

project. It should be the place where you and your external stakeholders (Product Management,
Development, Support, etc) turn to in order to understand what your team is testing and how are
they approaching each testing task.

To look at it in a simple way, imagine your company decides to outsource all its testing tasks to an
external group (your group) and you need to put together a contract explaining what your team will

do and what will it need in order to do it. Like all contracts, the idea is to review all the details and
agree on them before signing the deal (or starting the project).

 www.teatimewithtesters.com December 2012|42

Following are the usual sections I include in my MTPs (remember to take them only as a suggestion
and to modify them based on your needs!):

1. Objectives of the testing process:

The objectives of the testing process depend on the nature of the development project. Examples of

testing objectives are: new feature validation, additional configuration certification, translation
validations, installation and/or upgrade testing, etc.

Just make sure you don‘t write trivial stuff like: to find all the bugs in the system or to assure we
release a quality product.

This section is to communicate what YOU will be thinking when planning and running your tests.

2. Testing scope:

For many people the testing scope is the heart of the Master Test Plan. It describes the things you
will focus in each of the application areas and/or features to test. I tend to make this section a
nested list, and for each item I describe:

- The main aspects to tests

- The product risks or potential bugs I foresee

- Concrete faults or main scenarios to validate

- Assumptions or requirements (documented API, stable GUI, etc)

- And any other aspects worth mentioning regarding the specific area under test.

This is the place where you provide your stakeholders with the information about what will you be
testing on each section of the product, and here is also where you should look for comments and
suggestions from developers, product architects, support engineers, fellow testers, etc.

Some MTPs go the extra mile and provide a list of areas and features that are Out of the Scope of the
testing process.

3. Testing configuration matrix:

Your application surely needs to support a defined number of configurations and platforms, here is
where you should list these configurations together with the testing matrix you will run in order to
validate it.

Keep in mind that by configurations we may refer to different things for different projects; on one
project it may be Operating Systems and Browsers, while on another project it is additional product-
components and specific versions required by your product to function correctly.

In any case, by configuration we mean the environmental (and thus external) parameters required
by our system to work.

 www.teatimewithtesters.com December 2012|43

In the cases when the list of officially supported configurations is more extensive than the systems
you plan to test you should provide 2 separate lists:

(a) The list of theoretically supported configurations, as specified by your customer or product
management team.

(b) The list of actual configurations you will test in order to achieve the above level of support,
together with the distribution or percentage of tests that will be run on each.

In order to do this I suggest a presentation format and planning method similar to what I described
in my last post.

4. Required Hardware / Software

Based on the testing scope and the required configurations you need to create a list of all the
hardware and software resources you will need to complete your tests.

In addition to special machinery and/or licenses, this is the place to ask for specific stubs or
simulators you may require during your tests.

If you plan to use automation of any sort include the number of software licenses as well as the
amount of virtual users you will need for load and performance testing.

5. Testing preparations

By now it should be clear what you want to test, now you need to understand what preparations to
do in order to test it.

For this point should make a high level review of your test plan inventory and compare it to your
testing scope. You should end with tree lists of tests:

(1) Tests that are ready to be run as is

(2) Tests that need to be reviewed and/or updated to match the changes to the functionality

(3) Tests you need to write from scratch

For each list assign the amount of time you will require to work on the tests; you can also include the
information and/or help you will need from other teams.

If you also need time to prepare testing environment or create testing data this is the section where
to add this additional preparation costs

 www.teatimewithtesters.com December 2012|44

6. Testing schedule:

(The favorite section of all our Project Managers!)

Our operations are usually divided into stages and cycles. For example a project may have a

preparation stage, an execution stage composed of 3 to 5 testing cycles, and a final product release
stage/cycle.

For each one we should provide at least the following information:

(a) Expected time lines

(b) Entry and exit criteria

(c) Testing scope & objectives

(d) Testing resources (peopleware, software and hardware)

and any additional information pertaining to the specific cycle.

7. Testers & schedules

Following on the project side of the MTP you should list all your testers and the dates when they will
be available for your project. List holidays, vacations, training and any other activities that may have
an impact on the availability of a resource.

If part of your tester-resources will be new make sure to account for the training and ramp-up time
they will require at the start of their work.

8. Risks

Like every project you should list the risk you may encounter. Examples of risks are difficulties in
recruit ing resources, instability of the product that may delay your schedule, high attrit ion rates, etc.

Each risk should include the following information:

(a) Person in charge of the risk

(b) Severity and likelihood of the risk materializing

(c) Dates of relevancy when the risk may materialize

(d) Consequence of the risk materializing

(e) Prevention & contingency plans

 www.teatimewithtesters.com December 2012|45

9. References & attachments

Add links to any additional documents and/or information referent to the project.

Add also a list of all the contact persons as well as their areas of responsibility.

A final word of advice - Some companies and processes are not ready to handle a full blown MTP,

specially start-ups and/or companies working under less structured development process (e.g. Agile
Development).

If you work on one of these companies it doesn‘t mean that you can or should work without a

strategic QA plan, it simply means that you need to mold it in order for the plan to meet your
company culture and way of life.

Joel Montvelisky is a tester and test manager with over 14 years of experience

in the field.

He's worked in companies ranging from small Internet Start-Ups and all the

way to large multinational corporations, including Mercury Interactive

(currently HP Software) where he managed the QA for TestDirector/Quality

Center, QTP, WinRunner, and additional products in the Testing Area.

Today Joel is the Solution and Methodology Architect at PractiTest, a new

Lightweight Enterprise Test Management Platform.

He also imparts short training and consulting sessions, and is one of the chief

editors of ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under - http://qablog.practitest.com and regularly

tweets as joelmonte

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte

 www.teatimewithtesters.com December 2012|46

Click HERE to read our Article Submission FAQs !

http://www.teatimewithtesters.com/#!write-for-us

 www.teatimewithtesters.com December 2012|47

Year++. Stay young, Have fun.

As we step into the New Year, it is a wonderful time to look forward to new learning, new roles, and

new experiences. It is that time of the year when we make interesting resolutions. Resolutions to learn

something new, to do new things, to contribute to a better world and so on.

Let us mull over this…

Learning is about acquiring new competencies, knowledge to be able to do things. Knowledge does give

us a sense of power, makes us feel nice. But is mere knowledge good enough? Nah - It is only when

we apply this knowledge to solve a problem successfully, do we feel a sense of true power. We look

forward to application of this knowledge multiple times and only when we fail (and subsequently learn)

do we feel the absolute power. This is when we become skilled.

So the FIRST transformation - KNOWLEDGE to SKILL. From knowing how-to-do to actually solving

problems successfully. Note successful problem solving requires not only how-to-do, but also how-not-

to-do. Don't be afraid to fail.

 www.teatimewithtesters.com December 2012|48

So as we step into the New Year, it is wonderful to look forward to new learning, successful applications

and also failures. Hence there is no need for fear/tension to succeed only; this allows us to learn well.

Now onto the next stage ... Is it good enough to possess the skill to solve problems when asked to? It

is indeed nice to be called in to solve problems. It is like ‘giving something‘ when asked for. Guess

what, it feels nicer to take ownership, take responsibility rather that just be a passive bystander who

can ‘give‘ when asked for. This is absolute power, the power to change, using your skills. So take

responsibility, take ownership in anything you do.

The second transformation therefore is SKILL to RESPONSIBILITY, from ability-to-do to own-the-

problem. So are you thinking of what you are going to take charge of, in the New Year?

On taking ownership to solve problems, we become good at problem decomposition, activity planning,

and executing the activit ies using the acquired skills. The focus becomes the activities and the

successful completion of each one of them. But is successful completion of activit ies good enough? This

requires us to go the next stage. From successful completion of act ivities to delivering outcomes i.e.

delivering business value.

It is the shift from the activities to the recipient of the activities. It is about ensuring the recipient(s),

(i.e. end users) benefit from the solution. Delivering value to customers/end-users, rather than just

successfully solving the problem. Do you what value you are delivering to your customers now? What

value do you intend to deliver to your customer, your company, your team this year?

This the third transformation from ACTIVITIES to OUTCOMES, from doing good work to delivering value

to your customers, company and the team. It is when we shift from the ‘doing‘ to the ‘recipient‘ from

the ‘inanimate-activity‘ to the ‘personal-outcome‘.

Continuing the same train of questioning, Is delivering value good enough? Let us think this through..

As we continue to perform activit ies that deliver value, we do become busy. That is when monotony

sets in, tiredness creeps in, and work gets heavier and boring. And it is about getting stuff done, no

more fun. Now it is high time for the next stage of transformation. The shift from doing work to having

fun. The shift from ‘recipient‘ to the ‘doer‘.

In addit ion to seeing the larger picture of activit ies from the recipient‘s view, when we immerse in the

activit ies with the focus on the doer, time stops, you are in flow and it is pure joy. That is what work

should be - Joyful.

This is the final transformation from WORK to FUN. From accomplishing for others to accomplishing for

yourself. This is when you are do things for the sheer joy of doing and guess what, the outcomes not

only deliver value, and they are beautiful. This is what each one of us should wish in the New Year,

having fun, being joyful and value delivery happens. This is about staying in the present, being relaxed,

enjoying every moment, being immersive and outcomes are magical. This is when you become young

at heart, and experience the joy of a child.

 www.teatimewithtesters.com December 2012|49

T Ashok is the Founder & CEO of STAG

Software Private Limited.
Passionate about excellence, his

mission is to invent technologies to

deliver ―clean software‖.

He can be reached at ash@stagsoftware.com

I would love to share my story of cycling with you now. About a year ago I started cycling, with the

focus on long distance rides. Init ially it was about building competence on ride techniques, strength

building, climbs, hydration, posture and others with focus on building endurance skills. With time and

failures I became skilled in doing 100 kms rides with ease. Now I wanted to graduate to doing rides of

300kms and beyond. That is when I discovered that it was necessary to relax and be in the moment as

just focusing on time and distance outcomes were weighing me down. Just focusing on the wheel on the

front, every pedal rotation, enabled me to be in the moment, and 300 kms was fun to ride, feeling

energetic even after completion of the ride. I am looking to doing 500+ long rides this year and look

forward to enjoying and completing these this year. Transformation from Stage 1 to 4.

Summarising ...

Competence -> Skill -> Ownership ->Activities -> Value -> Fun.

As you step into the new year, ask yourself what you want to know, to be skilled in, be responsible for,

what value to deliver, and more importantly have fun.

Have a great 2013. Become knowledgeable, skilled, enrich others and enjoy.

Grow older - year++, Stay young & Have fun.

God bless you.

mailto:ash@stagsoftware.com
http://www.stagsoftware.com/

 www.teatimewithtesters.com December 2012|50

Quality Testing

Quality Testing is a leading social network and resource center for Software

Testing Community in the world, since April 2008. QT provides a simple web

platform which addresses all the necessities of today‘s Software Quality

beginners, professionals, experts and a diversified portal powered by Forums,

Blogs, Groups, Job Search, Videos, Events, News, and Photos.

Quality Testing also provides daily Polls and sample tests for certification

exams, to make tester to think, practice and get appropriate aid.

Mobile QA Zone

Mobile QA Zone is a first professional Network exclusively for

Mobile and Tablets apps testing.

Looking at the scope and future of mobile apps, Mobiles,

Smartphones and even Tablets , Mobile QA Zone has been

emerging as a Next generation software testing community for

all QA Professionals. The community focuses on testing of

mobile apps on Android, iPhone, RIM (Blackberry), BREW,

Symbian and other mobile platforms.

On Mobile QA Zone you can share your knowledge via blog

posts, Forums, Groups, Videos, Notes and so on.

http://www.qualitytesting.info/
http://www.mobileqazone.com

 www.teatimewithtesters.com December 2012|51

Puzzle

Claim your Smart Tester of The Month

Award. Send us an answer for the Puzzle and

Crossword bellow b4 31st Jan. 2013 & grab

your Title.

Send -> teatimewithtesters@gmail.com with

Subject: Testing Puzzle

mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com December 2012|52

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for more than 5 years. He is

currently hosting European Weekend Testing.

He considers himself a context-driven follower and he is a fan of exploratory

testing.

He tweets as @testalways.

You can find some interactive testing puzzles on his website

www.testalways.com

“The Magic Number”

A magic number is a number that contains all the consecutive digits from 1 to n,
where n is the length of the magic number.

Example 632415 is a magic number because it contains 1,2,3,4,5,6 ("6" is the
length).

But 212 is not a magic number because not all the digits 1,2,3 are included in it.
(So it’s a permutation in a way).

The question is how many pairs of two magic numbers that have four digits have its
product equal with another magic number?

http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/

 www.teatimewithtesters.com December 2012|53

Answers for last month’s Crossword:

V

We appreciate that you

“LIKE” US !

https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com December 2012|54

 www.teatimewithtesters.com December 2012|55

o

Hello T.T.W.T. Team,

I am regular reader of you magazine. From November 2012 magazine I

liked the article by ―Ben Kelly‖. I found it very usefully to all of us

(testers). I understood many important things from the article e.g. the

importance of tester in organisation, responsibility of tester and How to

improve Dev-QA relations.

New things that I learned from your magazine, I am trying to implement

them at my work.

At time I used to wonder, Why Dev teams underestimate QA?

When I joined my organisation I had fear in my mind because I had no

prior experience in this field. But later I decided not to fear and not to be

scared of Dev teams. I focused on doing my job well and I am glad that

I'm doing it well.

I am writing this because I want to say that every tester within an

organisation is important and without testers no software business can

run well.

I want to thank Tea Time with Tester team for providing great knowledge

and platform to share our views.

- Shivendra Pratap Singh

 Pune, India

 www.teatimewithtesters.com December 2012|56

 www.teatimewithtesters.com December 2012|57

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Anurag Khode (Nagpur, India)

Dr.Meeta Prakash (Bangalore, India)

Anurag Dr. Meeta Prakash

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Image Credits- weiphoto.com

Sagar

Testing Puzzle & Online Collaboration:

Eusebiu Blindu (Brno , Czech Republic)

Shweta Daiv (Mumbai, India)

 Eusebiu Shweta

 Tech -Team:

Chris Philip (Mumbai, India)

Romil Gupta (Pune, India)

Kiran kumar (Mumbai, India)

 Kiran Kumar Chris Romil

Contribution and Guidance:

Jerry Weinberg (U.S.A.)

T Ashok (India)

Joel Montvelisky (Israel) Jerry T Ashok Joel

 www.teatimewithtesters.com December 2012|58

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

