
 
 
                                                                                                                                                                                                                      

 

 

 

 

                                                                                 

 

 

 

  

 

 

  

  

 

 
 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|2 

 

  

 

                                    

                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tea-time with Testers.                       
Hiranandani, Powai,                                    
Mumbai -400076                              

Maharashtra, India.  

 

Email: editor@teatimewithtesters.com        
Pratik: (+91) 9819013139                                 

Lalit:     (+91) 9960556841 

 

This ezine is edited, designed and published by                   
Tea-time with Testers.         

No part of this magazine may be reproduced, 
transmitted, distributed or copied without prior written 

permission of original authors of respective articles. 

Opinions expressed in this ezine do not necessarily 

reflect those of  the editors of  Tea-time with Testers. 

mailto:editor@teatimewithtesters.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|3 

 

 
Edi torial  new 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Although Rome wasn't built in a day, it took six days to accidentally burn down in 64AD. 
It was rebuilt to be a bit more fireproof. And with the burning of the Iroquois Theater in 
Chicago killed 602 people in 1903, the fire code for theaters improved in 1904. The 
Triangle Coat Factory fire in New York City (146 dead) led to the founding of the New 
York City Bureau of Fire Protection, and the National Fire Protection Association now 
maintains several hundred separate codes-- many of them inspired directly by specific 

tragic fires. People learn from disasters.  

This is also why we have testers. Software disasters happened and people learned. 
Those specific people became more careful, dedicated more energy to quality assurance 
(including testing), and there were fewer disasters. But, unlike fire codes, devotion to QA 
is generally not a matter of law. If an organization hasn't had a disaster in a while, their 
practices get steadily riskier (partly because younger and more innocent people replace 

the experienced ones). This is a normal Darwinian cycle.  

So it‘s not entirely surprising that at the STARWest conference, in 2011, Google‘s James 
Whittaker announced that testing is "dead." What? Testing is dead?! He seemed to be 
saying that testers are no longer needed in a world with automated checks and 
automatic updates. But Whittaker is not now and has never been a professional tester. 
Imagine a cabinet factory industrialist, never himself having built a cabinet, announcing 
the death of skilled carpentry. That‘s what it sounded like to me. 

As if the Fates had overheard him and been offended, a few weeks later a bunch of 
Google bugs made news: an article appeared on CNN.com with the lamentable title "The 
week Google really messed up." A couple months after that, Google Wallet was 

discovered to have a serious security problem affecting all users. More bad publicity.  

What does that mean for the testing field? After all, no testing process is guaranteed to 
save us from all bugs. Meanwhile, other processes can find bugs, too, or prevent them. 
Amateurs and part-timers can find bugs. Programmers can test their own code. Just 
because Google gets embarrassed now and then by bad software doesn't automatically 
mean they should hire more testers. Maybe instead they should hire better 
programmers, or train them better. 

Well, one thing is obvious: bragging about how you don't test hurts you later when you 
are begging for forgiveness from your customers. Eh, Google? Setting that aside, what it 
means for testing comes down to the beliefs people have about the nature of software 
products, users, software development, economic factors, and the nature of testing 
itself. And don't forget the ethical and legal landscape. A lot of factors are involved, 

here. 

What Would Kill Testing? 

Testing is not dead. Testing won't be dead. And anywhere testing seems to die it will be 
reborn, phoenix-like, from the consequences of its own ashes. Still, it can be a good 
exercise to think about what might cause the death of testing, even in a temporary way. 
Michael Bolton and I sat down recently to brainstorm on that. Here's what we came up 
with: 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Testing may die if you start using the word "testing" to mean checking. One of 
Michael's recent contributions to the craft was to suggest a sharp distinction between 
testing and checking. To test is to question the product so as the evaluate it. Testing is 
an open-ended investigation that cannot be automated. To check, however, is to gather 
specific information and analyze it in a manner that could, in principle, be automated. In 
the parlance of philosophers, checking is a mimeomorphic activity; testing is 
polymorphic. Some people, mainly programmers who don't study testing much, believe 
strongly in automated "test tools." In pursuing their vision of applying these tools to 
testing, they inadvertently dumb testing down. They do with tools what tools can do. 
They run many checks. Testing for them becomes little more than a command-line switch 
on the compiler ("-t for test", or -q for "put the quality in"). And such checks are capable 
of finding bugs, just not nearly the breadth and depth and variety of bugs that a skilled 

human can, especially if that human ALSO uses tools. 

Mistaking testing for checking can kill testing, in a sense, by co-opting testing practice. 
Testing, as Michael and I see it, would still exist, of course. But it would be relegated to 

the shadows. No one would systematically learn how to test, anymore. 

2. Testing may die if the value of products becomes irrelevant. It dies when we 
don't care about the quality of software or the people who need it. By the same token, if 
we always trusted the water we drank, or the meat we bought at the store, then water 
testing and food hygiene standards would be irrelevant. 

There really is a problem in our industry with the erosion of the expectation that anything 
will work reliably, ever. I was trapped outside my house, in the cold, recently, and found 
that my Android phone would not make any calls on the cell network. I rebooted the 
phone (that takes a few minutes). Still no joy. I connected to wifi and tried to call that 
way but got a strange error about not being registered. I had made calls through wifi 
before from my house, so I knew it could work. Finally I started Skype and IM'd my son 
(this was through wifi, so why didn't the phone calls work?). I'm annoyed by my phone, 
but not surprised. 

Google probably thinks I'm not going to give up my phone just because of a few glitches. 
What they need to understand is that this creates an opportunity for competitors to come 

in with a better product that kicks them out of the market. 

3. Testing may die if the quality of testing work is chronically poor. Unfortunately, 
the death of testing can be a self-fulfilling prophecy. People most likely to believe that 
testing is dead are – like the folks at Google —unlikely to devote themselves to the study 
of it. They simply don‘t know how to test, or perhaps don‘t care. It‘s only a matter of 

time before management wonders why they have testers at all. 

The antidote for that is a high standard of personal excellence. This is what the Context-
Driven testing community stands for. We are doing our best to win over the rest of the 
testing world by being good role models. 

4. Testing may die if all the users in the world were early adopter technocrats.  
Let‘s pretend that all the people in the world who use computers or rely on them in some 
way are highly technical and tolerant of problems in the products they use. Then the 
need for testing would dramatically fall. Sure, they want great quality, but if they don‘t 
get it, they understand. For minor glitches, they will have the patience to find a work 
around. That may be more true for the perpetual beta products that Google famously 
offers, but everyone on Earth depends on computers in some way, even if they‘ve never 
seen one. And a tiny minority of those people will experimentally download a tool like 
Google Earth, as I have, and then spend an hour re-configuring it so that it will actually 

run. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                        

 

 

5. Testing may die by suffocation. If testers are forced to channel all their ideas 
through a limiting set of artifacts or tools, their productivity may collapse. I‘m talking 
about elaborate test plan templates, test script templates and test management tools; 
and Cucumber ―executable specifications‖ or other automation tools that require the 
tester to express himself only in stilted and limited ways. 

That will kill testing because it turns testers into tool jockeys, whose standard of success 
is the weight of paper or volume of data or lines of code – none of which has much to do 
with testing.  Tools can be marvelously helpful in moderation, but the excellent tester 
will resist obsessions with tools, documents, or anything that systematically impedes the 

variety and profundity of his work. 

6. Testing may die if technology stops changing. Testing is questioning the product. 
There isn‘t much call to question a product that stays the same, especially if it operates 
in an environment and for a user base that also doesn't change. The ambition to 
innovate is what invigorates the need for testers. Take away that ambition and we all 
will have to get jobs in comic book stores. 

7. Testing may die by starvation.  When companies reward people who take 
unknown risks, but not people who discover what those risks actually are, testing begins 
to starve. If the craft becomes uninviting to smart, talented, motivated people because 
you've turned it into a boring, uninteresting activity: that also will starve testing. The 
only people left would be the ones who are too frightened or lazy to leave. The 
reputation of testing would become steadily worse. The word "tester" would come to 
mean a non-technical, uncreative, unhappy bean counter. 

Michael and I teach Rapid Software Testing, which is like a martial art of testing. It‘s 
exciting. We are trying to show people that their jobs don't have to suck. We are trying 
to feed the testers. By the way, we are booked months in advance for our testing 
classes. Apparently, if testing is dead, nobody has told our clients. Do you think buggy 

whip salesmen and corset factories are doing this well? 

Final thought: I wonder when testing ever was truly alive to people who wish to have it 

declared dead?  

My special thanks to Michael Bolton for helping me in this editorial.  

I also congratulate Tea-time with Testers for completing one year and hope that you‘ll 

continue liking it.  

Enjoy  Reading !  

 

- James Bach 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|6 

 

   topIndex P Quicklookfinal in        INDEX 

 

                                            

                         

                    

                           

 

 

Understanding the Defect Mindset - 21 

 

 

 

 

Coaching Testers - 30  

Facilitating a Journal Club - 36 

Don't waste time on Company Quality Agenda       

– 48 

                                       

 

Do you know the "potency" of your test cases?     

-54 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

May this be the first of many happy returns of the occasion. 

Many of us have thought about publishing a magazine, but very few follow through. 

Of those who follow through, 95% publish a few issues and then run out of ideas, so 

when I saw the first issue of Tea-Time with Testers, I was skeptical. Not that there 

aren't enough worthy ideas about testing. Quite the contrary. But most would-be 

publishers simply lack the breadth of knowledge to cover the testing profession 

from all angles. And even if they do, most lack the imagination to publish those 

ideas in a useful and visually appealing format. 

 

Well, it's now been a whole year full of monthly issues, and Tea-Time with Testers 

has proved itself to be the one exception--so much so that I look forward to reading 

it every month, and am proud to be associated with it and its marvelous crew of 

writers and artists. 

 

So, congratulations on not just surviving, but thriving, through your first year.        

May this be the first of many happy returns of the occasion.  

- Jerry Weinberg 

 

Congratulations for completing a year. 
 

I did of course like writing for Tea-time with Testers. One thing I like about Tea-

time is the passion the editorial team has shown towards Software Testing.  

 

It’s not an easy job by any stretch of imagination to bring about monthly issues and 

that too made so comprehensively well. All this is not possible with a pure passion 

at the core. Congratulations to Tea-time with Testers team for completing a year.  

 

I would just say maintain continuity and quality. It’s always hard to surpass the high 

standards when they are set, so please continue to strive to reach greater heights. 

  

- Anuj Magazine 
 

It was very enjoyable to write for Tea-time with Testers.  
 

I like the community-driven nature and that the articles actually come from 

practitioners. 
 

- Markus Gartner  
 

Remarkable achievement 

It was a great experience writing 

for Tea Time with testers.  

The magazine provides a good 

balance of educational content, 

opinions and testing tool coverage. 

What makes Teatime with Testers 

unique is that a magazine 

published in India, is now read 

around the world in 90 different 

countries. This is a remarkable 

achievement in a short period of 

one year.                  -Karthik S 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   To send your FEEDBACK; Write to us at  

–  editor@teatimewithtesters.com  

It's hard to think it's only been a year. 
 

I really enjoy writing on software testing and seeing it published in Tea-time with Testers only makes it better. 

I appreciate the fact that you are able to mix some of the biggest names in QA and Testing together with newbie and so 

show many faces of the testing world. You also have managed to cast a global writing team, pretty impressive. 

Overall I think that many people were Skeptical about the need for "another testing magazine", but the fresh look and the 

depth of the articles in Tea-time with Testers has actually proven that you can bring more value than many other 

publications with tons more investment.   

 

It's hard to think it's only been a year. 

 

I wish all of you in the magazine lots of additional publications and that you keep working with the same level of 

enthusiasm and professionalism you've done up to now! 

 

I am honored to having helped (in my small way) with your efforts. 

 

Keep it up and congratulations on a great first year! 

 

- Joel Montvelisky 
 

 

I love being part of such reputable community.  
 

For some time, I was looking for an online community where I could 

share my knowledge and at the same time learn from others valuable 

experiences.  Tea-time with Testers was the place and it's been an honor 

to write for such a reputable community. 
  

The vast experience and passion of contributors is one of the things that 

drove me in being a part of this community. I love the funzone in the 

issues too. 

Congratulations for completing one year !  

- Samarjeet Mohanthi 

  

 

Freedom of writing 

I enjoyed writing for Tea-time because it 

allowed me to shares ideas and thoughts on 

an atypical topic with many readers.   

I think the Testing profession is very diverse 

and feel Tea-time will help us all explore it.  

I appreciate the electronic format, monthly 

frequency, articles from many Testers, and 

articles from Bach and Weinberg. 

In general, I look forward to my Tea- Time 

with Testers every month. 

- J  DeMeyer 

 

 

 

 

mailto:editor@teatimewithtesters.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|9 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                                                                             

I           mage: www.bigfoto.com  

 

Teen finds bugs in Google, Facebook, Apple, Microsoft code 
 

 

                   Elinor Mills , February 2, 2012 

…………………………………………………………………………………………………………………………………. 

When he's not at school, 15-year-old Cim Stordal spends his time playing the Team Fortress video 

game, shooting his Airsoft pellet gun, and working in a fish shop in Bergen, Norway. But his real 
passion is finding bugs in software used by millions of people on the Internet. 

Stordal has made the Google Security Hall of Fame, been credited 

with disclosing a cross-site scripting bug to Apple, been thanked by 
Microsoft for disclosing a vulnerability to the company, and received 

an elite White Hat Visa card from Facebook with $500 credit on it. 

"I got a card for a self-persistent XSS [cross-site scripting flaw] at 

Facebook, and a nonpersistent XSS at Google, Microsoft, and 
Apple," he said in a recent Skype interview with CNET. (As a "self-

persistent" issue, the bug Stordal disclosed was not exploitable by a 
third-party because it required a user to take an action to be at risk, 

according to Facebook.) 

 

"I just look around at the site and find out where I can input HTML 

and stuff and it's not filtered in the source code. Often they filter 

http://www.bigfoto.com/
http://www.google.com/about/corporate/company/halloffame.html


 
 

   www.teatimewithtesters.com                                                                                      February  2012|10 

 

some characters but forget some or they totally forget that input," he said. "What an attacker wants is 

often the cookie, which can be used to log-in as the user." 

Stordal says of the sites he poked around in, Apple was the easiest to find a flaw in. "I found the 
Facebook [hole] after four days and the Google one after three, but Apple took me only five minutes" 

to find two XSS flaws, he said. (Apple representatives did not respond to a request seeking comment.)  

The companies appreciate his efforts, particularly because he tells 
them before going public with any of the details. "Everyone was happy 

about it and fixed the flaws kind of fast." 

Stordal started looking for vulnerabilities in software when he was 14 

years old. "I have always loved being on the PC and I already was 
programming some C++," he said. "So I wanted to do something new 

and I searched around and learned Basic." 

His friends are impressed with his skills and lean on him to help keep 
their Web sites secure. His parents aren't really sure what to make of 

his research. 

"They think it's kind of cool, I guess, as they don't understand what I 
do," he said. "But they also don't want me to stay on the computer all 
day." 

His next move is to look for vulnerabilit ies on mobile devices. He's trying to set up a fuzzer (automated 

software testing tool) on his iPhone 3GS.  

 

About Elinor Mills 

 

Elinor Mills covers Internet security and privacy.  
 

She joined CNET News in 2005 after working as a foreign correspondent for 
Reuters in Portugal and writ ing for The Industry Standard, the IDG News Service, 
and the Associated Press. 

 

For more updates on Software Testing, visit Quality Testing - Latest Software Testing News! 

 

 

 

 

 

 

 

 

Are you interested in publishing the news about your 

own firm, community, conference etc in Tea-time with 

Testers?  

Feel free to write to us at: contact@teatimewithtesters.com 

with “News Enquiry” in your subject line.  

 

http://www.qualitytesting.info/page/latest-software-testing-news
mailto:contact@teatimewithtesters.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion helps ! 

How about talking with us on Facebook? 

Come ! Let’s have a nice Tea-time there ! 

 

CLICK ON THE PAGE BELOW TO JOIN US 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.facebook.com/TtimewidTesters?sk=app_129982580378550
https://www.facebook.com/TtimewidTesters?sk=app_129982580378550
https://www.facebook.com/TtimewidTesters?sk=app_129982580378550


 
 

   www.teatimewithtesters.com                                                                                      February  2012|13 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                        

 

 

 

                  

 

                                                                                                                                       

        

 

 

 

http://www.teatimewithtesters.com/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measuring Cost and Value (Part 4) 

 
 

 
 

The Case for Specification Reviews 

Background 

The specification review for the Zebra project led to the listing of more than 150 serious issues. 
Management, when considering this list, realized that the product was ill-considered. They cancelled the 

project and initiated project Iris to replace it. 

Development Costs Saved By Cancellation 

Direct labor, 6 person years = $420,000 

Project management = $82,000 

Hardware resources = $60,000 

Total development costs saved = $562,000 

Marketing Costs Saved By Cancellation 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|15 

 

Product manuals = $55,000 

Training & development = $25,000 

Sales literature = $30,000 

Total marketing costs saved = $110,000 

These figures assume that the product is brought to the point of product release before cancellation. 
Until this project, our company's historical pattern has never been to cancel a development project until 

at least the first scheduled delivery date. Later cancellation would, of course, incur additional costs, 
including field service training, attempted support, and loss of customer confidence and market image.  

Cost of Delay in Coming to Market with an Alternate Product 

Our marketing model says that a one-year delay reduces our market share from 28% to 21%. A two-
year delay reduces it to 12%, and 3 years or longer shuts us out of the market permanently. The 

original market estimates for Zebra were $45,000,000 gross revenues, with a net profit margin of 30%. 
Thus, a 1% loss of market share costs us $135,000 in profits. A one-year delay would thus cost 

$945,000; a two-year delay, $2,160,000; and a three-year delay, $3,780,000. 

Zebra was scheduled for a 1.5 year development period. Based on the model that an alternative product 
would be started when management began to get "signals" of trouble, the conservative estimate of the 

delay would be one year. 

Based on our historical performance, the new product would slip its schedules for at least 6 months 

before management would cancel, yielding a two-year delay. Most typically, however, our projects that 
have been troubled by high change rates due to specification difficult ies seem to run double their original 

development time estimates before cancellation, or in this case, three years. 

 

Conclusion 

 

The benefits from just this one specification review fall in the range $1,600,000-$4,500,000. Not all 

results will be this spectacular, but even the lowest of these amounts would pay the cost of about 2,000 
reviews, even if they turned up nothing. 

-------------------------------------------------------------------------------------------------------------------- 

Sample Report for the Single Greatest Benefit Method 

Issuing this report was a milestone in the cultural change of the organization. Previously, there had been 
no explicit cancellation process. Indeed, cancellation of a project was considered a rare exception, and a 

very bad event. 

Discussion of the report led the managers to realize that more than one-third of their projects were 
eventually cancelled. 

They developed a process that broke larger projects into five explicit smaller projects—expending 

approximately 1%, 2%, 5%, 20%, and 100% of estimated cost. At the end of each of those projects, 
management did a recalculation of cost and value, then used this information to make a decision on 

whether or not to proceed. 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|16 

 

 

1.5.4 Example Report #4 

 

Another example is based on a study Dani and I did some years ago. This study was initiated by a client 

manager who questioned the worth of experiential training for technical leaders. He claimed that training 

could not be evaluated, but was convinced by the study, which led to the inaugurat ion of a technical 
leadership development program for a technical staff of 3,000 people.  

The study used interviews to discover the greatest single benefit of the training to 100 people who had 

taken the training six months or earlier. We tabulated only one benefit from each person, using the 
largest one that they could remember clearly and document the value in a way that was convincing to 

the manager. In this way, we ensured that the estimated value was a lower limit, for many of the 
participants could document additional benefits. We obtained the following table: 

-------------------------------------------------------------------------------------------------------------------- 

Number $ Value of Total Return of people benefit on investment 

1 person documented a benefit of $1,000,000 for a total benefit of $1,000,000 

2 people each documented benefits of $500,000 for a total benefit of $1,000,000 

7 people each documented benefits of $100,000 for a total benefit of $700,000 

15 people each documented benefits of $50,000 for a total benefit of $750,000 

20 people each documented benefits of $10,000 for a total benefit of $200,000 

20 people each documented benefits of $5,000 for a total benefit of $100,000 

10 people each documented benefits of $1,000 for a total benefit of $10,000 

25 people could not recall and specific concrete benefit  

Total return on investment = $3,760,000 

Total cost = $200,000 

Ratio of return to cost = 18.8 

-------------------------------------------------------------------------------------------------------------------- 

This study convinced the manager to inaugurate the training, but it convinced us that we no longer had 
to be apologetic or defensive when someone asked us to put a value on our work. Nowadays, we simply 

interpret the request as a reasonable desire for information on quality. This is the position a software 
engineering manager needs in order to be part of a Pattern 3 (Steering) culture.  

1.6 Helpful Hints and Variations 

1. Value cannot always be determined in monetary terms, because people hold certain values that are 

not directly convertible to money. The programmer's value system may include praise from peers for 
tricky coding, something for which the customer would pay nothing, or even pay to avoid. Managers 

may try to motivate programmers to adopt the customer's value system by mentioning how much 
money something is worth, but that kind of argument falls on deaf ears. Even offering bonuses for 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|17 

 

certain tasks may not work if the programmer is simply not working in the monetary sys tem of values. 

On the other hand, the programmer might do almost anything for the promise of a chance to work on a 
new system that offers stunning technical challenges. 

2. With many customers, a small-value piece of software can have high total quality, even though the 

producers don't think it's a high quality item in their value system. 

3. Quality is value. Nothing more. Nothing less. Quality is total value to all people over all time. Thus, if 

you lose users, you lose value. Time does not become a quality issue except in terms of the time/value 
trade-off. 

4. Jim Batterson applies the Second Law of Thermodynamics to software maintenance, describing the 

tendency of software to decay of time without corrective effort. Lehman and others observed that 
successive changes tended to affect larger and larger numbers of software modules, reflecting a decay 

in design cohesion. 

 

1.7 Summary 

 

1. The motivation for improving quality always starts with a study of the value of quality, but many 

managers seem to confuse cost and value. 

2. When under pressure to justify its existence, an organization has to decide whether to emphasize the 

cost side or the value side. The switch from cost observation to value observation is the strongest 
indication that an organization has made the transition from Pattern 2 to Pattern 3. 

3. "Effort moves to what is counted." Cost counting leads to cost reduction. Value counting leads to 

value enhancement. Cost reduction is limited by the annual budget. Value enhancement is unlimited.  

4. When someone says, "Software costs too much," it's always a coded message meaning, "Software 
isn't worth enough (to me)." Value is always perceived value, so we must know who is doing the 

perceiving. 

5. When a software project simply collapses, the quality question is easy to answer—quality is zero. 

Underlying all quality collapses is the simple fact that in software we are attempting to achieve quality 

through precision higher than human beings have ever attempted before.  

6. Software is a young, maturing business. What was an acceptable process for producing quality in the 

earlier system becomes unacceptable in its larger, more complex successors. Thus, even when software 
value doesn't collapse, it decays. 

7. The Second Law of Thermodynamics says that you have to pay to get quality, and the higher quality 

you want, the more you have to pay. The First Law of Human Nature says that nobody wants to believe 
the Second Law of Thermodynamics applies to them. 

8. The investment in quality must be more than money and hard work. To produce quality consistently, 
managers must learn new ways of thinking. 

9. Systems thinking tells us that to produce quality, we must monitor requirements as they change, or 

as our understanding of them changes. Then we must make adjustments in the process on the basis of 
deviations between what is required and what is produced. That's the manager's job. 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|18 

 

10. Measurement of quality through secondary requirements is indirect measurement, because it 

requires an extra step to relate the measurements to quality, and that extra step could go wrong. The 
possibility of misinterpretation means that the more indirect the observation, the more carefully it must 

be managed. 

11. Discontent over standards arises when people who must conform to the standards cannot make the 
cause-effect connection between the standard and the value of the standard. The detailed impact case 

method and the single greatest benefit method allow us to make this connection and thus measure 
quality. 

12. The detailed impact case method is an exhaustive study of the value impacts of a change. It is based 
on the idea of tracing requirements through a diagram of effects. 

13. The single greatest benefit method is one approach to putting a floor estimate on value, while 

keeping the cost and time of the estimating method down to practical levels. The basic question of the 
greatest single benefit method is "What is the one greatest benefit that you can attribute to this 

change?" 

 

1.8 Practice 

 

1. Next time you hear, "Software costs too much," try transforming it into an investigation. Ask, "If 

software would cost this much less, how much more could we sell?" Graph the cost and the value, then 
choose the trade-off point that gives maximum net value. This is how much software ought to cost. 

2. Choose some standard that has been the nub of discontent in your organization. Conduct a detailed 
impact case study for that standard, to see if you can determine why people think it doesn't provide 

value for the trouble it requires. 

3. Many organizations are in the habit of announcing delivery dates before requirements are set. What 
message does this send? What is the effect on motivation? 

4. Instead of announcing delivery dates for your next product, try announcing the quality level, as in the 

slogan, 

"We will sell no wine before its time." What would be the effect on wine purchases if you announced, 

"We will sell no wine until marketing says we need some cash flow." Or, how about, "We will ship no 
software until the date the president set to satisfy the venture capitalists." Sometimes it may be 

necessary, but what will be the impact? 

5. Dawn Guido and Mike Dedolph suggest that there seems to be an inverse correlation between the 
utility of a standard and the probability of successfully obtaining a waiver. What  causes can you imagine 

for this effect? 

6. Jim Batterson says, "The way I think that quality is free is that one can develop quality habits and 
habits of rigorous thinking so that one gets to doing things right the first time, and productivity is 

greatly increased. Where's the cost?" Brainstorm some of the costs of developing "quality habits and 
habits of rigorous thinking" in an organization that has already developed habits (i.e., a culture) that 

produced "quality" in another environment. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biography 

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and   teacher of the psychology and   

anthropology of computer software development. 

 

For more than 50 years, he has worked on transforming software organizations. 

He is author or co-author of many articles and books, including The Psychology 

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and 

Design,    The Handbook of Walkthroughs, Design.  

In 1993 he was the Winner of The J.-D. Warnier Prize for Excellence in Information 

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software 

Engineering, and the 2010 Software Test Professionals first annual Luminary Award. 

To know more about Gerald and his work, please visit his Official Website here .  

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg 

HOW TO OBSERVE SOFTWARE SYSTEMS is 

one of the most famous books written by Jerry.   

 

This book will probably make you think twice 

about some decisions you currently make by 

reflex. That alone makes it worth reading. 

"Great to understand the real meaning of non 

linearity of human based processes and great 

to highlight how some easy macro indicator can 

give info about your s/w development process." 

An incredibly useful book.  Its sample can be 

read online here. 

To know more about Jerry‘s writing on software 

please click here . 

TTWT Rating: 

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.smashwords.com/extreader/read/34567/1/how-to-observe-software-systems
http://www.geraldmweinberg.com/Site/Software.html


 
 

   www.teatimewithtesters.com                                                                                      February  2012|20 

 

                                                                                                                                                               

Speaking Tester’s Mind 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|21 

 

 

 

 

Time  

 

 
 

 
 

 
 
 

 
 

 
 

 
 

MMike talks 

 

 
 

 
 

 
 

 
 

 
 

Defects.  To many other roles on a project, they are a beast to be feared.  But testers have a unique 
relationship with them, because through experience testers have learned to understand them and 

whenever possible to tame them. 
  
On any project testers can expect to field many questions on defects.   

 
Here are lists of some of the more common questions I've found myself dealing with from project 

managers and business owners alive over my career ...  
 

As a senior tester, I sometimes find myself feeling a little bit like Bill Murray in Groundhog Day when it 
comes to fielding questions about defects. So much so that I ended up including some FAQ about defects 

in our department handbook. 
 

No … I didn‘t do this to rudely defer any questions from team members to the handbook, but instead to 

just polish up my reasons why, so I could give better, slicker and hopefully more informed responses … 

 
 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|22 

 

What is a defect? 

 
A defect is anything encountered in the system under test which is not as expected.  It can range from 

“shouldn‟t the font be red here not green?” to “why do I get a blue screen when I do this?” 

 

Testers are the creators of most defects, but anyone in the team can find them (although they might 
need a testers help logging them as defect reports). 

 
Within a piece of software, it‘s likely that a lot defects will be raised – to help organise them, they are 

usually categorised by severity (how big an issue they are) and priority (how urgently they‘re needed to 
be fixed). 

 
Defects, testing, quality 

 
Testers test software to prove it is suitable for purposes, works as expected, and is ready for release.  
Along the way as they test delivered software against its original design and requirement, they will find 

defects.  Defect reports are the value that testers add to a project, because they help to diagnose 
problems and improve the quality of software to be released. 

 
I‘ve never worked on a project where we didn‘t find defects.  Turn that around and I‘ve never worked on 

a project where testers didn‘t help to increate the quality of the product. 
 

Why do we need a defect tool? 
 

Most projects should have a defect tool of some kind for the logging 
of defect reports found. At bare minimum a defect spreadsheet 

should be used to keep tabs on issues. 
 

Defect tools have the advantage of recording all important 
information (date logged, by who etc), but most importantly they 

allow a defect to be actioned against a person or group. 
 

This allows defects to be much more easily managed, and help with 
the number which can be managed. 

To be truly effective, everyone who might need to be involved with 
defect creation, actioning, and resolution needs to have access to 

the tool, so they can be actioned by it, and return defects to people 
when they‘ve done work on them.  Within our organisation, this is 

relatively simple, but there are challenges when this comes to 
raising defects against components from external parties who might 

have limited access to our internal systems. 
 

Defect Lifecycle 
 

The defect lifecycle is like a miniature version of the software lifecycle, dealing with only one feature.  
 

 Raised – The defect is recorded by a tester. 

 

 Assessed – The defect is assessed by test manager/project manager, and actioned against 

someone for some piece of work.  The problem might be against the back end software, the 
GUI design, or even with either the requirement or the test itself. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|23 

 

 

 Actioned – whoever is actioned needs to make a change to their work, and check it.  
 

 Fixed – the corrective work has been completed by the developer, BA or tester, and is 

ready to be rechecked. 
 

 

 Retest – the defect is assigned to a tester to retest. If happy this can then be closed.        
If the problem‘s still there, we go back to Action or Assess. 

 
 Closed – the defect is closed.  Hooray! 

 
What makes a good defect report? 

 
Simplicity and repeatability.   

 
Most importantly it should be a set of instructions which allow someone (your developer ideally) to 

repeat the problem for themselves.  Ideally you should try it out a couple of times and be happy you can 
repeat the defect yourself.  If it‘s a high level defect, you should really bring around your developers (if 
possible) to talk them through it. 

But here are some other things which are useful to record, 
 Build version tested.  Because sometimes the problems we find are that we‘re using an 

older build rather than the latest to test. 
 Severity.  How much does it impact business if this went live? 

 Priority.  How urgent is it this is fixed (usually linked with Severity).  
 Date.  So you know how long the defect has been open. 

 Why it‘s a defect.  Refer back to original design/requirements to say why you think this 
shouldn‘t behave like this.  As much as possible it‘s good to source defects back to 

requirements. 
 

Do we need to defect everything? 
 

Defect reports are a way to keep track of issues you encounter.  Generally it is worth recording them.  
However if a developer thinks they can have something fixed within a day, it‘s worth holding off and 

waiting to see if he can fix it. 
 

But generally it‘s worth recording them, even if you close them almost immediately.  Even defects which 
essentially read as ―software looked wrong, but on closer analysis of the requirements, it‘s working as 

specified‖ are worth keeping note of.  Sometimes customers and project management encounter the 
same observation, and it‘s useful for their confidence to see a copy of the investigation. 

 
I can’t repeat an issue.  Should I still defect it?  

 
This is a toughie.  Generally a defect you can‘t repeat has little value to either managers or developers.  

Everything depends on how severe it was. 
If you were using an accounts screen, and had a blue screen which required the machine to be 

restarted, that‘s a high level defect, and should be recorded, even if you can‘t get it to happen again.     
If after a few weeks of testing it‘s not reoccurred, it possibly can be dropped from high to low severity 

(or even closed) after conference with managers because it doesn‘t seem to be happening again.   
 

There might well have been something in the background of your machine (new Microsoft update for 
instance) which caused this.  And even a closed defect can be reopened if it rears its ugly head again.  



 
 

   www.teatimewithtesters.com                                                                                      February  2012|24 

 

 

We’re in week three of testing.  We found the same amount of defects this week as in week 
one. The software isn’t getting any better!  

 

A common worry from managers. 

 
It could be week 1 was slow because a couple of severe level 

defects prevented whole areas from being tested. 
 

More often though you do find week-on-week similar numbers 
of defects do seem to be raised. This is where closer inspection 

of the numbers is important – remember there are lies, damn 
lies and statistics. 

 
A trend in many projects is that most of the big defects, by which we mean the high severity ones, are 
discovered in the first few weeks of testing.  As project go on more defects are found, possibly more, but 

they‘re of less severity. 
 

The trend you‘re looking for when looking at defects found week-on-week is how many high or severe 
defects are being discovered.  This should significantly decrease as testing continues.  If not, then you 

are not yet over the ―pain point‖ of your project. 
 

We still have defects open – we can’t go live can we? 
 

Contrary to popular opinion, you can choose to go live with a product that has open defects. We have to 
live in the real world, and that means a drive to deliver. 

 
What we aim to do is to go live with as few defects as possible. That there are no high or severe level 

defects unresolved (as this would really impact on our business). That the defects which are open are 
understood and more importantly the impact on the business is understood, and any workarounds 

communicated. 
 

Why do we get defects?  Who’s to blame? 
 

As software gets more and more complex, it‘s an inevitable that mistakes will get made throughout the 
software development lifecycle. 

 
These mistakes can be due to simple human error, or can be because we design on part of a solution 

without understanding it will have an effect on another part of the system. 
 

Defects are often associated as something testers raise against developers. But every part of the 
software development lifecycle are prone to unexpected defects.  It‘s just when a developer creates code 

that those defects become most visible and impossible to ignore. 
 

In reality defects can be due to, 
 

 BA not understanding the process they‘re designing requirements for 

 Architect missing a dependency in the system 

 Developer making a mistake in code 

 And yes even a tester misinterpreting the requirements 
 

So everyone can be the cause of a defect, it‘s not just a developer problem. 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|25 

 

We have multiple defects raised for the same problem … 

 
This always looks bad.  Generally you should always search to see if a defect has already been raised 

before raising it.  Sometimes this isn‘t as easy as it sounds, because a system is failing in two different 

places but due to the same root cause (only found on investigation). To avoid confusion (and two 

programmers fixing the same bug), you normally can close or link one defect to another. 
 

 
How can I make my project not have defects? 

 
This is actually a trick question. There are always going to be defects in your system. Because this is 

human nature. 
 

No matter how much you review requirements and sift through lines of code, you‘ll always miss 
something. 
However the way to reduce the impacts of those defects is to try and find them early as possible. 

 
That means 

 
 

 Review requirements and design as they‘re written to make sure it flows for the likely 
business cases.  Ask ―what happens if‖ now rather than later.  

 
 Don‘t just accept code as done because it compiles.  Try to unit test now rather than wait 

until later testing to find issues. 
 

 Get early releases of software to test to ensure the software generally feels right and is 
going in the right direction. 

 
 If you can, automate tests where possible so developers can check new builds against 

tests to make sure the build is stable. 
 

 
Following these guidelines means you‘ll find a lot of defects before they become big issues.  If there is a 

flaw in the design, and it‘s only when you‘re doing acceptance tests, this is going to mean major rework 
– add length and cost to the project. 

 
Reviewing, walkthroughs, unit testing, prototype testing shouldn‘t feel like they‘re impeding progress on 

a project.  In fact they‘re vital for weeding out problems early. 
 

At the end of the day, commitment to quality shouldn‘t be a tester ―thing‖.  It should be a whole team 
―thing‖. 

 
 

 
What is the standard definition of defect severity? 
 

As discussed, defects will be categorised according to their severity. 

 

This is the standard categorisation of defect severity using within our department. It is expected that 
testers will triage defects according to severity, and inform project managers within an hour of finding 

either 1 or 2 level severity defects. 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|26 

 

Severity Name Responsibilities 

1 Showstopper The defect would have catastrophic consequences for Our organisation 
if the system went live. 

Defect causes; 
 System crash 

 Massive loss of performance 
 Corruption or loss of data 

 Security violation 

2 High The defect would cause major embarrassment to Our organisation if 
the system went live. 

Defect causes; 
 Operational error 

 Data integrity issues 
 Some performance degradation 

 Loss of functionality for which there is no work around. 
 Any issue that could cause our organisation major 

embarrassment if product went live with this problem. 

 System reboot 
 Textual error on item that is a legal obligation  

3 Medium Defect causes a loss of functionality, for which there is a workaround. 

4 Low The defect represents a nuisance to Our organisation and its 

customers if the system went live. 
Defect causes; 

 System works as expected, but is confusing for user 

5 Text There is a textual error in the system (spelling or grammar) which 

does not cause confusion and is not a legal obligation. 

 

The defect classifications will be mitigated or escalated by common sense, for instance a system crash 
(1) which happens only under very rare conditions could be considered as a Low (4) because we‘re not 

really worried about it occurring during normal circumstances.  Whereas a typographical error (5) which 
makes a swear word would be elevated to (2), as it would offend our customers and embarrass our 

organisation. 
 

 
 

 
 

 
 

 
 

 
 

 
 

Mike Talks is the chief tester for Payment Services at Kiwibank in 

Wellington.   

An ex-programmer – but don‘t let you hold that against him.  He‘s worked 

for 16 years testing projects ranging from complex aircraft avionics to 

simple websites. 

Cursed by gypsies at an early age, he finds himself invariably breaking 

anything he touches.  Nowhere more so than when he tries to use 

technology. 

He is on Twitter as TestSheepNZ 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|27 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 
 

 

Image courtesy : MMVI New Line Production  



 
 

   www.teatimewithtesters.com                                                                                      February  2012|28 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|29 

 

                                                                      

 

 

 

 

 

                                                                                                  

 

In the School of Testing 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|30 

 

A nne 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a coaching session I had with David Slick on the topic of Risk Based Testing. It‘s a good example 
of the how I run a coaching session. An important part of a coaching session is the evaluation of the 

transcript after the coaching session take place to help re-enforce learning.  

I like this example of a coaching transcript because its shows how evaluating a transcript can help the 

coach improve as well.  

I‘ve highlighted aspects of the coaching session and provided some comment to explain what I was 
thinking at the time, and what I was trying to do. I often refer to Patterns in my coaching. These are 

typical coach or student behaviors that are notable either because they happen a lot or they‘re 
significant to coaching.  

Previous to this coaching session, I‘d asked David to send me an email with an analysis of his strengths 

and weaknesses and also to describe any challenges. He made the following comment:  

―It's important to me to focus on value to the customer, but at times, I've definitely gotten off 

course. There are many bugs that our team has missed because our risk assessments have failed 
to identify something that we should have. I guess I'd say my risk assessments have been very 

informal and not thorough enough (due to failure to allocate time to the activity when getting 
caught up in tight project schedules).‖ 

 

 

I‘ve edited and removed parts of the transcript to keep the article concise.  

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|31 

 

Understanding the Student 

 

Anne-Marie Charrett: The last time we spoke we talked about assumptions and we drifted into oracles 
we can touch on that today or we can go into risk in testing 

 

Pattern: Hand over the reins  

One of the essential patterns in my coaching is to put the tester in charge of their learning; the coaching 

becomes more applicable to their context.  
 
 

David Slick: how about risk? 

 

Anne-Marie Charrett: so, what‘s your definition of risk? 

 

Pattern: Common Ground 

My aim to get a common understanding on risk, though perhaps a more appropriate question would 

have been to ask, “What is risk based testing”?  
 

 
David Slick: So maybe risk is something that threatens value to something, could be the customer or 

the project or my job. The standard thing I've seen (and used) to define risk in a quick and dirty nominal 
way is to do chance of something occurring (1-3) * impact it would have if occurring (1-3) 

 

Anne-Marie Charrett: I call that risk based test management - where you *manage* your testing 
according to the risk it has. Risk being defined by the impact of failure & the probability of failure

1
 

 

What I want to look at today is risk based testing 

Most testers can identify Risk Based Test Management but not all understand Risk Based Testing.          
I wanted to clarify the difference. 

 

The Task  

There are two tasks here, the first is observation and the second is risk based testing.  

 

                                        
 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|32 

 

Anne-Marie Charrett: I'd like you to go to this website  

http://members.iinet.net.au/~pontipak/redsquare.html and tell me what you see. 

 

Diagnostic Pattern: Observe the Observer  

You can only test what you „see‟. What does David see?  

 

David Slick: I see a black square outline with an open white space containing 4 smaller blue rectangles 

and a red square in the middle of them and some instructions below. Two links and a bunch of white 
space and the browser of course 

 

We discuss different ways to model our software. 

 

Anne-Marie Charrett: What I'd like you to do is to make a list of possible failures  

 

One way to approach risk based testing is to create a possible list of failures and test for those. 

Testers in general find it hard to define and abstract out possible failures until they see them. It‟s a 
good practice to work out the failures before testing; it generates a different model for testing, which 

then helps to create new test ideas.  
 

It might have been a good idea for David to explore what a failure is. What the hell, sometimes you 
just have to jump in!  

  

David Slick:  

 

•  There might be something wrong with the timer 

•  Might be able to escape the boundary of the black square and "cheat" 

•  The click-n-drag might fail 

•  The squares may not move in a predictable manner, which would be fine if that's what you 
wanted it to do, but it seems the game would be a lot less fun if that was the case 

•  Clicking outside of the boundaries of the square may result in erroneous errors (which 

happened) 

•  Scalability  

 

 

 

http://members.iinet.net.au/~pontipak/redsquare.html


 
 

   www.teatimewithtesters.com                                                                                      February  2012|33 

 

Anne-Marie Charrett: Let‘s take a look at one of your failures - scalability: tell me what the failure is 

 

Pattern: Driving to Detail  

I use this pattern a lot, when I ask testers to be more specific about a concept. Here I‟m asking him to 

be more specific about the failure he is describing. What exactly is the failure he‟s trying to generate?  

 
  
1
 G Weinberg in Perfect Software 

 

David Slick: the failures related to this topic would be failure to present the page after a certain number 
of users hit it relatively close to one another OR poor performance when multiple users are hitting the 

page simultaneously 

 

Pattern: Drive to Detail, this is not specific enough, I try again.  
 

Anne-Marie Charrett: Let‘s take the first one failure to present the page after a certain number of 

users hit it relatively close to one 

 

I should have used the Terrier Pattern here, and not let up on the topic of failure. He hasn‟t abstracted 

the failure out enough to generate different test ideas, they‟re still linked the concept of the number of 
users.  

 

Anne-Marie Charrett: and write a couple of test ideas for it 

 

David Slick:  

Quick and dirty - hit it simultaneously with multiple browsers, hitting F5 with both of my hands on two 
different machines over and over again for a couple minutes. 

advanced - code up a multi-threaded application (could use some performance tool like loadrunner or 
silkperformer) that simultaneously hits the site, crank it up until it breaks or you stop caring, which 

doing the first test to see what the user experience is while this happens and detecting in the coded 
check whether or not you get a response from the server 

 

Anne-Marie Charrett: They are the same test idea though 

Here I‟m challenging him on these test ideas. They‟re very similar. Normally I‟d challenge him to come 

up with some different ideas, but we ran out of time. Instead I supply him with some ideas I had.  

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|34 

 

Here is couple of ideas I had: 

1) Use different CPU's to slow the machine process down 

2) Throttle the bandwidth 

3) Slow the Mouse down (I'm not sure if this would do anything) 

 

Debrief  

This debrief here is a little short. Normally we review the whole session, highlighting insights and re-

enforcing learning. I need to learn to manage my time better in coaching sessions! 

The more precise your failure-list the better your test ideas will become. 

Your failures seemed a little vague. 

Go through your list and ask yourself what exactly is the failure here? Would I be able to recognize it?  

The session continued in email format, with David coming up with a great list of test ideas by 

concentrating on the failure, not the cause of the failure.  

 

The key points to remember when coaching testers are: 

  

 Respect the tester. Make the effort to understand them and keep the session relevant to them. 

The exception here is a diagnostic coaching session where you‘re evaluating a tester‘s skill level 
and mindset.  

 

 Practice transpection because as the coaching is taking place, you need to be having a ‗second 
conversation‘ with yourself about the tester by asking yourself questions such as: ―What‘s 

missing‖, ―what may they be failing to understand‖, ―how would I have answered that question‖?  

 

 Avoid the temptation to dish out advice. This is not a consulting session. It‘s a coaching session. 
Use Socratic dialogue to help you in this. Question the tester, and don‘t be afraid to go into detail.  

 

 Take your time, slow down the coaching process. That‘s the great benefit of coaching on Skype, it 
forces both the coach and the tester to slow their thinking down. This helps understand the 

thought process behind the decisions being made.  

 

Many testers leave coaching sessions feeling invigorated and enthusiastic about testing. That ‘s the way 
it should be. Keep your coaching sessions positive by highlighting insights and learning.   

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anne-Marie Charrett is a testing coach and trainer with a passion for helping testers 

discover their testing strengths and become the testers they aspire to be. 
 

An electronic engineer by trade, testing discovered Anne-Marie when she started 
conformance testing to ETSI standards. She was hooked and has been involved in 

software testing ever since. She runs her own company, Testing Times offering 
coaching, workshops and consulting with an emphasis on Context Driven Testing.  

 
Anne-Marie describes herself as Iristralian having been born in Dublin and now 

residing in Sydney, Australia. She happily engages in work in both the Northern and 
Southern Hemisphere.  

Anne-Marie can be found on twitter at charrett & also blogs 
at http://mavericktester.com. 

    For Editorial enquiries, write to us on editor@teatimewithtesters.com 

                       To contact us, mail us at contact@teatimewithtesters.com 

~ PLEASE NOTE OUR NEW CONTACT DETAILS ~ 

 

http://www.ministryoftesting.com/training-events/coaching-testers-with-anne-marie-charrett/
http://mavericktester.com/
mailto:editor@teatimewithtesters.com
mailto:contact@teatimewithtesters.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|36 

 

 

berni ce 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Career Development and Learning Strategies for Testers” is a series of articles 

providing different approaches to develop testers’ skills and knowledge  from both a 

managerial and tester perspective. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|37 

 

The focus of this article is creating a journal club which defines strategies that a manager can 

implement for his department. Testers can also create a journal club to further their own professional 
development.  

 

A tester needs to be mindful that skills could become stagnant and there are many ways to keep those 
skills sharp. One way this can be done is through reading articles and blogs. This should be an 

important part of a tester‘s life to ensure he is staying with current trends. Understanding how other 
professionals are approaching testing problems can challenge and progress skills and strategy. The 

following sections provide suggestions to facilitate a journal club.  

 

Facilitators 

A journal club can be facilitated by the Software Testing Manager who will oversee the distribution of 

articles, review schedule, and discussion. The manager may consider allowing his team to have a 
larger role by assisting in the review sessions and identifying articles. If the testers create their own 

journal club, then either one tester can be in charge or they can rotate the responsibility. (Going 
forward the term ―facilitator‖ will be used to represent the person who is in charge of the journal club.)  

 

Meeting Rules 

Typically there should not be many rules since a journal club should be an open discussion about an 
article. An important expectation to set is that everyone reads the article and is prepared to discuss. If 

necessary, ground rules can be defined based upon the personality types and number of testers. Some 
journal clubs only allow articles written within a certain number of years. Be careful with this type of 

rule because older articles can provide timeless and valuable information.  

 

Selecting Articles 

The facilitator may identify the art icles; however it is a good idea to ask the testing team to contribute 

articles in their area of expertise such as mobile testing, load testing, and exploratory testing. 

Distribute the articles 1 – 2 weeks before the journal club meeting. Below are guidelines to help in the 

selection process. 

 Identify a variety of articles / blogs of actual testing practices that can be adopted by your 
team. 

 Identify articles that are theory-based but challenges the testers to think differently.  

 To mix things up a bit, introduce webinars to watch before the meeting and then discuss the 

material. 

 Select a few similar articles that may support or contrast each other.  

 For teams that want something more challenging, introduce book reviews or have each tester 

read a chapter to present back to the team.  

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|38 

 

Starting and Progressing Conversations 

The facilitator starts the journal club meeting and often needs to ―break the ice‖ to encourage the 

testers to discuss the article. Below are a few suggestions to start the meeting.  

 Provide a brief overview of the article. 

 Provide a starting point with a particular item in the art icle. Ask for comments or go around 

the table and ask for feedback. 

 Ask what and how you would apply something from the article.  

 If the conversation starts to fade, ask what else they found interesting or would like to 
discuss.  

 

Initial Journal Clubs 

Sometimes people are reluctant to participate during the initial journal clubs. This can be contributed 
to the fear of sharing an opinion that might be different than the other testers; not  being confident in 

what to contribute; and just not sure what this is all about. 

 

For the first few sessions, monitor who provides opinions and takes a leadership role as they may be 

able to help you progress the journal club. To foster more discussion, ask a few open-end questions 
and go around the table for input or direct the questions towards the nonparticipating testers. For 

example: 

 What do you agree with in this article?  

 What do you disagree with in this article? 

 How would this approach help you in testing? 

 

When closing the meeting, reiterate the purpose and provide guidance to encourage participation in 

future sessions. For the testers who do not participate, try to discuss an upcoming article with them 
individually to help them determine how they can participate. Sometimes they will tell you that the 

other people already viewed the same opinion reducing their opportunity to participate. In those 
situations, call upon him at the start of the journal club to express his opinion. Try different 
approaches to help testers find their voice and confidence to participate; however maintain the delicate 

balance of participation versus intimidation.  

 

Managing Strong Opinions 

Lively discussions are great; however, reign in discussions that are not helpful to the team. If one 
person is dominating the meeting, you need to take control of the meeting by either changing the topic 

or including more people in the discussion. This can be a difficult situation because you want them to 
freely discuss their opinions; however the journal club must be beneficial to the testing team and the 
time allocated for the meeting.   



 
 

   www.teatimewithtesters.com                                                                                      February  2012|39 

 

Some approaches to manage the meeting can include: 

 Thank the tester and then guide the discussion to a more beneficial topic.  

 Thank you John. Now let‘s discuss a different topic from the article. Mary, what were your 
thoughts on this topic?  (With this approach guide the discussion to a different topic and 

select a tester who is not shy or timid to continue the discussion.) 

 Expand the discussion to the group by asking for their opinions. 

 Now that we have heard from John, what other opinions are there on this topic?  

 Report how much time is left for discussion. 

 We have 10-minutes left of our meeting, lets use the remaining time to go around the table 

for any final comments. (With this approach start with the person next to John to allow each 
person an opportunity to comment.) 

 

Frequency of the Journal Club 

How often to hold a journal club meeting depends upon several factors. One of the more important 
factors is to ensure it does not become a burden to the team where the time spent versus value-

gained is not recognized. Unless the team wants a shorter-schedule, a once a month or every other 
month meeting should be sufficient. The length of the discussion can go from 30-minutes or longer 

depending upon the number of testers and their contribution level.  

 

Try to maintain a schedule to ensure the journal clubs do happen. However if the team is working 
towards a tight timeline or there is not a good article to review, then skip a meeting. Just be careful 

not to make this a habit or the journal club will phase out.  

 

Tips 

 Start small and build upon the number or complexity of the articles.  

 The journal club should be a safe environment. For testers who are reluctant to participate, 

work with them individually to help them find a way to contribute.  

 Rotate the responsibility of facilitator and encourage the testing team to submit articles for 

review. 

 Provide a variety of articles, webinars, and book reviews to keep it fresh.  

 A journal club should be a positive experience. Find a happy balance between frequency and 
number/length of articles to read. 

 Try to maintain a regular schedule; however when there are pressing deadlines, consider 

canceling the journal club meeting to reduce stress for the team and review the articles at the 

next scheduled time.  

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|40 

 

 

Conclusion 

When managed properly, a journal club can be a great way to introduce different testing approaches to 
solve problems and expand knowledge. A journal club can be facilitated by the testing manager or that 

role can be rotated among the testers. Reviewing a broad range of topics relating to actual testing 
practices and theory is beneficial to keep the discussions interesting and fresh. Encourage participation 

by working with testers who are reluctant to share an opinion to understand their reluctance and how 
they can find their voice. Overall the journal club should be a positive environment where opinions are 

exchanged, testing skills are challenged, and new techniques or ways to optimize testing are 
implemented by the testers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bernice Niel Ruhland is a Software Testing Manager 
for a software development company with more than 

20-years experience in testing strategies and 

execution; developing testing frameworks; performing 
data validation; and financial programming. To 

complete her Masters in Strategic Leadership, she 
conducted a research project on career development 

and onboarding strategies. She uses social media to 
connect with other testers to understand the testing 

approaches adopted by them to challenge her own 

testing skills and approaches.  
 

The opinions of this article are her own and not 
reflective of the company she is employed with. 

 

Bernice can be reached at:   
 

LinkedIn: 
http://www.linkedin.com/in/bernicenielruhland 

Twitter: bruhland2000 
G+ and Facebook: Bernice Niel Ruhland 

 

http://www.linkedin.com/in/bernicenielruhland


 
 

   www.teatimewithtesters.com                                                                                      February  2012|41 

 

 

 

 

 

 

 

 

 

 

 

 

INTERVIEW 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

THE  OTHER  SIDE  OF BUCCANEER  SCHOLAR 

James Marcus Bach.  

A guy who left his schooling at early age and started as video game 

programmer is now an esteemed software tester, author, trainer and 

consultant.  

He is a proponent of Exploratory testing and the Context-Driven 

School of software testing, and is credited with developing Session-

based testing.   

How did he achieve this?  

What made him to break the laws?  

What does he think about Software Testing?  

What message does he have for young testers?  

Find it out in his exclusive interview with Tea-time with Testers.  

Read on…. 

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Exploratory_testing
http://en.wikipedia.org/wiki/Context-Driven_School
http://en.wikipedia.org/wiki/Context-Driven_School
http://en.wikipedia.org/wiki/Session-based_testing
http://en.wikipedia.org/wiki/Session-based_testing


 
 

   www.teatimewithtesters.com                                                                                      February  2012|42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before we start, we would like to let our 

readers know, 'How did things start off for 

you?". “How did you land up in Software 

Testing?” 

I started as a video game programmer after I quit 

high school. I found I didn‘t like programming that 

much. After a little while, I began to be bored and 

restless. There wasn‘t enough stimulation. I need 

social interaction. I need lots of variety in the 

problems I get to solve. It got so bad I became 

unable to work: I would get physically sick if I sat 

down to write code. 

This was a disaster, because the only thing I knew 

how to do was write software. Fortunately, I heard 

about a job as a test manager at Apple Computer.  

I was amazed that people could get paid to test 

things. I got that job and never looked back. I still 

write software. I create automation to support 

testing, occasionally. I like programming for short 

periods. 

Can you please help our readers understand 

'focus-defocus' technique & how can it help 

them to test better? 

This is a very broad technique that is used as part 

of the Rapid Testing methodology. All testers, all 

the time, are testing against and within some kind 

of model. We call that focusing. Maybe you are 

doing requirements-based testing. If so, then you 

are focusing on requirements. You have a specific 

idea what those requirements mean. Focusing is 

good. It helps you make sense of things. But to find 

a lot of bugs, you need to de-focus on a regular 

basis. That means changing your model, 

considering very different meanings of 

requirements, randomizing your tests, etc. To de-

focus is to change your focus in a big way. 

Basically, all of testing can be seen as various kinds 

of focusing and de-focusing. 

When you are confused about the behavior of a 

product, you should focus more. When you need to 

find more bugs, and you feel frustrated that you 

aren‘t finding enough, you should de-focus. 

 

 

Why do you consider testing as a craft 

work? How differently do you see it 

compared other fields? 

The word ―craft‖ emphasizes the design aspect of 

testing and connotes a dash of discipline, too.     

I also call it an art, from time to time. Testing as 

a field is a lot like how surgery was 300 years 

ago, before smart people began flocking to it and 

turned it into something respectable.  

We still have people peddling ―best practices‖ in 

testing that are similar to the Galenic medicine 

quackery of the 18th century: unhelpful or else 

actively harmful folk practices promoted by 

authorities who lack scientific skills and ethics 

and discipline. 

What is your view on major changes in 

software testing field likely to come in next 

5-10 years? 

The only change I can speak to with authority is 

that the community of erudite, skilled Jedi testers 

is going to grow.  

These are people who vigorously practice their art 

and challenge each other to get better. These are 

the people who eagerly read social science 

textbooks and compete (in a friendly way) to 

apply the lessons to testing.   

I hope that we will displace the old wheezy 

consultants promoting those silly practices I 

mentioned above.  

I believe we already have begun to do that. It‘s a 

slow process, but I think ISEB and ISTQB will be 

quietly consigned to the history of stupid ideas.  

The people who promoted them will probably 

declare victory, but eventually have to evolve or 

be made irrelevant. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most of the managers ask for result in 

numbers e.g. more number of test cases, more 

defects etc. What's your opinion on this 

number game? Does that really matter?  

It matters a lot. So, don‘t do it. It‘s unethical to 

fake your work. Counting test cases is simply a way 

to mislead people about the status of your testing.  

I stopped doing that in 1992. My refusal to count 

test cases is now old enough to vote in the United 

States. 

Management doesn‘t count ―management cases‖ to 

evaluate other managers. We shouldn‘t count test 

cases. 

 

As a consultant, how do you pursue the 

quality of product? Is it similar to the way 

product/quality manager sees it? E.g. some 

managers prefer on-time delivery over quality 

of product. At times in certain cases quality 

doesn't matter to them but the delivery. Does 

that upset you?  

I‘m not concerned about quality, really. I don‘t 

control the ship date, nor do I want that 

responsibility. As a tester, my concern is about 

knowing the status of the product. I care about 

quality because my clients care. But if they don‘t 

care, part of my discipline is to also not care. 

However, I often have information that I think will 

*cause* them to care, and I eagerly share that with 

them. (Deep down, I want to be proud of the 

product, and I want them to feel that way, too, but 

officially, a tester is there to inform his clients 

about *their* concerns, not to promote his own 

vision of quality). 

My clients want to know what kind of trouble the 

product may cause, or may have within it. I help 

them discover that. 

 

I over-heard two guys discussing about 

pending tasks in their project work. One of 

them said , “Ohh Testing??? That can be 

done by any one. Don’t worry about it.”       

A lot of people think this way. What’s your 

view? Can testing be done by anyone or it 

needs some skills to master?  

My career is built on the idea that skilled testers, 

like skilled soldiers, do their job better than a 

disorganized and untrained rabble. But just as 

anyone can swing a sword, anyone can find a 

bug. Skilled testers will find more bugs, better 

bugs, and they will be able to explain and defend 

their work. 

Anyone can find a bug. Only skilled testers can 

consistently find the great bugs. 

 

How tangible do you find testing standards 

in real world scenarios? 

Testing standards are never tangible. They are 

ideas. Paper documents are tangible, but it‘s the 

ideas that matter, not the paper and ink. 

Perhaps you meant to ask how practical are 

testing standards. Well, if you are referring to the 

IEEE testing standards, I consider them harmful. 

I recommend that you ignore them. I was on the 

working group of IEEE 829-2008, and I repudiate 

it. Cem Kaner was on the same committee and 

he had his name removed. The revised standard 

was not developed in a collegial fashion, nor do I 

feel that the people who controlled that process 

were competent to talk about what anyone 

should do to document testing. 

The upcoming ISO testing standard suffers from 

a similar problem. The political operatives who 

run that show don‘t care to face or resolve the 

actual problems and controversies. I have heard 

only terrible things about it, and I‘m quite 

confident that the final standard will be a 

monument to the stupidity that is still tolerated 

among the gray heads of our field. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Do you believe that processes help average 

people to do things better? E.g. formal 

education for average kids. Is genius an 

exception? What made you to leave your 

schooling?  

Process is a word that people use in mystical ways. 

Let‘s be more specific. The word process means 

―how things happen.‖ Are some processes better 

than others for helping people develop their minds 

in the way they wish to be developed? I am 

confident that is true. But no, I don‘t think that 

institutional education as currently practiced by 

public schools is good for average kids. 

I think it works for a very small minority of kids. 

For most kids it‘s a sick waste of their time and 

energy. In fact, it‘s a system that is obsessed by 

stratification and competition. It is actually 

designed to assure that very few children ―get 

ahead‖ by defining success in narrow terms and 

heaping scorn on anyone who doesn‘t fit that 

model. 

I would prefer that *all* the money used for 

―educating‖ children were used instead for local day 

care centers and open-to-anyone educational 

resource centers (we can call them ―public 

libraries‖)—both of which would be optional to visit, 

rather than mandatory.  

I agree that public funds should be used to help 

educate the public, but I also believe that in a free 

society education is a personal matter that is 

always be under the control of the learner himself, 

not matter what age he might be. The name for this 

policy, if you are interested reading more, is 

―unschooling.‖ 

I left school because I was wasting my time there. 

My father urged me to get on with my life, and so I 

did.  

I thank my father for inviting me to become an 

adult. 

 

          James with his father Richard Bach 

What is your take on becoming a certified 

tester (any certification)?  Is it a must have 

thing to prove one’s testing abilities?  

Commercial certifications are blight on our craft. 

Please avoid them. Please join me in ridiculing 

and denouncing them.  

When our craft decides what testing is, then we 

can talk about having a craft-wide certification. At 

this point in history, the most passionate and 

recognized people in the testing field do NOT 

agree.  

Rex Black just wrote a little piece about how lack 

of metrics was the biggest weakness he sees in 

testing organizations. I think it shows he doesn‘t 

understand what metrics are or how dangerous 

they can be.  

That‘s a pretty big gap between two people who 

are both so well known as ―experts.‖ 

So, forget certification. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you are ambitious as a tester, I suggest that 

you develop a positive reputation. For my kind 

of ambition, I need a public reputation. I run 

my business and charge what I charge based 

on the fact that I am well known all over the 

world of testing. I am not well-respected 

everywhere, due to the controversy 

surrounding the various schools of testing 

thought. But that‘s okay because there are 

enough admirers of the Context-Driven way of 

thinking that I have plenty of business. 

My question to any young tester is what are 

you doing to study your craft, demonstrate 

your growing expertise, and publish your 

ideas?  

If I am hiring a tester, and I Google a 

candidate for that job, and I find nothing that 

he‘s written online, he is at a great 

disadvantage compared to a testing blogger. 

When you are not testing, what can one 

find you doing?  

Reading! There are so many philosophy and 

science books that I need to get through. I‘m 

so glad I have a Kindle. When I‘m home I also 

watch a lot of videos with the family and pet 

my lovely dogs.  

Unfortunately, I‘m not at home very much. 

Do you teach your son? How different is 

James Bach in testing conference and 

James Bach at home?  

I am quite different at home. This is because 

my wife forbids me from thinking like a tester 

when I‘m at home.  

Well, let me put it this way: I can do what I 

like, because I‘m aggressive and I‘m a full-

grown alpha male in my own house… but when 

I speak a certain way around my wife, she‘s 

sad. When she‘s sad, everybody in the house 

is also sad. In any marriage, a man can‘t be 

happy if his wife is not happy. So, I speak 

softly at home and I smile a lot and I drop my 

professional skepticism around Lenore.  

 

She has trained me well after twenty years. 

When I‘m at a conference, I‘m on duty. I‘m sharp and 

I don‘t easily accept what I‘m told. This is how I think 

all testers should be at conferences. 

I don‘t teach my son, Oliver. I behave normally 

around him, and he observes me. This is the way 

children learn. I find that overtly trying to teach my 

son makes him hate to learn.  So he learns from me, 

but I don‘t teach him. Nobody does. Oliver has not 

been to school since he was 12 (he just turned 18). 

Oliver and I recently visited BioWare, the people who 

create the Mass Effect video game. Oliver is 

extremely knowledgeable about video games, and it 

was great to see him test himself against the fine 

minds at BioWare.  

(Incidentally, BioWare has one of the smartest and 

most motivated teams of testers I have come across. 

They reminded me of the team I taught at the Jet 

Propulsion Laboratory.) 

 

James’ family: Lenore, Oliver & Shasta 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They say that 'school drop-outs' often develop a legendary path. What do you feel about your 

journey so far? Satisfied or still miles to go...? 

To develop a legendary path, you absolutely must depart the ordinary path. From a young age, I was 

fascinated by mysteries and quiet places and forbidden choices. 

I was repelled by conventional thinking.  

It‘s a good thing I am not also a complete fool, or else I would have gotten into drugs and been 

arrested. Fortunately for me, my distrust of authority didn‘t manifest as violence or petty crime.  

It came out instead on the intellectual plane: I don‘t trust teachers or experts on anything important 

unless they first earn my respect. This is why I had to leave high school. This is why I had to reinvent 

testing.  

This is why it takes a teacher like Jerry Weinberg to hold my attention, and also why Jerry is a role 

model for me as I develop myself into the best testing teacher I can be. 

 

Your opinion about Tea-time with Testers? We would be glad to have your feedback.  

I‘m generally impressed with the caliber of the people that you get to write for you.  

That‘s why I‘m writing for you, now. I want to be with the cool kids. 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are you one of those 

#smart  testers who 

know  d taste  of  #real 

testing  magazine…?  

 then you must be telling your friends about .. 

                            

 

 Tea-time with Testers Don’t  you ?  

 Tea-time with Testers ! 
first  choice  of  every  #smart  tester  !    

http://www.teatimewithtesters.com/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|48 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Don’t waste time on a Team/Company Quality Agenda! 
 

 

Do you like wasting time on useless tasks? 

Is your schedule so ―Free & Open‖ that you are considering embarking on 

one or two hopeless adventures that will not add any value to you, your 

team or your company? 

I am guessing (even hoping) your answer to both these questions is NO. 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|49 

 

 

So think hard before you answer this next question: 

Should you define and promote a Quality Agenda for your development and testing teams?  

There are 2 quick answers, the ―automatic‖ and the ―pessimistic‖.  

 

The automatic answer – 

 

“DEFINITELY YES!!!” 

I am in charge of Quality, and as part of this role I need to have an agenda 

and push it with all my strength. 

I will fight for it and improve the way my company works! 

No matter how much people want to cut corners or make risky decisions I will 

make sure we work only by the rules!‖ 

 

Then we have the pessimistic one – 

 

“WHY BOTHER???” 

In the end, no matter what we all say right now, the product will be released 

when Marketing wants to release it.No one will care if we have 3 or 7 or 17 

showstoppers open in the system. Regardless of what I think or say about 

Quality we will keep working in the same way we do today. 

 

So I better concentrate my efforts and those of my team on testing the product. 

Let‘s stop wasting time on useless battles…‖ 

 

What is a Quality Agenda? 

Simply put a Quality Agenda is composed of 2 main parts: 

 

1.How your company (or your team) defines Quality in your product or service. 

                                                       and 

2. The actions or approaches you will take to increase the quality level of this work. 

In the ―Corporate World‖ this agenda is sometimes stated as a 2 or 3 line paragraph that hangs on a 

hallways of your building, or is shown as part of a presentation given by the CEO at the beginning of the 

http://qablog.practitest.com/wp-content/uploads/2012/01/57519z26co3ske6.jpg
http://qablog.practitest.com/wp-content/uploads/2012/01/57520j8oipdygv0.jpg


 
 

   www.teatimewithtesters.com                                                                                      February  2012|50 

 

year. Some times it is also handed out as small plastic cards that employees quickly place in their 

drawers (together with all sorts of company vision and miss ion statements from previous years). 

If you will be writ ing an agenda that will be stuffed in a drawer or forgotten the minute after your CEO 

moves to the next slide, then I suggest you think of better ways to spend your time. 

 

An effective Quality Agenda should be S.M.A.R.T. 

(I think I wrote about this acronym in the past, but I find it so useful that I will repeat it‘s meaning once 

again.) 

A good Quality Agenda, one that people will find useful and that will have a (positive) impact should be 

S.M.A.R.T. : 

 SIMPLE- Something that explains in clear words what you want to achieve. 

 

 MEASURABLE – You can clearly see if you are on the right track and making progress or going 

backwards. 

 

 ACTIONABLE – Everyone should understand what to do and what not to do to advance the 

quality goals of the company. 
 

 

 REPEATABLE- When talking about the progress metrics, they need to be clear and repeatable. 

Everyone who looks at them will be able to understand them and reach the same conclusions. 

 

 TIMELY- The actions, objectives and goals should be based on the current status of the 

company, and need to be revised or changed based on the changing reality of the company and 

the competitive environment. 

Is this really your task? 

Now you understand what is a (good) Quality Agenda. This means that is time to start thinking whether 

this is something you should be leading within your company, or maybe stop from taking part on battles 

that are not yours to fight… 

In my mind, when we talk about a Quality Agenda and we define it as the goals, plans and tasks aimed 

at improving the quality of your product and process, then this actually is your task!. 

 

It is true that you are not responsible for the direct quality of your entire product, after all this task 

needs to be shared by all the team. But for me, the Quality Agenda is the responsibility of the QA 

Manager, since he/she should lead the process to achieve a better way to work and deliver higher 

quality products or services. 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|51 

 

Defining the Agenda is only the start, the secret is to make this an on-going task 

Defining the agenda is only the first part of your job. Once this is done you need to provide visibility and 

guidance to achieve the goals you set. 

I said that good goals should be Measurable and Actionable, so it also your responsibility to make sure 

people are performing the right actions and that you are measuring the desired change in the system. 

The best way to do this is to set up a recurrent event, it can be a meeting or even a monthly email, 

where you will give vis ibility into the progress achieved (or not!). I personally like the approach of 

setting up a kitchen monitor with this information. 

You want to achieve a healthy competition between your teams that will push your quality forward. 

In the past I‘ve worked with monthly trophies to the team who made the biggest improvement and even 

with prices such as dinners and gadgets to the individuals who had the biggest effect on improving the 

quality of the whole company or process. 

When should you NOT WASTE YOUR TIME on a Quality Agenda?  

For me, this is a simple question. 

If I feel that my management doesn‘t stand behind me and that they will choose to compromise quality 

in order to fulfill other business goals, or if I see that the goals we want to set as a company are not 

serious enough or not achievable by any means, then I will choose to make better use of my time.  

Quality Agenda != Quality 

Remember that you can have quality without having a Quality Agenda. The agenda should only help you 

to focus all the company employes, making sure we are all on the same page. 

If your company chooses not to invest in the quality of your product and process, no Agenda or any 

other gimmick will help you to push this forward. 

What’s your take on this? 

Do you have any success (or horror) stories related to the Quality Agenda in your company? Share them 

with the rest of us ! 

 

 

 

 

 

 

 

http://qablog.practitest.com/2008/02/using-your-kitchen-as-a-communication-channel/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       
 

Joel Montvelisky is a tester and test manager with over 14 years of experience 

in the field. 

 

He's worked in companies ranging from small Internet Start-Ups and all the 

way to large multinational corporations, including Mercury Interactive 

(currently HP Software) where he managed the QA for TestDirector/Quality 

Center, QTP, WinRunner, and additional products in the Testing Area. 

 

Today Joel is the Solution and Methodology Architect at PractiTest, a new 

Lightweight Enterprise Test Management Platform. 

 

He also imparts short training and consulting sessions, and is one of the chief 

editors of ThinkTesting - a Hebrew Testing Magazine. 

 

Joel publishes a blog under - http://qablog.practitest.com and regularly 

tweets as joelmonte 

 

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|53 

 

 

         

 

 

 

                                                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click HERE to read our Article Submission FAQs ! 

http://www.teatimewithtesters.com/#!write-for-us


 
 

   www.teatimewithtesters.com                                                                                      February  2012|54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Do you know the “potency” of your test cases? 
 

 

 

 

We all know that good test cases are the key to effective testing.  So what is ―good‖?  And how do we 
know if test cases are indeed ―good‖?  When I ask these questions to test professionals, they say that a 

deep knowledge of application domain is required to answer this question.   
 

Let us examine a non-software problem and seek inspiration to answer this question in a scientific 
manner. 
 
 

How do we know if a drug that we take to cure a disease is indeed good? If the drug targets the specific 

bug , targets the specific area without affecting others and gets to that area as quickly as possible to 
cure the disease, then we think that the drug is effective.  We say that the drug is potent.   

 
Do understand that the drug potency can be markedly reduced if I develop a resistance to it.  

 

 
 

 
 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|55 

 

 

Note the similarity - test cases equated to 
the drug, potential types of defects to the 

bug and requirement/feature/code module 
to the affected area.  So how can we use 

this example to assess the ―potency of 
test cases‖? A  definition of ―potency‖ is  

―the strength of the drug, as measured by 
the amount needed to produce a certain 

response‖. Potency is associated with 
efficacy of an entity, the ability or capacity 

to achieve or bring about a particular 
result.   

 
 

 
 

 
In the context of testing, potency could be 

defined as - ―the least number of test cases 
with the ability to target the specific types 

of defects in specific areas to ensure clean 
software‖.   We could assess potency by 

examining four aspects: 
 

•  Strength of drug (aka test case) 
•  Area targeted  
•  Target bug i.e. potential types of 

defects  and 
•   Immunity.  

 
Examining properties of these aspects in a 

scientific manner could help us assess 
potency.  

 
 

 
 

Let us dive in... 
  

If we know that the test cases are adequate, that it covers the area under focus and targets those 
types of defects that matter then it is a great start.  

 
Then examine the notion of ―immunity‖ i.e. Could the system under test be resistant to the test 

cases?‖. 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|56 

 

 

Let us examine the key properties/measures of these aspects (of potency) in detail.  
 

1. Test cases (“Drug”) 
 

Are the test cases sufficient? Assess the property of countability. What is this? If the behavior of an 
element under test is described as a set of conditions (i.e. a behavioral model) then an optimal 

combination of these conditions would result in ―countable scenarios‖ i.e. irrespective of who designs, 
the number of scenarios is indeed the same. Instantiating each scenario with optimal combinations of 

inputs would result in test cases. The key element to note is that the number of test cases can be 
logically assessed for sufficiency. 

 
The second measure is the distribution of test cases that are conformance/robustness (+/-). This is a 

function of #inputs and values for each input. Note that inputs can be discerned from the conditions in 
the behavioral model and the values for each input mechanically generated based on the input 

specification. Hence this measure can allow us to ascertain if our distribution is indeed good enough. 
 

Finally segregation of test cases into quality levels (See the earlier art icle ―Form & Structure matters in 
Nov 2011‖) enables test cases to be purposeful and enables a clear targeting of what type of defect a 

test case is targeting (i.e. enable the drug to reach the target area quickly).  
 

 
 
 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|57 

 

T Ashok is the Founder & CEO of 

STAG Software Private Limited.  
Passionate about excellence, his 

mission is to invent technologies 

to   deliver ―clean software‖.  

 

 

 

He can be reached at ash@stagsoftware.com .  
 

2. Entity (“Area”) 

 
This is about examining if we are indeed covering the entire area well enough. Measuring how much 

external area is ―Requirements coverage/traceability‖ whilst measuring the internal area covered is 

what ―Code coverage‖ focuses on. Note that these are the typical measures that we use.   

 
These measures describe the area that we cover,  but not the types of defects we are looking for in 

that area. This is what we discuss next. 
 

3. Potential Defect Type (“Fault coverage”) 
 

Tracing the test cases to the potential types of defects that they can uncover enables the test cases to 
be purposeful i.e. what issues am I interested in uncovering? (This is the central theme of HBT - 

―Hypothesis Based Testing‖).  
 
So examining the properties/measures of Countability, Conformance:Robustness, Test case 

distribution of test cases by quality levels (Quality levels outlined in HBT cookbook 
http://slidesha.re/qBMNiy ) and Requirements/Code/Fault coverage can allow a scientific assessment 

of potency of test cases. 
 

But could the system under test be immune?  
 

4. Immunity 
 

The pesticide paradox (―The Art of Software Testing by Boris Bezier) states that pesticide that is used 
to kill a pest makes the pest resistant to the pesticide necessitating newer pesticides to be created and 

applied. In the context of software, this could be understood as ―software has hardened‖ i.e. these 
types of bugs have been removed and probably is not present, hence test cases that are focused on 

uncovering these kinds of defects will not find any.  
 

Examining the yield of test case over time will give an indication of the ―resistance or immunity‖. 
Hence tracking the outcome of each test case ―defect yield‖ (i.e. did they result in a defect) every time 

we run it is key to understanding this property. 
 

The next time you design/review test cases, look at these properties to assess potency.  
 

You want to say ―I M POTENT‖ not ―IMPOTENT‖.  
 

Cheers. 
 
 

 
 
 

 
 

 
 

 
 

 
 

mailto:ash@stagsoftware.com
http://slidesha.re/qBMNiy
http://www.stagsoftware.com/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|58 

 

 

 
 

 

 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

                                                                                                                                                                                   

 

Quality Testing 

Quality Testing is a leading social network and resource center for Software 

Testing Community in the world, since April 2008. QT provides a simple web 

platform which addresses all the necessities of today‘s Software Quality 

beginners, professionals, experts and a diversified portal powered by Forums, 

Blogs, Groups, Job Search, Videos, Events, News, and Photos. 

Quality Testing also provides daily Polls and sample tests for certification 

exams, to make tester to think, practice and get appropriate aid. 

 

Mobile QA Zone 

Mobile QA Zone is a first professional Network exclusively for 

Mobile and Tablets apps testing.  

Looking at the scope and future of mobile  apps, Mobiles, 

Smartphones and even Tablets , Mobile QA Zone has  been 

emerging as a Next generation software testing community for 

all QA Professionals. The community focuses on testing of 

mobile apps on Android, iPhone, RIM (Blackberry), BREW, 

Symbian and other mobile platforms. 

On Mobile QA Zone you can share your knowledge via blog 

posts, Forums, Groups, Videos, Notes and so on. 

http://www.qualitytesting.info/
http://www.mobileqazone.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|59 

 

 

Tool Watch 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|60 

 

 

 

 

 

 

         
 

 

practitest   

 

 View the session report  
 

1. Find the appropriate *.CSV, by looking at the creation date or the file name.  
A session started on 21/11/2010 08:35 will be called 20101121_083548.csv, for example. 
  

2. Open it in your favorite spreadsheet (usually double clicking the file is enough). 
 

3. Now, according to the capabilities of your spreadsheet, you can re-order the notes per type, 
per tester, per time… You can count sessions and times and bugs and apply filters. 
 

4. The file name of the note attachments is displayed in the same line, in a different column.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

PART 3 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|61 

 

 View the session report in HTML  

 

The HTML report will allow you to see the screenshot attachments and the extended notes links 
embedded with the session notes. Additionally, it will allow you to change the visuals of the report 

to include the logo of your company or project, for example. These two benefits make it great for 
discussing the session with managers.  

 

To create a report of a session *.CSV file (either of single session or cumulative sessions), use the 
following command in command line: 

C:\> RapidReporter.exe –tohtml <nameofsessionfile.csv> 

 

 

 

 Change the visuals of the HTML report  

 

Changing the visuals of the HTML report is useful when you want to add your company‘s logo to the 
report, when you want the colors of the report to match the ones in other reports you provide, 

when you prefer to hide or emphasize one type of note… Almost all visuals of a report can be 
manipulated.  

 

1. Use a file named style.css in the same folder as the HTML report.  

2. You will need acquaintance with CSS to customize the report. Looking at the HTML source should 

elucidate what to edit according to your preferences.  

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|62 

 

An example of stylesheet would be:  

body  

{  

background: #FFFFDD;  

}  

#allbody  

{  

background-image:url('http://upload.wikimedia.org/wikipedia/commons/d/d9/Free_Mind.png');  

background-repeat:no-repeat;  

background-position:right top;  

}  

table tr.Bug {font-weight: bold;}  

H1 {color:#000000;} 

 

 

 

to be continued in next issue… 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Chris Philip has been working with his first employer TCS since 

2 years, passionately in area of Automation Testing. The passion 

and interest in automation was revealed during his college 

projects in robotics and successful completion of project work 

from India Space Research Organization, automating the 

microscopic and sensitive calculations regarding the minute 

changes in accelerometer data in launch vehicles, rockets and 

spacecrafts. The project was done in microprocessor 

programming language.  

Chris is active member of Linux club, IEEE and Computer Society 

of India (CSI). 

His special interests are software automation, having extensive 

hands-on experience in QTP, Sahi, Selenium and RFT. 

Actively participates in blogs and discussions related to 

automation practices. He has presented 3 white papers till date 

about the automation practices, short cuts and interesting logics 

applicable in Quick Test Professional.  

Chris is reachable at christhomsonphilip@gmail.com & on 

twitter   @chris_cruizer 

 

mailto:christhomsonphilip@gmail.com
http://twitter.com/#!/chris_cruizer


 
 

   www.teatimewithtesters.com                                                                                      February  2012|64 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 

Claim your Smart Tester of The Month Award.  Send us an answer for 

the Puzzle and Crossword bellow b4 15th March 2012 & grab your Title. 

Send -> teatimewithtesters@gmail.com  with Subject: Testing Puzzle 

 

Gear up guys....... 

     

   It’s Time To Tease your Testing Bone 

!  

mailto:teatimewithtesters@gmail.com


 
 

   www.teatimewithtesters.com                                                                                      February  2012|65 

 

Puzzle “Play with the Patterns” 

 

"For a specific range of inputs in this application  http://testalways.com/3/  there is an image 

generated and a number is shown in the middle of it. For bigger inputs there is no image 
generated though. If the same patterns would be respected and the image generated (like for 
smaller inputs), what would be the number in the middle when using as input 1000000?" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Biography 

 

 

 

 

 

 

Blindu Eusebiu (a.k.a. Sebi) is a tester for 

more than 5 years. He is currently hosting 

European Weekend Testing.  

He considers himself a context-driven follower 

and he is a fan of exploratory testing. 

He tweets as @testalways.  

You can find some interactive testing puzzles 

on his website www.testalways.com  

 

http://testalways.com/3/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Horizontal: 

1. It is the test management tool for agile projects (9)  

6. A black box test design technique in which test cases are 

designed based upon the definition of the input domain 

and/or output domain is called _____ testing  (6) 

7. A tool that facilitates the recording and status tracking 

of incidents, in short form (3)  

8. Testing of individual components in isolation from 

surrounding components, with surrounding components 

being simulated by stubs and drivers, if needed is called 

____ testing (9)  

11. The ____ automation platform is an open, extensible, 

and neutral system for .NET that provides a common object 

model, runtime services and tools that may be leveraged by 

any number of test frameworks (6)  

13. Testing in which all paths in the program source code 

are tested at least once, is called _______ testing (4) 

15. The short form of Observation Driven Testing (3)  

16. It is a free command line tool for generating stressful 

text data for field testing as well as Random testing (2)  

17. Checks for memory leaks or other problems that may 

occur with prolonged execution, is called _____ testing. In 

short form (2)  

18. It is a Selenium 1 (Selenium RC) client library that 

provides a programming interface (API), i.e., a set of 

functions, which run Selenium commands. The first word (3) 

Vertical: 

1. It is a tool provide easy cross browser testing with Selenium 

in the cloud (10) 

2. ________ testing technique can be used for testing non -

functional attributes such as reliability and performance (6)  

3. It is a testing aimed at showing software does not work and 

also known as "test to fail", in short form (2)  

4. Testing of individual software components is called ____ testing 

(4) 

5. Testing by means of a random selection from a large range of 

inputs and by randomly pushing buttons, ignorant on how the 

product is being used. Is called _____ testing (6) 

9. A mechanism to produce the expected outcomes to compare 

with the expected outcomes of the Software Under Test (6) 

10. An environment for system or user acceptance testing which is 

as close to field use as possible. It is called _____ office (5)   

12. A white box testing technique that exercises program loops, it is 

called _______ testing (4) 

14. The tool developed to ease the issues encountered by having to 

perform Quality Assurance tests across a variety of hardware and 

software combinations (3) 

 

 

http://www.qualitytesting.info/


 
 

   www.teatimewithtesters.com                                                                                      February  2012|67 

 

Answers for Last Month’s Crossword: 

  

 

 

 

 

 

 

 

     

      Answer for the last puzzle : 980993971 

 

 
 

V 

 

 

 

 

We appreciate that you  

“LIKE” US ! 

 

https://www.facebook.com/TtimewidTesters


 
 

   www.teatimewithtesters.com                                                                                      February  2012|68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|69 

 

   

o 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learned about your magazine from 

one testing conference.   

I was curious to read your magazine 

when I heard people praising you 

people.  

Good job.  

  

- Nikol S. 

 

There are two things for which I 

eagerly wait every month.  
 

First one is my salary and second is 
Tea-time with Testers !  

 
- Sudha Ramalingam 

 
 

 

 
 
  

Thank you for creating this magazine. Your 

articles have helped me on multiple occasions. 

Thanks again. 

- Kirtee Damle 

 

 

My Voice on ―Teach-testing‖ 
 

Yes software testing should be taught as a separate course in 

universities. This will ensure giving appropriate and in depth 

knowledge about testing stream and at the same time prevent  

private institutes bullying in software testing training field and 

loss of student's money and time. Freshers will not get  

deceived by private institutes for paying huge amount of money 

for very less knowledge about software testing.  

 

I will suggest some kind of aptitude test also to find student's  

aptitude as well as liking towards software testing.  

 

  -  Prajakta Kanade 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you have any questions related to the 

field of Software Testing, do let us know. 
We shall try our best to come up with 

the resolutions.   

                                                                                        

- Editor         

 

                  



 
 

   www.teatimewithtesters.com                                                                                      February  2012|71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|72 

 

our family 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

                                                       

Founder & Editor:                                                                                                             

   Lalitkumar Bhamare (Mumbai, India)                                                                                                                            

Pratikkumar Patel (Mumbai, India) 

                                                                                                                                                                                    
Lalitkumar                    Pratikkumar                                                                                                                                                                                                       

 

 

 

Core Team:    

Anurag Khode (Nagpur, India) 

Dr.Meeta Prakash (Bangalore, India) 

                                                                                                                                                                                                                                                                                

Anurag               Dr. Meeta Prakash 

 

Editorial| Magazine Design |Logo Design |Web Design:                                                                                                                                                                                                                            
Lalitkumar Bhamare                                                                                         Cover Page Image- Roses and Teacups 

Sagar 

 

Testing Puzzle  & Online Collaboration:                                                                                                             

Eusebiu Blindu (Brno , Czech Republic) 

Romil Gupta (Pune, India) 

                                                                                                                                                   Eusebiu                       Romil 

 Tech -Team:                                                                                                             

Subhodip Biswas (Mumbai, India)                                                                                                                                                          

Chris Philip (Mumbai, India)                                                                                                                                               

Gautam Das (Mumbai, India)                                                                                                                                               

                                                                                                                                                                                                                  
Subhodip                      Chris                     Gautam 

 

 

Contribution and Guidance:  

                                                                                                                                                                                                                        
Jerry Weinberg (U.S.A.)  

T Ashok (India) 

Joel Montvelisky (Israel)                                                                             Jerry                   T Ashok                   Joel 

 



 
 

   www.teatimewithtesters.com                                                                                      February  2012|73 

 

To get FREE copy , 

   Subscribe to our group at  
 

 

 

 

 

       Join our community on                                      

 

 

 

     Follow us on 

 

 

 

 

 

 

 

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

