

 www.teatimewithtesters.com January 2013|2

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com January 2013|3

Created and Published

by:

Tea-time with Testers.
Hiranandani, Powai,
Mumbai -400076

Maharashtra, India.

Editorial and Advertising

Enquiries:

Email: editor@teatimewithtesters.com
Pratik: (+91) 9819013139
Lalit: (+91) 8275562299

This ezine is edited, designed and published by
Tea-time with Testers.

No part of this magazine may be reproduced,
transmitted, distributed or copied without prior written

permission of original authors of respective articles.

Opinions expressed in this ezine do not necessarily

reflect those of the editors of Tea-time with Testers.

mailto:editor@teatimewithtesters.com

 www.teatimewithtesters.com January 2013|4

is sponsoring its first “AST Test Forum” in Pune, India on
February 13th, from 5 – 7 pm at the IDB auditorium,

Cognizant phase I, Hinjewadi.

 Register for the forum here

The forum will include an introduction to the AST by

current board member Keith Klain, an open Q&A

session, and a chance to network with testing

professionals from different industries.

It’s

FREE

https://s08.123signup.com/servlet/SignUpMember?PG=1531719182300&P=15317191911425948100

 www.teatimewithtesters.com January 2013|5

Edi torial n
e

Wasting or Investing ?

It all started with my discussion with a friend about debrief sessions that we follow as

part of Session Based Test Management. When I asked if he knew about it already

he said that he never heard that word before. Then I explained him what we

typically do in those debrief sessions and asked him for his opinion.

Looking at his expressions I was little doubtful if he really understood what I meant

but without losing a minute he replied, “That‟s absolute wastage of time. I would

rather ask my team to utilize those 20/30 minutes in their testing rather than

wasting them in this debrief thing”.

Initially I got surprised. Someone called that thing as wastage of time which I‟ll

always call as best investment. Well, that was his thinking and his opinion. What

made me write this post are these two thoughts:

1. „Can there be other things in testing that I (or anyone else) find as good

investment but someone else finds them as complete wastage of time?”

What would one call „test design using mind-maps‟, or say „creating

charters‟? Wastage or investment?

2. Or is it like people just form negative opinions about things that are new to

them & that will require them to study the craft?

Well, I am still trying to find answers. What do you think by the way? I will wait for

your letters.

Until then…

Yours Sincerely,

- Lalitkumar Bhamare

editor@teatimewithtesters.com

file:///F:\Tea-time%20with%20%20Testers\Magazine\Mag%20versions\March%202012%20Issue\editor@teatimewithtesters.com
http://www.facebook.com/fndlalit
http://twitter.com/Lalitbhamare
mailto:fndlalit@yahoo.co.in?subject=Editorial Inquiry

 www.teatimewithtesters.com January 2013|6

 topIndex P Quicklookfinal i INDEX

The Rise of the Intellectual Indian Tester - 19

What Makes a Great Tester? -30

Dealing with Stress – 35

Of Testers & Soldiers… - 38

Too many conditions! – 43

 www.teatimewithtesters.com January 2013|7

I mage: www.bigfoto.com

NEWS

Student checks software for critical bug, gets expelled from college

When 20-year-old Ahmed Al-Khabaz, a computer science student at Montreal’s Dawson College,
discovered a critical flaw in his college’s student web portal, he decided it was his ―moral duty‖ to

share the discovery with the institution’s leaders so that the bug can be fixed before doing serious
harm.

But what he probably could not have imagined at the time is that this – for all intents and purposes –

honorable decision will ult imately lead to his expulsion from college.

Al-Khabaz, who was also a member of the college’s software development club, and fellow student

Ovidiu Mija were working on a mobile app that would facilitate the students’ access to their account on
the portal in question, when they discovered that the web application’s ―sloppy coding‖ allows anyone

with a basic knowledge of computers to access all of the student’s accounts and the information
contained in it: personal information (including Social Security numbers), grades, class schedule, and

more.

They shared what they discovered with François Paradis, the college’s Director of Information Services
and Technology, and he seemed satisfied with the discovery. He promised to talk to Skytech, the firm

that created of the Omnivox portal and online services platform, and have them fix the flaw.

It could all have ended here, and Al-Khabaz would still be a student of the college, had he not decided
to check whether the flaw was fixed and whether he could find other crucial vulnerabilit ies by pointing

the Acunetix Web Vulnerability Scanner – a legitimate piece of penetration testing software that
automates some of the most popular attack techniques against web applications – towards the

Omnivox web portal.

http://www.bigfoto.com/

 www.teatimewithtesters.com January 2013|8

A few minutes after initiating the ―attack‖, he received a phone call from Skytech President Edouard

Taza, who told him to stop what he was doing.

―I apologized, repeatedly, and explained that I was one of the people who discovered the vulnerability
earlier that week and was just testing to make sure it was fixed. He told me that I could go to jail for

six to twelve months for what I had just done and if I didn’t agree to meet with him and sign a non-
disclosure agreement he was going to call the RCMP and have me arrested. So I signed the

agreement,‖ Al-Khabaz shared with National Post.

Courtesy: Net-Security Click here for complete news.

http://www.net-security.org/
http://www.net-security.org/secworld.php?id=14274
mailto:contact@teatimewithtesters.com

 www.teatimewithtesters.com January 2013|9

How would you like to reach over 19,000 test professionals across

101 countries in the world that read and religiously follow

“Tea-time with Testers"?

How about reaching industry thought leaders, intelligent managers

and decision makers of organizations?

At "Tea-time with Testers", we're all about making the circle

bigger, so get in touch with us to see how you can get in touch with

those who matter to you!

ADVERTISE WITH US

To know about our unique offerings and detailed media kit

write to us at sales@teatimewithtesters.com

Want to connect with right audience?

mailto:sales@teatimewithtesters.com

 www.teatimewithtesters.com January 2013|10

https://www.dropbox.com/s/mpyr2g27pocgqto/TTwT 2013 Gift Calendar.zip

 www.teatimewithtesters.com January 2013|12

 Intelligence, or Problem-Solving Ability (Part 3)

APTITUDE TESTS

If intelligence is so important for programming success, what can be done to select those people who

have what it takes to do the job? The possibility of administering tests to select programmers had long
bewitched programming managers, but over the years nobody has ever been able to demonstrate that

any of the various "programmer's aptitude" tests was worth the money it cost for printing. We should
be remiss, however, if we did not attempt to explore the reasons for this universal failure.

In the first place, of course, programming is a diverse activity, and any test that gives a single "grade"

is hardly adequate to measure the aptitudes required. Some tests have been designed to give multiple
scores, but even if these had individually valid measures, they would be difficult to apply sensibly, and

the average personnel manager simply would not bother.

Moreover, just because of the multidimensionality, someone who is sorely deficient in one area may
turn out to be outstanding in another—provided that the opportunity to use his strong points exists. On

the other hand, sometimes a person who scores high on every possible scale performs poorly because
he is missing some "minor" ability, such as the ability to get along with the people he has to work with.

These are theoretical conjectures, however, because nobody has put together a test with any
measurable validity. The closest thing we have to a validation of a programmer's aptitude test are

 www.teatimewithtesters.com January 2013|13

studies which show that people who scored high on the test were better students in the ensuing

programmers' training. When it got down to the nitty-gritty of actual programming, however, there was
no correlation—or even a slight negative correlation—between test scores and rated performance.

This sorry picture is not unique to programming. Intelligence tests generally—such as the famous IQ

tests—are able to predict success in school-type situations—and in nothing else. In fact, as one wit put
it, intelligence tests measure the ability to take tests. We have reason to believe that this appraisal is

not far from the truth. For example, in IQ tests, speed is very much a factor, as it is in school situations
generally. But, in the office, the difference between one hour and one hour and ten minutes is only ten

minutes—not the difference between an A and a C. Slow and steady may not win the race, but
programming is not a race.

Another typical distortion of intelligence tests is in the emphasis they place on short -term—rather than

long-term— memory. They could hardly be expected to do otherwise, given the constraints under which
they must be administered. In an IQ test, one is asked to memorize nonsense words or arbitrary lists.
But in "real life," it is selective memory which pays—the ability to forget the unimportant and retain the

important over long periods. Not so in school, however, and so we have the IQ test and the school
grades going hand in hand—off in a different direction from anything we are interested in.

Finally, and this leads right into our next topic, IQ scores, and programmer's aptitude scores, are

demonstrably correlated with certain forms of training. In big cit ies, an eager parent can take his child
to a special tutor who guarantees to raise his IQ by so many points for so many dollars. The same

techniques are used 'by certain programming schools to help their graduates get jobs with those
companies that rely heavily on aptitude testing. So, no matter how much we would like to have a magic

wand which would point out the best programmer prospects, we are just going to have to learn to do
without.

APTITUDE TESTS FOR PROGRAMMING

All of this leads up to specific tests that have been used in a grand attempt to measure aptitude for

programming.

Probably the foremost among these is the so-called PAT, or Programmer's Aptitude Test. Actually, this
is not a single test, but an unknown number of variants on an original test made up one idle afternoon

by a group of programmers in IBM's New York Scientific Computing Center sometime before 1956, and
administered there to all job applicants and interested visitors. One of the reasons for the profus ion of

variants is that the test has been so widely used and so unprotected that nobody knows how many
people have taken it, or, in particular, which people have taken it.

Not that the variations give much protection, since there is considerable transfer of learning from one

variant to another. Over a series of classes involving IBM and other programmers, I asked people to
report the number of times they had taken a variant of the PAT and what their scores had been. Since

this was a "safe" situation—with nobody's job at stake—there is reason to believe that the replies are
not too inaccurate. Out of 27 people who had taken the PAT more than once, 23 received A's the last

time they took the test—they were all employed programmers working for companies which regarded
A's as an important hiring criterion. Of these, 12 had A's the first time they took it, 7 had B's, and 4 had
C's. Nobody had done worse the last time than the first.

A typical case was a woman working for IBM as a programmer who had graduated from college with a

Math major and applied to RCA for a programming job. They had given her the PAT, and she had scored
a "low" B. She didn't get the job, so she interviewed with IBM, who administered a slightly different

 www.teatimewithtesters.com January 2013|14

version of the test, on which she scored a clear A. She was asked whether she had ever taken the PAT

before, and she (intelligently) said "no," whereupon she was hired.

This previous experience with the PAT may be one reason researchers have been unable to correlate

PAT performance with job performance. A few correlations have been reported (see Reinstedt, 1964},

but we must be careful as to what we regard as "significant" in these cases. For example, the best
correlation found in these studies was 0.7 between the PAT and supervisor's ranking. What does 0.7

correlation mean?

For a single study, a 0.7 correlation between two variables means that (0.7)**2 —0.49, or 49 percent
of the variation in one variable can be accounted for by the other—although it doesn't say which is

which. This still leaves more than half of the variation to be explained, even if the correlation coefficient
were an "explanation." One of the reasons for the popularity of the correlation coefficient is the way it

seems to overstate the case, since the number used is always larger than its square.

The second problem with such correlations is that the score—which is definite enough—is correlated

with the supervisor's ranking, which is an uncertain measure of programmer performance, to say the
least. There really is no instrument today for measuring programmer performance—or reducing it to a

single number, in any case. Consequently, there is nothing really reliable with which to correlate the
PAT. It may even be that the PAT is a marvelous predictor of programmer performance, but the

supervisors are not themselves sufficiently trained to know it.

We must also be wary of one other thing in using such correlations. Nobody knows how many times
people have tried to correlate the PAT with job performance. Those who did try and did not obtain

"significant" results more often than not would not publish their trial. We know of similar trials because
correlations have been found between test scores and school grades (Biamonte, 1964, Gotterer, 1964).

But, you see, if given sufficient chances to correlate, we will eventually get some correlation coefficient
above any level we desire, if the data are random. Thus, we could say that a correlation of 0.56 will

arise, by chance, no more than one time in a hundred, but if we do not know how many trials have
been made and not reported, we have no way of evaluating the significance of such a statement. We do

know, however, that the PAT is used in hundreds of places.

Furthermore, even if the trials have only been made a few times, a correlation o f 0.56 occurring one
time in a hundred by chance assumes that the true correlation is zero. If there is a small positive

correlation, say of 0.1, then a spurious measure of 0.56 will occur more frequently than one time in a
hundred. But a correlation of 0.1 means that 1 percent of the variation is accounted for by the

correlation, and this is hardly the type of information we can use to make personnel decisions.

Assuming that the correlations were reliable, we have, on the basis of the recorded literature, no
instrument any better than the PAT. Admittedly, it does predict scores in programming classes fairly

well, but that is not what we are buying when we hire a programmer. As Mayer (1968) puts it so well,
Very probably if you would use all of the tests to select an individual, you can [sic.] obtain a person who

has a high probability of successfully completing your training program. Whether this individual is going
to like programming or will possess the motivation that will allow him to take the successfu l training

onto the job site is a question that is not yet answered.

Even this condemnation implies that the tests may be all right as far as they go, but that other factors

may be more important on the job than pure "aptitude." Although we can’t quarrel with the conclusion,

we think a possibility may have been overlooked—namely, that the tests are just not good ones for

programmer aptitude. Given the history of the PAT, one wonders why so many hundreds of firms use it
slavishly, year after year. A little examination into the structure of the test itself might give us some

hints as to what is wrong with it, now that we know that much is wrong with it.

 www.teatimewithtesters.com January 2013|15

The original PAT had three sections: relationship rules for geometric figures (much like standard IQ

series), arithmetic reasoning, and number series. The first two have been retained in almost all of the
variants of the PAT, although the number series has often been replaced by letter series. Just to get an

idea of what might be wrong, consider the letter or number series problems, a typical one of which

might be (1 4 7...) where the examinee is asked to supply the next number in the series. It is certainly

plausible that a modicum of intelligence is required to answer "10", but is this really the ability we most
need in a programmer?

Let me give an example of what a good programmer did with such a series. A FORTRAN program had

been written with the statement DO 15 I = 10000, 30000, 10000 .The program went into a strange
loop which finally ended but produced output that nobody could decipher. When it was brought to this

programmer, he thought for a while and then asked himself under what circumstances this particular
DO would not produce the series 10000 20000 30000 . . .

Suddenly he realized that if the numbers were being kept in a 15-bit register, the next number in the
series would be 7232, and the series would look something like this: 10000 20000 30000 7232 17232

27232 . . . which explained precisely what was wrong with the program.

In other words, the PAT tests for the ability to see the conventional pattern in a series of numbers or
letters, but the programmer, especially when debugging, has to look precisely for the unconventional

pattern—the deviations. Possibly a much better type of question for programmer aptitude would be
something like this:

"Given the series (1 4 7...), tell what might normally be expected as the next number, and then

describe at least three other choices which might be correct, giving reasons for each choice."

Another section of the PAT is arithmetic reasoning, but I have never had anyone who has been able to
explain to me why programmers have to be good at arithmetic. Perhaps before 1956 arithmetic was

more important, when most programming was done much closer to machine language than it is today.
If you are working in a relatively crude language, it is useful to be able to add two or three hexadecimal

numbers so that you can find an address in a dump, but how many programmers do that today? Don't
we have computers just so we don't have to do arithmetic? I myself have never been able to add 7 and

5 rapidly, but I don't think that is the thing holding me back as a programmer. In fact, knowing I am
not very good at arithmetic, I am more suspicious of my programs, and of my check calculations—

which forces me to do more testing of them. It would be rather easy to make an argument that poor
arithmetic ability is an asset to a programmer.

The third part of the PAT leaves me entirely befuddled. Even in 1956, geometric relationships never

seemed to have much to do with programming aptitude, but perhaps I missed the point. The one thing
that programming doesn't seem to be in today's world is geometric. I've never met a programmer who

was asked to tell whether two programs were the same if one was rotated 90 degrees. (There was once
an article about palindromic programs, which read the same forward and backward, but its contribution

to the profession was minor.)

Perhaps it is time that some new thinking go into these aptitude tests, if people are going to persist in
using them. And persist they will, since even if the promise of success is not great, the rewards are. So
let me suggest a few things that might make more sense for identifying potentially successful

programmers:

1. Give the examinee thirty or forty papers with random printing on them and ask him to place them in
ten boxes. One week later, ask him to find the paper with the word "COMMODITY" on it. Time his

retrieval performance—giving high scores for fast work.

 www.teatimewithtesters.com January 2013|16

2. Give the series-exception type question suggested above.

3. Tell him you are thinking of a problem which he must solve. Don't give him any more information

unless he specifically asks for it, but answer all his questions literally. Score him on how well he figures

out what the problem is.

I don't really have much hope for such tests—either that they will work or that they will be applied if

they do work—but they certainly seem more promising than what we have been using so far.

Yet all is not quite so bleak. When we are selecting among experienced programmers, the situation is
potentially different, although few authors or employees seem to realize it. For example, out of 282

organizations using the PAT in one survey, 138 of them still use it for selecting experienced
programmers. Why? Because they feel they have nothing else. Lacking anything better, they try what is

available in a vain search for the elusive magic test. Such companies are sitting ducks for anyone who
comes along with a fancy package of promises—and with lots of sitting ducks, can the hunters be far
behind?

to be continued in next issue…

 www.teatimewithtesters.com January 2013|17

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

TTWT Rating:

Jerry’s another book The Psychology of

Computer Programming is known as the first

major book to address programming as an

individual and team effort.

―Whether you're part of the generation of the

1960's and 1970's, or part of the current

generation . . . you owe it to yourself to pick up

a copy of this wonderful book.‖ says

Ed Yourdon, Cutter IT E-Mail Advisor

Sample of this book can be read online here.

To know more about Jerry’s writing on software

please click here .

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com January 2013|18

Speaking Tester’s Mind

 www.teatimewithtesters.com January 2013|19

Michael bol ton

Time

janet
Fiona

James B ach

 [Please read part 1 of this series in December 2012 issue of Tea-time with Testers]

So, I returned to India.

People kept asking me what I thought of all the changes to Bangalore since my last visit almost a

decade ago. ―It looks exactly the same to me,‖ I replied, which says much more about my first visit than

it does about the city itself.

The first time, I didn’t know anyone, and Bangalore is not a welcoming city to tourists from the West.

I was stuck in my opulent hotel, able to see some palm trees through my window and a few hazy

buildings in the distance, strung with clotheslines. Through the windows of the taxi each day I witnessed

families piled onto scooters, burning trash, wandering cows and wondered what was the life expectancy

of a Bangalore cabbie. All this muddled together into a blurry soup in my memory. And I was never

really in the soup. Shuttled from hotel to worksite, never setting foot in the country itself, I didn’t visit

India so much as I interfaced with it. No wonder that when I returned, it was as if to a place I had never

been.

 www.teatimewithtesters.com January 2013|20

This time I did visit. Today I know a couple hundred testers in India, and many more know about me.

That gave me the opportunity to get out of the hotel properly, and meet people, and dine at their

homes.

The growing community of intellectual testers in India is my tribe. Regardless of nationality or language

or politics, I feel kinship with anyone who works to build his mind into a better instrument of analysis

and observation.

Though still greatly outnumbered by ―factory-style‖ testers, all around the world this community is

growing. India is probably the highest growth area, today, for intellectual software testing. I have no

hard statistics to back that up. It’s just an unscientific impression— but I’ve never been more mobbed by

supporters than I was on this trip. I felt like a minor Cricket star, at times.

I got to see a fascinating cross-section of companies on this journey:

 Moolya, a brand new test lab, completely free to innovate.

 Barclays Bank, a large company that has made a strong commitment and investment in
skilled testing culture.

 Intel, a large company mired in traditional testing, but starting to come around.

 Two established outsourcing companies considering how (and whether) to explore the
potential of a skilled testing culture.

James inspecting testing at Moolya

 www.teatimewithtesters.com January 2013|21

What is “traditional testing?”

People often contrast what I do with ―traditional‖ testing, as if it is older than my own tradition of context-

driven testing. But they can’t tell you where their tradition comes from. I’ll tell you: it’s from 1972. That

was the year the first testing book was written, by Bill Hetzel. That book, called Program Test Methods,

documents the proceedings of a conference on testing held at Chapel Hill, North Carolina. It’s not the first

writing about testing, merely the first entire book. And it’s the first time (based on my review of journal

articles, IFIPS conference proceedings, and other writings from the sixties) that the complete ―Factory

School‖ and ―Analytical School‖ visions of testing are asserted all in one place. For example:

 Document everything in a specification, then test strictly to that specification.

 Encapsulate all testing in units called ―test cases‖ which can be counted. Test cases either pass or

fail.

 The role of testing is to ―ensure quality‖ or ―certify the product‖ or ―prove correctness.‖

 Test coverage means code coverage.

 All testing should be automated, if possible.

 Testing is embodied in specific definable actions or equations, which can be optimized with

rigorous mathematical or manufacturing methods.

What is “skilled testing?”

What’s left almost completely unwritten in Program Test Methods? Anything about skill. That is, the book

is nearly silent about how a person goes about becoming a good tester, or what a good tester must know

how to do. Humans are treated as wet, squishy afterthoughts, rather than the designing and controlling

intelligence that makes testing go.

The skilled testing revolution turns that around. We look squarely at people, what people can do, and how

people learn to do that. Tools, artifacts, and measurements all follow and serve people.

The first implication of skilled testing is that testing skills can and should be systematically developed,

rather than assumed to come into existence through a simple act of will or divine providence. This requires

deliberate practice, and an effective mental model of testing. When I sat down to create my own mental

model of testing, I found that the fields of Epistemology, General Systems Thinking, and Cognitive Science

provided the raw material I needed to develop it. Then I had to learn about heuristics and bias and the

nature of tacit and explicit knowledge.

Developing deep skill as a tester requires letting go of cherished illusions such as the belief in

specifications that define complete and correct expected results, or tools that test while you sleep, or test

cases that have only two outcomes: pass or fail. The skilled tester accepts a world brimming with

ambiguity but still intelligible to the determined and subtle mind.

To a casual observer, none of this is obvious. It may even seem like I’m over-complicating it. Only when a

tester makes a decision and a commitment to becoming an excellent tester can he penetrate the surface

layers of dead leaves and broken buzzphrases and begin to see the majesty of our chosen craft. For a

large company to do this, strong leadership and a supportive culture is required.

 www.teatimewithtesters.com January 2013|22

Moolya, Young and Hungry
I’m droolin’ over Moolya

1
.

I would not have returned were it not for the Moolya test lab. They sponsored my trip. Intel and Barclays

Bank later called ―me too!‖ but my friend and student Pradeep Soundararajan got things going. My wife

and I were a bit confused at first, because we didn’t think Moolya could afford my fee. We had the

impression that Moolya was just a few testers in a garage. Actually they’ve grown a lot in two years,

moved out of the garage and into a nice modern building, with about fifty testers now and poised to

double its business this year.

I arrived there to make an inspection tour. I wanted to discover if Pradeep
2
 was really running a

company for thinking testers. The quick answer is yes. Really yes. He definitely is.

I was touched to see all work stop when I walked in the door. (I hope no client had an impending

release due). Suddenly I was surrounded by smiling, eager faces. Young faces. Moolya discovered (as I

also have) that it’s generally easier to train novices to be skilled rapid testers than to hire experienced

conventional testers and try to convert them. It does take a long time to master testing, but at least

with novices you don’t argue as much, don’t need to pay as much, and they are probably more loyal.

Having said that, an experienced intellectual tester is a godsend, and any good test lab needs them.

Pradeep was wise to hire Dhanasekar Subramanian (DS for short) and Parimala Hariprasad, early on.

Both of them had distinguished themselves as introspective and insightful testing bloggers.

After a few minutes giving what I hoped was an inspirational speech, I got down to the inspection. First

stop: mobile lab. DS is ―commander‖ of the mobile testing lab at Moolya, but he stood aside like a proud

father and let me interview some of his team.

First thing they showed me was a series of mind maps. They claimed that they managed all the testing

with mind maps rather than traditional scripted test cases. I can believe it. I saw a lot of mind maps!

Nested ones, big ones, colorful ones, icon-encrusted ones. Test ideas are stored there as well as test

notes and test reports. D.S. and his guys have developed mind mapping in testing to a new height of

sophistication.

I was particularly intrigued by a mind map they designed to coordinate the actions of five testers during

a one hour testing blitz. A branch of the tree was dedicated to the activities of each tester, and color-

coding was used to divide the hour into segments. It was a beautiful, clean, organized plan, all on one

page. I hope they publish it, someday.

Anyone can make pictures. I wanted to see if they knew what the pictures meant. I picked a fellow

standing nearby, pointed to a leaf node on the mind map, and asked him what specifically he did to test

when he read that. He described a fairly vivid process, but I thought I may have accidentally asked him

1 Bear I mind that I have a vested interest in Moolya. The company was co-founded by a student of mine and they sponsored my trip.
I think I’m being honest, here, but it’s possible that Pradeep’s wife’s cooking was good enough to disturb my objectivity. Be on your
guard.

2 I say Pradeep runs the lab, because he is in charge of most of the operations and owns the culture, as such. But co-founder Santhosh
and CEO Mohan play vital roles, too.

 www.teatimewithtesters.com January 2013|23

about something he was an expert on, so I picked a girl standing next to him and pointed to a different

part of the map. She also gave a good answer.

I listened for hesitations. I listened for buzzwords and pablum phrases. What I heard thrilled me, not

just the content but the tone of it: eager to impress, eager to respond.

How to do a spot review of a test process

It’s not about documents, although documents will give you clues. It’s not about what people say,
although that can help. It’s really about what the testers are doing: testing is what testers do. To review

a test process, therefore, you need to collect observations about testing in action, see the traces of
testing past, and draw inferences from that like a detective. It really is like being a detective, because

you must be alert for various ways people can hide their process, either on purpose because they are

ashamed of it and want to tell a better story, or accidentally because they don’t know what their own
process is or don’t have the skill to express it in words.

Here’s the approximate procedure:

1. Begin by having done many inspections of test process before. I know that sounds

strange. If this is your first time seriously analyzing a test process, skip this step. What I mean

by this step is that experience really matters. The more testers you have watched, the more
basis of comparison you have to know the difference between normal and not-normal work.

2. Put yourself into a watchful, sympathetic state. Be open to what you are shown and NOT

shown. You should be sympathetic because the people you are reviewing will be nervous. Look

for good things and praise them, this will help them hear about the not so good things.

3. Witness the testing. Therefore, say "Show me your testing."

If the tester immediately begins to test the product, right in front of you, good. You can begin to
evaluate that. But usually, you will not be shown testing. Usually the tester will wave documents

at you that describe testing or tools that help perform testing. So, what you have to do next is

drill down.

Say "Show me exactly how this relates to the testing." Or, if you were shown a test procedure or
test support document, you can point to any piece of it and say "what do you actually do when

you read that part? Show me." My favorite tactic as a reviewer is to visualize the testing, just as

if it were a movie in my head. I want to see where the tester is, what he's looking at, what's on
the screen, and the precise way he interacts with any tools or artifacts. I listen for hesitations

and vague speech, and wild claims, too.

4. Whatever you are shown, relate that to all the major parts of your mental model of
testing. The most basic model of testing I use is called the Heuristic Test Strategy Model and

has these main elements: project environment, product elements, quality criteria, test

techniques. Embedded in those elements are such vital concepts as oracles (how you recognize
bugs), coverage (what you test), and procedures (specific things you do to test). Surrounding

and permeating all of that is risk.

5. Engage the tester in conversation to evaluate how he relates the work to his own

model of testing. It’s usually not enough to test well. You also have to explain how you are
testing well. So, I make that a big part of the evaluation. This is also part of building a rapport

and a working relationship with the tester.

In a spot review I am not going to do everything. I drill down at a variety of points and look for trouble.
Trouble means anything potentially harmful to the business, such as the wrong things are being tested,

or the actual testing doesn't match the described process, or the testing is missing potentially important

bugs.

If I don't find trouble quickly, the tester gains credibility. If I find potential trouble and the tester
responds constructively, he also gains credibility.

 www.teatimewithtesters.com January 2013|24

It was great fun. I got challenged, too. Pradeep, head of the lab, asked me to pair with him to analyze a

product and create a test strategy while a dozen of his testers looked on. At the end of it, one of the

onlookers showed us a mind map he made that described our process. Then DS dared me to face a job

interview as if I wanted to join his team. Parimala arranged to pick me up and drop me off from the

hotel each day so that she could badger me with questions.

The Tiger Cub Problem

Moolya is a test lab full of the life of mind. Long may it prosper. But that will come down to one person,

I think: Parimala. Pradeep put her in charge of training. This is a key role. The biggest challenge growing

a test lab, apart from dealing with unreasonable clients, is assuring that the testers actually know how to

test. In Moolya’s case they want to do something unprecedented—they want to be ready for any client to

challenge their expertise. Most test labs advertise that they have expertise. Try asking any of them to

prove it. You will get nowhere. Moolya claims to be ready for that question, and so they need to BE

ready.

This means Parimala must create a training and mentoring program that prevents any tester from being

recognized as excellent until he’s put in the t ime and earned the grudging respect of critical-eyed peers.

This amounts to a certification program, of course: one that is community-based and also based on

demonstrated skill over time. Since the community is growing all the time and there are many sub-skills

of testing, that’s a lot of work. I think it will take her a good 18 months to get really organized.

Unfortunately, she needs to be ready right now. It’s a tough gig.

Part of Moolya’s strategy is to establish an intellectual culture. To help with this they created a role

called a ―shifu.‖ The idea comes from Chinese martial arts. A shifu is a master. A shifu at Moolya

represents a tester who is considered fully capable of representing the lab as a tester and also trains

other testers. It is vital to make it difficult to become recognized as a shifu. It must be an honor, and the

testers in the lab must believe that the shifus actually are the lab’s best experts, or else they will not be

motivated to join them.

I think this strategy is crucial, but it’s also quite difficult to pull off. Apart from the problem of

determining a fair way to identify these worthy testers, a test lab must contend with the tiger cub

problem. I have also explained this to Mindtree and Cognizant, in briefings with them. The Tiger cub

problem is the main reason that no test lab, to my knowledge, has created a systematic program of

expertise building since I did it when I worked at STLabs in the mid-90’s. You see, if you get a tiger cub

as a pet, it’s cute at first, but it grows up to be dangerous. Testing experts are like that, too. At STLabs,

we once had a half-day strike of all the test leads to protest certain management misbehavior. I was so

proud of them.

When I worked at Reliable Software Technologies, years ago, I would refuse to work on any client

project that I judged to be fundamentally broken. My company wanted me to bill hours, but I felt I could

take money from a client if I felt he was acting from impaired judgment and against his own best

interest. I quit that job after six months—just before they fired me.

 www.teatimewithtesters.com January 2013|25

The more reputation a tester has, the more pride he has in himself, the more he needs to protect that

reputation. Over time, it becomes very difficult to push these testing tigers into bad projects. If you

want an easy management situation, stick with mild-mannered house cats. I’m a grown tiger. Now I run

my own company. I only have to answer to my wife, and she really likes me.

For any test lab larger than a couple of people, turning down work from otherwise willing clients is very

hard to do. But a great many companies that seek out consulting services are dead wrong about what

they need, and part of the ethics of expertise is—just as with a doctor—not to prescribe a medicine to a

patient that you know will harm the patient.

Time will tell if Moolya’s tiger training strategy works. But I honestly don’t see how they can grow much

larger, and remain a center for intellectual testers, unless their testers earn their claws.

I have too much to say, so I will need to say the rest in part 3. Having seen an example of a great new

spirit in Indian testing in the form of a brand new test lab, I will turn to the challenges facing established

companies as they struggle to explore and implement a skilled testing culture.

to be continued in next issue…

James Marcus Bach is a software tester, author, trainer and consultant. He is a

proponent of Exploratory testing and the Context-Driven School of software

testing, and is credited with developing Session-based testing.

His book "Lessons Learned in Software Testing" has been cited over 130 times

according to Google Scholar, and several of his articles have been cited dozens of

times including his work on heuristics for testing and on the Capability Maturity

Model. He wrote numerous articles for IEEE Computer.

Since 1999, he works as independent consultant out of Eastsound, Washington.

He is an advisor to the Lifeboat Foundation as a computing expert.

Follow James on Twitter @jamesmarcusbach or know more about his work on

satisfice.com

http://satisfice.com/

 www.teatimewithtesters.com January 2013|26

Do YOU have IT in you what it takes to be GOOD Testing Coach?

We are looking for skilled ONLINE TRAINERS for Manual Testing, Database Testing and Automation Tools l ike Selenium,

QTP, Loadrunner, Quality Center, JMeter and SoapUI.

TEA-TIME WITH TESTERS in association with QUALITY LEARNING is offering you this unique opportunity.

If you think that YOU are the PLAYER then send your profiles to trainers@qualitylearning.in .

Click here to know more

mailto:trainers@qualitylearning.in
http://www.qualitylearning.in/
http://www.qualityjobsportal.com

 www.teatimewithtesters.com January 2013|27

Image courtesy : MMVI New Line Production

 www.teatimewithtesters.com January 2013|28

 www.teatimewithtesters.com January 2013|29

In the School of Testing

 www.teatimewithtesters.com January 2013|30

 martin janson B ERNICE

Let’ s talk testing

Johanna rothman

SPE

Lets talk testing

What Makes a Great Tester?

I bet you would like to hire the ―ideal‖ tester. Well, let me tell you right now, the ideal tester does not

exist. That’s because we are all real people, so we are not perfect. That’s the good news. If we were
perfect, the world would be a boring place.

On the other hand, we can think about general principles of what makes a great tester, and you can
think about what will make a tester great in your culture. Now, you have pretty good criteria for what

makes a great tester.

What’s Your Culture?

Before you think about what makes a tester great, think about your culture. You can think about these
three aspects of your culture:

 What can people discuss?

 How do people treat each other?

 What do you reward?

 www.teatimewithtesters.com January 2013|31

These three questions seem pretty simple, don’t they? But let me give you some examples before you

dash off thinking you know about your culture.

What Can People Discuss?

Many organizations claim they have an ―open‖ culture. ―My door is open,‖ many managers say. Well,

their doors may be open. But, can you discuss salaries? Can you discuss the criteria for moving to the
next level in the organization? Are the testers paid as much as the developers? Do you know? Is there a

salary chart?

Money, salary, and expertise criteria—the job ladder—are a primary example of what might be open or
not. Your organization might share the job ladders and not share the money. They might share sales

orders. They might share product roadmaps. But, they might not.

There is no right or wrong, here. There is only what is right for your organization, your culture.

How Do People Treat Each Other?

The next question is how people treat each other. In some organizations, senior managers are allowed

to create emergencies for other people to solve. Or, managers feel as if it’s okay to yell and blame
people in meetings. Or, vigorous discussion, including ad hominem attacks, is how people of all levels
disagree with each other. Or, people never come to a decision without everyone agreeing.

I once consulted to an organization where everyone had to agree with every decision. It took that

organization a very long time to make any decision at all, including release decisions. Even though they
had release criteria, it still took them weeks to decide to release. Everyone had to be happy with the

decision. That organization no longer exists.

What do you reward?

Some organizations reward long hours. Some reward hard work. Some reward cleverness. It’s hard to

tell what others reward because individual managers get to decide.

If your organization is still working in a more traditional project lifecycle, the organization might reward
heroes or firefighters. And, the organization might not be very happy with testers who discover

problems.

On the other hand, if you have transitioned or are transitioning to a more agile organization, you might
discover that the organization rewards people who discover problems earlier.

There is no right or wrong culture. There is your culture. Now that you’ve thought about your culture,
let’s think about the general principles of what makes a tester great.

What Makes a Tester Great?

When I think about great testers, I think about non-technical skills first—and you might be surprised by

that. But that’s because it’s easy to teach the tools and technology to people with the right background.
But as you can see from the culture discussion, it’s really hard to find a good match for the culture.

 www.teatimewithtesters.com January 2013|32

You can’t lump all non-technical skills together. I separate them into qualities, preferences, and specific

non-technical skills.

Tester Qualities

In my experience, great testers share these qualities.

Testers are skeptical. Testers who don’t automatically believe the information from developers and

project managers tend to find more problems than the testers who don’t challenge the assumptions.
Testers who believe developers when they say, ―You don’t need to test here; there are no bugs here‖

are the testers who are blindsided when the product is released and the customers find a gazillion
problems. The testers who search where the developers say there are no problems tend to find

interesting problems.

Testers enjoy discovering problems. Testers find problems in the product; they don’t fix product

problems. Great testers enjoy discovering problems, whether they automate or explore. Great testers
discover ways to use the product that no one intended the product to be used. I am one of those

testers. ―How the heck did you get it to do that??‖ is one of the questions I heard all the time when I
was a tester. I took great pride in explaining just how I took all those tangents to get the product to do

that. I didn’t think my brain thought that differently.

Testers are curious. Testers who ask, ―why‖ or ―how is this supposed to work‖ or ―how can I break this
beast,‖ are more likely to find problems than testers who don’t. I want to know how the architecture of

the product works. If I understand when the internal structures change, I can create tests to make sure
they change, forwards and backwards. One of the marks of a great tester is to be able to create

idempotent tests, and I can’t do that if I don’t know the guts of the product. I want to know.

Testers are observant. Testers who notice patterns of product behavior, or the lack of those behaviors
will discover product problems.

I read this a long time ago: http://daringfireball.net/2002/09/welcome_indeed.html and it still resonates
with me. Observant testers notice the small differences that make or break a user’s experience.

Tester Preferences

In my experience, great testers share these preferences.

Testers are able to plan testing. Not every tester needs to be able to plan everything, but a good tester
will be able to plan some of their testing. I’m a huge fan of rolling wave planning. I want to plan enough

to be able to do a little testing, report on it, use the results to replan and continue. If I can only do seat-
of-the-pants testing and not plan enough to use the results of my testing, I’m not adaptable enough to

help my project team.

Testers are adaptable. Testers need to be able to replan or throw out the plan when the plan isn’t
working, or test a different part of the software, or test a different way. It doesn’t matter if you’re on a

traditional team or an agile team. Every project encounters some sort of issue or problem at one time or
another. You want to be adaptable with your testing as well as with your tests. Rigidity in testing is not

helpful.

http://daringfireball.net/2002/09/welcome_indeed.html

 www.teatimewithtesters.com January 2013|33

Tester Non-Technical Skills

In my experience, great testers share these non-technical skills.

Testers see disparate events and connect them to develop new and better tests. Have you ever seen

something happen in the system over there and something else funky occur over here and then you say,

―Aha,‖ and you try something else, and you bring the system to its knees? That’s exactly what I mean.
You can do this with data or intuition; I don’t care. I’m the intuitive type. I bet some of you are the

data-driven type.

Here’s an example I saw a few years back. The middleware layer of a transaction-processing system had
an intermittent problem. It was data-dependent. We all know how difficult those problems are to find

and debug. The testers were testing by feature, and the features separated the problem. One of the
testers suspected the defect was data-dependent, and wrote a note on the wiki that she had tried these

four combinations. She suggested her two colleagues try another six combinations each. They did, and
they successfully crashed the system. They were thrilled. The developers? Not so much. Until the

developers realized they had a reliable way to duplicate an intermittent problem. Then the developers
realized how valuable the tester’s insight was.

Testers write a good defect reports. We talk about ―great communication skills‖ all the time in our open
positions. But we really put communication skills to the test when we write defect reports. We have to

describe the problem—without blaming anyone. We want to include a short reproducible method to
recreate the problem.

Testers choose which defects to champion. If you have a large

number of open defects in your projects, you are not going to get
to release with all of them fixed. So, which ones of them will you

champion? Even if you have release criteria, which ones of them
will slip past the release criteria? Great testers take a pragmatic

approach to this question and remember that testing is about
providing information, not about providing excellence or goodness.

Testers champion a defect. And, when you have defects that you
must not release with, because they do not pass the release

criteria, you champion the defect. That means you have negotiation
and influence skills. You have to be able to influence people across

the organization, not just in development, but also in marketing,
sales, and maybe in finance or other organizations. That takes skill.

Your Culture Might Need More or Less

Is there some other quality, preference or non-technical skill that

makes a difference in your culture? There might be. That’s because
your great testers have to work in your culture.

Think about what’s most important to you in a tester. Remember

that cultural fit will trump every skill, every single day of the week.

Stay tuned for my next column, where I’ll help you think about

technical skills.

Johanna Rothman is the author

of Hiring Geeks That Fit,

https://leanpub.com/hiringgeeks.

See her other books at

http://www.jrothman.com/books/.

She writes an email newsletter,

the Pragmatic Manager,

http://www.jrothman.com/pragma

ticmanager/

https://leanpub.com/hiringgeeks
http://www.jrothman.com/books/
http://www.jrothman.com/pragmaticmanager/
http://www.jrothman.com/pragmaticmanager/

 www.teatimewithtesters.com January 2013|34

Taking

a break?

a click here

will take you there

https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com January 2013|35

Stress testing

Stress failures and bug advocacy - looking at stress tests from a value perspective

l ev

Stress is part of your test strategy. You use it as a tool to test your product and find bugs. This is one of
the ―non-functional‖ test categories you run. Did you devote the time to think about what is actually

being tested by your stress tests?

You may continue to test without answering this question, but when the time comes for bug advocacy,
you have to defend your test strategy and findings, and this may force you to search for an answer.

I would like to share with you some ―Stories from the trenches‖ - from my own experience, and use

them to base some categorization of stress:

1) A stress test revealed disconnection in the communication with an embedded component
which transfers its network traffic from its own driver to the host computer Operating System
driver whenever the host computer restarts. This was a complex system bug that after a

partial fix improved to a ―reasonable‖ failure rate of 1 out of 30 restarts. Following a
discussion, we decide to dismantle the stress to a meaningful use case. In our case this was a

network session that included 3 restarts. Our logic was that the end user is not concerned
with the overall failure rate, but is worried of the chances of his single session to fail. We

used a tool that was able to run our defined use case from a clean state over and over and
got the statistics of the use case failure rate. This lead to the decision to fix the defect.

2) A Software service which runs on a computer system and handles events collapsed after a

stress of such events due to wasteful handling of system resources. From a value
perspective, this issue is related to the time factor as we can predict that the collapse will

happen over the course of time on a system with normal phase of events.

3) Data stress that caused a failure of a network connection to an embedded device.
Investigation showed that the failure happened starting from a certain amount of data which

was much more than the typical usage of the system. Since it was a complex fix and we were
at a late stage of the project, the fix was deferred to the next release of the product.

We can categorize the 3 examples to different categories of stress tests:

 www.teatimewithtesters.com January 2013|36

1) Statistical failure - Stress increases the chances of

the appearance of a sporadic defect since it
executes a flow a lot of times

2) Run stability tests in a shorter time – the stress

speeds up the time factor – failure reveals in a short
time a defect that a system which runs in normal

conditions (amount of data, number of simultaneous
actions, etc.) will experience after a longer run. A
common example of such a failure is a memory leak

found using the stress setup.

3) Load (sometimes defined as a category by itself) –
when we test how our system scales with multiple

calls, large amount of data or both. Here, the failure
reveals a point when the system fails to handle the

load.

4) Any combination of 1, 2 or 3.

In a utopic scenario, when a stress related defect is reported, it follows the path of debug, root cause

and fix. But in many cases, we will need our bug advocacy skills in order to convince our stakeholders
of the need to fix the defect.

A typical bug discussion can start like this:

Developer: ―Stress of 4½ hours and 5MB data files is not a normal usage of our system. A typical use

case takes 15 minutes and a smaller amount of data. We should reject this bug.‖

This point in the discussion can reveal whether you did your homework or not. To decide that the failure
is from the 1

st
 classification – statistical, we need to decompose the stress to a meaningful use case and

run it over and over while bringing the system to a clean state between the each use case. Automation

can be a big help here. If we succeed in reproducing the failure under such conditions, our report will
transform from a stress failure report to a use case failure report with reproduction rate. When we have

a sufficient statistical sample, the impact is clear.

Pinpointing whether the failure is related to time or to load is more complex, as we need to ―play‖ with
both factors in order to reach a conclusion about the amount of time, load or both that is needed in

order to cause the system to reach a failure point. The awareness of the possible options is an
important tool in bug advocacy. For example, it can enhance stakeholder’s perspective when you are

able to say that ―we’re not sure yet, but it is possible that we will see the failure in normal conditions
after a long period of time.‖ Doing complete research before reporting the stress failure can consume

lot of resources and time, so I don’t suggest delaying the report till the tester has all of the answers.
Many times, we can reach faster and better conclusions about the failure from a focused code review or

a debug log analysis. I would like to suggest the following: learn to classify your stress failures. When
you see and report a stress failure, treat it as a start of the classification and investigation. While

sometimes the report will be enough to call for a bug fix, many times it will serve as a call for
investigation. During the investigation – make clear to stakeholders what you already know and what

you don’t know yet. Make sure that new findings are updated in the bug and don’t be afraid to change
the title to reflect it.

There is much more to learn than the basics I summarized in this post. Learning more about stress in
general and about your specific system, can help you classify and investigate your stress failures and

no less important – plan your stress tests better.

Issi Hazan-Fuchs has

been testing Software,

Drivers and Firmware for

more than 12 years in the

FTL - the Functional

Testing Lab of the Intel®

design center, in

Jerusalem, Israel.

Issi has lead a variety of test teams and projects,

as well as promoting testing methodologies and

process activities across the testing department.

Issi loves to think and discuss Testing matters.

He is an expert member of the Israeli QA forum in

"Tapuz".

He publishes his ideas, which are not always

standard ones, in his blog:

http://testerminset.blogspot.com

http://testerminset.blogspot.com/

 www.teatimewithtesters.com January 2013|37

are you one of those

#smart testers who

know d taste of #real

testing magazine…?

 then you must be telling your friends about ..

 Tea-time with Testers Don’t you ?

 Tea-time with Testers !
first choice of every #smart tester !

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com January 2013|38

Of Testers & Soldiers…

If you google the term ―Military Intelligence‖, among the first results you will find the
following Creed of the (US) Military Intelligence Corps:

I am a Soldier first, but an intelligence professional second to none.

With pride in my heritage, but focused on the future,

Performing the first task of an Army:

To find, know, and never lose the enemy.

With a sense of urgency and of tenacity, professional and physical fitness,

and above all, INTEGRITY, for in truth lies victory.

Always at silent war, while ready for a shooting war,

The silent warrior of the ARMY team.

 www.teatimewithtesters.com January 2013|39

I couldn’t find the source to quote it, but this sounds close enough to what I know about Intelligence
Officers from some friends with vast military experience.

Why am I writing this about “soldiers”?

The answer is simple.

A short while ago Jerry Weinberg commented to one of my posts (published in Tea Time with

Testers) that he was looking forward to my explanation on why I think the work of testers is in many
ways similar to the job of Military Intelligence Officers.

I believe he was referring to the following quote from my article ―To Protect and Serve―:
―… In many cases we are serving as (Military) Intelligence Officers to our Organizations, helping to
make the most complex and challenging strategic and tactical decisions.‖

Some of you may already know that Jerry is high in my list of admired testers, so I would not even
dream of not answering his questions. So I decided it was time to take upon this topic with a post of
its own.

Back to basics: what is the role of the QA Tester?

In the past I wrote my definit ion of QA (or Testing) Intelligence as follows:

To provide concrete, relevant and timely information
captured from multiple data sources and using many disciplines

to help our stakeholders make their tactical and strategic decisions.

This definition is composed of 3 parts:

(1) We provide the right information
(2) We gather the information from various sources
(3) The aim of this information is to help make the correct decisions

Mental Exercise:

Before we move forward I would like you to perform the following exercise. I promise it won’t hurt,
and it will take you less than 4 minutes to complete it.

http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://qablog.practitest.com/2012/11/to-protect-and-serve/
http://qablog.practitest.com/2012/11/five-testing-question-with-jerry-weinberg/

 www.teatimewithtesters.com January 2013|40

PART 1:

Read the definit ion of QA Intelligence above and think about your current testing team.

- Does the definition help to define the objectives of your team?
- In a high level, does it help you to accurately prioritize your work and to explain to others in your

team and outside of it what it is that you are achieving?

PART 2:

Now, think about a Military Intelligence Officer working alongside the Top Generals of an army, and
once again read the definition of QA Intelligence but think about the Intelligence Officer’s work.

- Does the definition help to define the objectives of the Intelligence Officer?
- Does it help to prioritize his work and explain to other members of his team what are his

responsibilities and tasks?

Conclusion:

In many ways the objective of the QA Tester and of the Intelligence Officer are very similar.

Each of us in his or her own contexts, are tasked with providing information that will help our
superiors and the rest of the team/unit to do their work better and to make the correct decisions.

We are in the business of Information

Just like the intelligence officer is not tasked with fighting the enemy in hand-to-hand combat, as

testers we are not tasked with writing the code that will be delivered to the end users. Our job is to
provide information support to the people who are making the strategic and tactical decision as well
as those in the fighting and coding lines.

This doesn’t mean that we don’t have an intricate and highly technical job.

Many times our jobs are even more technical than ―only doing the coding‖, because we need to think
about and simulate strange but realistic scenarios where customers will be using our product in

unforeseen ways, and that way seek out the issues that may be hiding under these extreme
conditions.

Have you ever seen testers using ―counter-bug-intelligence‖ tactics exemplified by the phrase: ―if I
was a bug, where would I be hiding…‖? I know I have!

Now seriously, one of the most complex jobs of QA Engineers is to make sure we are providing the

correct information. By correct I don’t (only) mean the right data from our test runs, but the actual
information derived from processing all our data points and putting together an image that is both
accurate and informative.

Not only that, but we need to work with incomplete information, making assumptions and explaining
them as risks of things that may or may not happen. Does it sound like guessing where the enemy is
hiding and how they will behave?

 www.teatimewithtesters.com January 2013|41

In the end of the day our stakeholders don’t have the time to go over all the results and

assumptions. They expect us to do this processing for them. All they want to receive are the
synthesized pros and cons, described as simply as possible, to help them make the right decision
quickly.

We gather information from multiple sources of raw data

Another thing that connects between testers and military intelligence officers is that we work with a
large number of data sources and types.

Just as we need to run functional tests, API tests, Load tests, etc., intelligence officers need to gather
data from satellites, personal observations, spies, etc.

For us is not only about bugs and tests but also about statistics of usage and different types of user
behavior as well as technological changes and different types of platforms and conditions where our

products may be used. In a similar way, for them is not only about the enemy and their weapons,
but about the general population in specific areas and the polit ical, economical and even ethnical
connections between different factions of a war.

Both we and they need to provide concrete, concise and timely readings of all this information,
presenting the current status of affairs and an appraisal of the future based on a limited number of
assumptions.

Integrity and truth

Finally, I couldn’t help but notice something that was

written in the Creed and connect it to words mentioned
both by Jerry Weinberg and James Bach in their answers
to my 5 Testing Questions.

The creed says:

―…and above all, INTEGRITY, for in truth lies victory.”

When I read this, I realized it was similar to what both
Jerry and James answered to some of my questions.

Like when Jerry answered that the most important piece

of advice for a tester would be to:
―Never lie…‖

And when James wrote that among another number of
traits a tester should always have:
―…a strong sense of ethics.‖

What do you think?

Are there other similarities between QA Testers and
Military Intelligence officers? Do find another profession

where with which we share many of the same traits and
challenges? Please let us know by writing us!

Joel Montvelisky is a tester and test manager

with over 14 years of experience in the field.

He's worked in companies ranging from small

Internet Start-Ups and all the way to large

multinational corporations, including Mercury

Interactive (currently HP Software) where he

managed the QA for TestDirector/Quality

Center, QTP, WinRunner, and additional

products in the Testing Area.

Today Joel is the Solution and Methodology

Architect at PractiTest, a new Lightweight

Enterprise Test Management Platform.

He also imparts short training and consulting

sessions, and is one of the chief editors of

ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under -

http://qablog.practitest.com and regularly

tweets as joelmonte

http://qablog.practitest.com/category/interviews/
http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte

 www.teatimewithtesters.com January 2013|42

Click HERE to read our Article Submission FAQs !

http://www.teatimewithtesters.com/#!write-for-us

 www.teatimewithtesters.com January 2013|43

 Too many conditions!

The coming of New Year is always interesting. It is the

time of the year when new resolutions are made. The

word 'resolve' indicates grit, something we strongly wish

to comply with.

What does this have to do with software testing/quality?

As a software developer, at the start, we make a

resolution to deliver great quality software. In real life

the New Year resolutions are quietly forgotten as

days/weeks pass by. But not in the case of software. It is

necessary to meet this and requires effort from

developer and tester.

What does it take to accomplish this? (I.e. fulfill the

 www.teatimewithtesters.com January 2013|44

resolution) It requires one to comply with certain conditions and ensure that they are not violated,

thereby exhibiting the new desired behaviours. Non violation of the identified conditions is very

necessary to demonstrate 'grit' and thereby meet the resolution.

To deliver great quality software, it requires identification of the various conditions and ensures that:

(1) Behaviours are as desired when the conditions are met and

(2) Unexpected behaviour is not exhibited when conditions are violated. Sounds familiar? Of course yes!

Test scenarios are really combinations of conditions.

Let's examine the conditions in detail... There are a variety of conditions- they pertain to data,

interface, (internal) structure, functional behaviour, (external) environment, resource consumption,

linkages to other systems, and other conditions to the system attributes (non-functional aspects).

Enumerating this ...

1. Data related conditions: Data types, boundaries, value condit ions

2. Data interface conditions: Mandates, order, dependency, presentation

3. Structural conditions: Linkages, resource use policy, t iming, concurrency

4. Behavioural conditions: That which governs the functionality, the business logic.

5. Flow conditions: The larger behaviour, business logic of end-to-end flow.

6. Environment related: Messing up or being messed up by the external environment

7. Attribute related: Load conditions, performance conditions, security conditions etc

8. Linkages to other systems: Deployment conditions

Ultimately testing is about assessing that behaviour is as desired when all the conditions are combined.

Now we have 'Too many condit ions'! Now meaningfully pare down the complexity by partit ioning. In

HBT (Hypothesis Based Testing), this is accomplished by setting up Nine Quality Levels, where each

level focuses on certain conditions and their combination. Note the EIGHT sets of conditions that were

described earlier map to the Quality Level 1 through 8.

Having partit ioned thus, it definitely becomes much easier to combine a smaller set of conditions at

each level and ensure compliance and non-violation. Thus chances of meeting the resolution are much

higher.

So when we test software, appreciate that all we are doing to is check the 'compliance to' and the non-

violation of' combinations of conditions. And to ensure that we are clear if what we want to do, partition

these into Quality levels, where only a smaller subset of conditions needs to be combined. So test

scenarios are generated at each quality level, and these are complete, smaller and manageable!

On a personal note, my ne year resolution is to be a super randonneur and do a 1000km brevet. So

many conditions need to be met to accomplish this - endurance, mental toughness, sleep management,

 www.teatimewithtesters.com January 2013|45

T Ashok is the Founder & CEO of STAG

Software Private Limited.
Passionate about excellence, his

mission is to invent technologies to

deliver ―clean software‖.

He can be reached at ash@stagsoftware.com

climbing, and environment resilience. Instead of attempting to combine all at one ago, I have

partitioned these and combined a smaller set of conditions and have met with success in the first

month.

So what is your New Year resolution? Do not give up or forget! Identify the 'Too many conditions' and

break it down and comply. All the very best.

Au revoir.

mailto:ash@stagsoftware.com
http://www.stagsoftware.com/

 www.teatimewithtesters.com January 2013|46

Quality Testing

Quality Testing is a leading social network and resource center for Software

Testing Community in the world, since April 2008. QT provides a simple web

platform which addresses all the necessities of today’s Software Quality

beginners, professionals, experts and a diversified portal powered by Forums,

Blogs, Groups, Job Search, Videos, Events, News, and Photos.

Quality Testing also provides daily Polls and sample tests for certification

exams, to make tester to think, practice and get appropriate aid.

Mobile QA Zone

Mobile QA Zone is a first professional Network exclusively for

Mobile and Tablets apps testing.

Looking at the scope and future of mobile apps, Mobiles,

Smartphones and even Tablets , Mobile QA Zone has been

emerging as a Next generation software testing community for

all QA Professionals. The community focuses on testing of

mobile apps on Android, iPhone, RIM (Blackberry), BREW,

Symbian and other mobile platforms.

On Mobile QA Zone you can share your knowledge via blog

posts, Forums, Groups, Videos, Notes and so on.

http://www.qualitytesting.info/
http://www.mobileqazone.com

 www.teatimewithtesters.com January 2013|47

Puzzle

Claim your Smart Tester of The Month

Award. Send us an answer for the Puzzle and

Crossword bellow b4 2nd March 2013 & grab

your Title.

Send -> teatimewithtesters@gmail.com with

Subject: Testing Puzzle

mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com January 2013|48

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for more than 5 years. He is

currently hosting European Weekend Testing.

He considers himself a context-driven follower and he is a fan of exploratory

testing.

He tweets as @testalways.

You can find some interactive testing puzzles on his website

www.testalways.com

“The Bug Bounty”

This exercise is intended to familiarize testers with security bug bounties. Because
many testers don't know how to start in this field (I mean security bug bounties, not
really hacking or security), I think the best way to see how it's done is to look at
examples.

So one of the security bug bounties out there is
Facebook https://www.facebook.com/whitehat/bounty/

The mission for this month is to list as many blog posts with valid proof of
concepts of an already rewarded bug by Facebook.

Valid example: http://www.nirgoldshlager.com/2013/01/another-stored-xss-in-
facebookcom.html

http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
https://www.facebook.com/whitehat/bounty/
http://www.nirgoldshlager.com/2013/01/another-stored-xss-in-facebookcom.html
http://www.nirgoldshlager.com/2013/01/another-stored-xss-in-facebookcom.html

 www.teatimewithtesters.com January 2013|49

Horizontal:

1. It is a tool used for stress testing (8)

5. Any event occurring during testing that requires

investigation (8)

8. It is testing in which all paths in the program source code

are tested at least once (4)

10. It is an integrated Development Testing solution for

automating a broad range of practices proven to improve

development team productivity and software quality tool (5)

11. It is the initial testing process exercised to check

whether the software under test is ready / stable for

further testing (5)

Vertical:

1. It is a tool to perform repeatable tasks that help

managers, architects, developers and testers to test an

application against its performance (5)

2. It is a testing confirms that the program recovers from

expected or unexpected events without loss of data or

functionality (8)

3 It is a measure to detect defects before delivery, in

short form (3)

4. It is a type of software testing that seeks to uncover

software errors by partially retesting a modified program,

in short form (2)

6. It is a testing that exercises a feature of a product in

full details (5)

7. A document showing the relationship between test

requirements and test cases, in short form (2)

9. The short form of Top Down Testing (3)

10. It is a testing tool and offers an intuitive and extensive

solution for automating websites and web applications to

execute functional tests and regression tests, in short (3)

http://www.qualitytesting.info/

 www.teatimewithtesters.com January 2013|50

Answers for last month’s puzzle:

~ Magic Numbers ~

1324*1234=1645732

2134*2143=4573162

Link to the answer-sheet by Sharaniya

V

We appreciate that you

“LIKE” US !

https://www.dropbox.com/s/4s83rlihdov053m/magic%20number.xlsx
https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com January 2013|51

 www.teatimewithtesters.com January 2013|52

o

Dear Tea-time with Tester team,

I am Ishwari Salunkhe (web developer). I just read your issue of the

month January 2013. I am not a tester but liked you issue.

I read "Eyes Wide Open" editorial by Mr. Lalitkumar Bhamare. It explains

a real goal of one's life and what you shall always follow in your life.

Instead of money you pursue your goal, your passion and that’s what

makes difference.

I never knew that puzzles are mathematical. I also loved the puzzle

section in your magazine and look forward to solve it each month.

Thanks for your efforts and all the best for bright future.

- Ishwari Salunkhe

(Adelaide, South Australia)

 www.teatimewithtesters.com January 2013|53

 www.teatimewithtesters.com January 2013|54

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Anurag Khode (Nagpur, India)

Dr.Meeta Prakash (Bangalore, India)

Anurag Dr. Meeta Prakash

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Image Credits- Olive Cotton

Sagar

Testing Puzzle & Online Collaboration:

Eusebiu Blindu (Brno , Czech Republic)

Shweta Daiv (Mumbai, India)

 Eusebiu Shweta

 Tech -Team:

Chris Philip (Mumbai, India)

Romil Gupta (Pune, India)

Kiran kumar (Mumbai, India)

 Kiran Kumar Chris Romil

Contribution and Guidance:

Jerry Weinberg (U.S.A.)

T Ashok (India)

Joel Montvelisky (Israel) Jerry T Ashok Joel

 www.teatimewithtesters.com January 2013|55

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

