

http://www.teatimewithtesters.com/
http://randiscottphotography.blogspot.com/

 www.teatimewithtesters.com June 2011|2

Created and Published by

Tea-time with Testers.
Hiranandani, Powai- Mumbai -400076
Maharashtra, India.

Editorial and Advertising Enquiries:

Email: teatimewithtesters@gmail.com
Pratik: (+91) 9819013139
Lalit: (+91) 9960556841

© Copyright 2011. Tea-time with Testers.

This ezine is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed or
copied without prior written permission
of original authors of respective articles.

Opinions expressed in this ezine do not
necessarily reflect those of editors of
Tea-time with Testers ezine.

 Dear Readers,

They say that, ―If you do something wholeheartedly & with honest

desire, the universe opens its all doors for you.‖

How True! Having started in Feb 2011 and four issues published so far,

Tea-time with Testers has now become one of the favorite magazines of

Global Testing Community.

Recently, Suzan from Australia wrote me that Mr. James Bach

recommended Tea-time with Testers at his Rapid Software Testing

Course (see page 21). I feel overwhelmed when readers write to me

saying that their colleague, friend or mentor recommended Tea-time

with Testers. Some call it as a treat for Testers while some others as

most wanted thing they were looking for from ages. It won‘t be an

exaggeration if I say that ―Tea-time with Testers‖ is the only magazine

which is being discussed in community for its quality, feel, content,

authors and many other original ideas , from its very first launch.

Once again, I would like to thank all of them who liked, enjoyed and

have recommended Tea-time with Testers. I take it as a receipt of the

hard work that our team is doing.

Well, before you scroll down, let me introduce our new team member

Mr. Anurag Khode, who happens to be a passionate tester like us and

also a well-known brain behind www.mobileappstesting.com &

www.mobileqazone.com. Considering the future, scope and challenges

in the field of Mobile Apps Testing, Anurag will be guiding you all
through his expertise around said area.

I must not forget to update you regarding “Teach-Testing” campaign

that we have started. We are getting some suggestions, opinions,

guidance across the globe and we are committed to consider them.

However, I appeal you to spend few minutes on Poll that we are

conducting and cast your vote. I look forward to make this campaign a

huge success by support and guidance from you all.

As usual we have given our best to offer you the best articles in this

issue too. I appreciate the efforts that our writers have taken by

devoting their valuable time and thank them all.

Well, that is all for now. Let‘s meet again in our next issue.

Feel free to drop me a note for any discussion around Tea-time with

Testers.

Enjoy Reading! And have nice Tea-time!

 Yours Sincerely,

Lalitkumar Bhamare

mailto:teatimewithtesters@gmail.com?subject=Editotial%20and%20Adevertising%20Enquiries
http://www.mobileappstesting.com/
http://www.mobileqazone.com/
http://www.teatimewithtesters.com/#!teach-testing
http://www.facebook.com/fndlalit
http://twitter.com/Lalitbhamare
mailto:fndlalit@yahoo.co.in?subject=Editorial Inquiry

 www.teatimewithtesters.com June 2011|3

 topIndex P Quicklookfinal index

Six Impossible Things Before Breakfast -14

Esprit de corps: From Adversary to Ally- 18

Does ATDD= Waterfall? - 22

Learning to Communicate Better with Programmers

-28

Increasing Test Effectiveness with affordable

Custom Tools -31

Mobile Apps Testing:- Need, Challenges and

Opportunities - 34

Testing Intelligence: Testers !! Know Your Business!

- 36

Landscaping: A Technique to aid Understanding – 40

 www.teatimewithtesters.com June 2011|4

I mage: www.bigfoto.com

 QAI boss for NITPPF workshop

Ahead of the National IT Public-Private Partnership, NITPPF,

organized by the Information Technology Association of

Nigeria, ITAN, the Chief Operating Officer of QAI Global,

leading global consulting and workforce development

organization, Mr. Tom Ticknor is expected to facilitate the IT

industry quality awareness & improvement workshop during

the event slated this month in in Benin, Edo State.

The workshop, acording to ITAN is to create awareness on the importance of quality control as a

means to improve operations and develop practices that boost regional competitive advantages which

ultimately contribute positively to the GDP as well as how good quality products and services are one

of the primary distinguishing factors that impart a competitive edge to any organization.

The team from QAI will be covering a variety of topics including: Quality and Process Concepts,

Software Testing and Reviews, Metric and Introduction to Quality Models like CMMI, ISO and Six

Sigma. The quality awareness/improvement workshop, ITAN said will hold on the first and third day of

NITPPF 2011.

http://www.bigfoto.com/

 www.teatimewithtesters.com June 2011|5

QAI is a leading global consulting and workforce development organization addressing ―Operational

Excellence‖ in knowledge intensive service organizations. They work with majority of the top IT/ BPO

companies, including about 2/3rd of the top IT/ ITES-BPO companies in India, by providing

benchmarking, certifications, assessments and other Operational Excellence enabling services in the

areas of CMMI, PM, Six Sigma, COPC and Performance Improvement.

Credits - Emeka Aginam for Vanguard

Now there is Testing Puzzle in Bug-Boss

Challenge! Are you Ready?

Scroll down to our Testing Puzzle Page and claim

your Smart Tester Of The Month Award!

http://www.vanguardngr.com/2011/06/qai-boss-for-nitppf-workshop/

 www.teatimewithtesters.com June 2011|6

 It’s definitely going to make the difference!

 Know More

 Click here To Cast Your Vote and Send Your Ideas!

Do you think that Software Testing should be

taught comprehensively in engineering colleges

as well as a separate course under universities?

http://www.teatimewithtesters.com/#!teach-testing
http://www.teatimewithtesters.com/#!teach-testing
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com June 2011|7

 The Golden Key (Part 1)

"One's first step in wisdom is to question everything—and one's last is to come to terms with

everything."—Georg Christoph Lichtenberg

My Golden Key is a close companion to my Wisdom Box,

because I cannot acquire wisdom without the risk of traveling

to unexplored realms. The Golden Key represents my ability to

open up new areas for learning and practicing, and also to

close them if they don't fit for me at this time. Without my

key, my consulting would become narrowly focused, or

focused on areas in which I was no longer interested.

Nosy But Nice

For some reason, I've always had a fully functional Golden Key. Perhaps I was given this key by my

father, who didn't pretend to have an answer to every question, but always asked me back, "How would

we find that out?" Or, "Where would we go to get that information?" And sometimes we explored things

together. In any case, if he did come up with an answer, he never just popped it out, whole. Instead,

he always opened up his chain of exploration for my inspection.

 www.teatimewithtesters.com June 2011|8

Like my father, I'm a nosy guy, and I don't just mean the prominent proboscis I inherited from Harry.

I investigate things I don't understand, and stop investigating when I'm no longer learning. Probably,

that's why I've written so many books—researching a book is my standard excuse for exploring, or

prying, or snooping.

Lots of my books started with a question—the best ones always did. Some actually have questions for

titles—Are Your Lights On? and What Did You Say?.

Others had questions behind them, Golden Keys that opened doors for my mind:

• My doctoral research, Experiments in Problem Solving, asked, "Where do

'aha' experiences come from?

• An Introduction to General Systems Thinking asked, "What are the general

laws of thought that apply to virtually every complex situation?"

• The Psychology of Computer Programming posed the query, "What are the

mental and emotional processes underlying the act of programming

computers?"

• When Don Gause and I wrote Exploring Requirements, we wanted to

know, "How do we find out what people really want?"

• And the four volumes of my Quality Software Management series are all based on the question, "How

do managers affect the quality of software produced under their stewardship?"

In fact, this article, itself, started with the question, "What are the most powerful tools that all

successful consultants need?"

Polanski's Pointer

Well, writing's not for everyone, but there are other ways of using your Golden Key. Once I knew

something about programming computers, I was often asked to help people find errors in their

programs. At first, I didn't have much wisdom about "debugging," as this activity is sometimes called,

and I wasted a lot of time following false clues.

 Finally, one rainy December morning in the District of Columbia, my eyes were opened. We were

working to a hard deadline—a scheduled rocket launch—and one of the programs just wouldn't work

properly. Wally, one of the programmers, called on me to help, saying that they'd worked all night and

hadn't located the problem. I asked him what they had already figured out.

"One thing I'm absolutely sure of," Wally said, "is that the bug can't be in the Red program. I've

checked that one six times. And Sarah checked it, too."

So, taking him at his word, I plunged right into the Blue, the Green, and the Yellow programs—and

never came out. That is, I didn't come out for lunch, and I didn't come out for dinner—both significant

events in my working day. Finally, at around 9:30 in the evening, my stomach told me that Polanski's

Deli next door was going to close in half an hour, so I took a break. When I got there, Polanski's crew

had already cleaned up for closing, so I asked Julie, the counter waitress, for a take-out corned beef—

extra lean.

 www.teatimewithtesters.com June 2011|9

"All our corned beef is extra lean," Julie insisted while assembling the sandwich.

"Hey, Polanski, bring me one of those take-out bags?"

"Harold must have put 'em away," Polanski shouted from the back. "Do you know where he put them?"

"No, but I'm sure they're not in the cookie cabinet. I already looked in there."

"Thanks," Polanski shouted back, and soon emerged from the kitchen proudly

displaying a brown paper bag.

"Where'd you find it?" Julie asked. "I can never find stuff that Harold puts

away."

"They were in the cookie cabinet."

I was dumbfounded. "Why did you look there?" I asked, "when she told you she

was sure they weren't there."

"Precisely," said Polanski. "When Julie's that sure it's not there, it means that she believes it's not

there, so she probably never looked there. So, it's probably there."

"Oh," I muttered. I grabbed my sandwich, paid the check, and rushed back to the office.

Wally was still studying the errant code. "Give me the Red listing," I insisted.

"Why?" Wally questioned, but handed me the listing anyway. "We know it's not there."

"Precisely," I said, and proceeded to find the bug in about two minutes.

And that's how I learned another way to use my Golden Key, a technique I call Polanski's Pointer:

If they're absolutely sure it's not there, it's probably there.

Polanski's Pointer tells me what doors to open, and a corollary tells me which ones not to bother with:

Don't bother looking where everyone is pointing.

After all, if they knew the right place to look, they wouldn't be asking a consultant to help them find it.

And there's another version of Polanski's Pointer, one that I apply when I find myself "pointing" away

from some subject. Whenever you believe that a subject has nothing for you, it probably has something

for you.

Why? Well, if it's a subject, somebody is interested in it, so there's definitely something about it

capable of arousing human interest Therefore, if I don't see anything interesting about it, I must not

even know enough to know why it can be interesting. That's a sure sign that I'll learn something if I

open that closed door.

 www.teatimewithtesters.com June 2011|10

The Golden Lock

I have a trick for applying this personal version of Polanski's Pointer. I search for someone who is

genuinely interested in the subject, then ask them for the one reference they would recommend to

someone who knows nothing about the subject. This always works—unless I find someone who doesn't

really love the subject, but is just making a living at it. There's a difference.

The reason there's a difference is that most people don't make full use of their Golden Key, and thus

it's too easy for them to get stuck in a field that bores them. I call this phenomenon the Golden Lock:

I'd like to learn something new, but what I already know pays too

well. The Golden Lock is a close cousin to the Golden Handcuffs

corporations use to shackle their most valuable employees. But

unlike the Handcuffs, the Lock is self-imposed, self-designed.

Being self-designed, it's a far better trap than any Handcuffs

could ever be, and only the Golden Key can unlock it. The "pay"

for wearing the Golden Lock need not be money, though that's

surely common among consultants. Quite frequently, the pay is

prestige, or the envy of ones colleagues, or the gratitude of ones

clients. Whatever the pay, it's not easily dispensed with—and

thus the Lock.

That's why the Golden Key has two aspects—one that opens doors, and one that locks them again. I

like to think my Golden Key is also very good at locking doors, but compared to my wife and partner,

Dani, I'm a novice. Dani is particularly good at locking doors and moving on, having mastered several

different areas of human knowledge in succession, and become a highly successful practitioner in

each—teaching piano, doing anthropology, consulting to large organizations, and training professional

dog trainers. Over the years, I believe I've learned Dani's secret rule, which I call Dani's Decider:

When you stop learning new things, it's time to move on.

Dani's Decider is one of the most powerful secrets of consulting. Why? Consultants are hired for

knowing what others don't know, so a consultant who stops learning soon decays in value. On the

other hand, the less you know, the less likely you are to threaten your clients with change, so maybe

you can become a "safe" consultant—one who offers no danger of changing the client's status quo.

Lock Language

We know that consultants can be threatening to their clients, especially if they're adept with their

Golden Keys. That's why we often find our clients using "lock language" to keep us from opening their

closets and seeing their real or imagined skeletons.

Some lock language is very direct. I've had client's invite me to examine their organizations, then tell

me up front, "These are the things we don't want you to look at."

And, sometimes, when I apply Polanski's Pointer and say I want to look into X, they say, "No, I forbid

you to look at X."

 www.teatimewithtesters.com June 2011|11

"Forbid" is rather direct lock language, but those with less authority tend to be more subtle. Possibly the

most common lock phrase I hear in my work is "They won't like it if you ask about X."

Naturally, it's never very clear who "they" are, so I always counter with, "Oh, I didn't know that. Can

you identify who 'they' are, so I can go ask their permission?" Generally, the speaker can't or won't

identify a specific person, but if they do, I simply go to the person and tell them I'd like to ask about X.

An even more subtle way of locking doors is built into us by years of schooling— schooling that teaches

many of us not to ask "too many" questions. Certainly I can understand why a teacher burdened with a

large class of obstreperous children would want to restrict the number of questions per student, but

these conditions don't apply to obstreperous consultants. So, when clients show non-verbal signs of

impatience with my questions, I simply say, "Am I asking too many things all at once? I can come back

if this is too much for now."

Of course, part of what makes my Golden Key golden is my skill in getting information that's behind

locked doors—and getting it without provoking locking reactions in my clients. If I've done a good job of

entering the client's system, I'm not likely to trigger any forbidding. Or, at least, I've avoided making

contracts with clients

Whose locks are going to make it impossible for me to do what they're paying me for.

And, I've learned not to ask endless streams of questions. I don't need them, because I have so many

other ways of getting information, as I've described in several of my books. So, I don't get much hard,

direct forbidding, but if I'm not careful, my clients can lull my Golden Key to sleep.

Lullaby Language

Late one summer, I was called in to help an IT client learn to work better with their customers. I don't

ordinarily travel in the summer, but this sounded like a real emergency, one where I had to be on the

scene to calm down both parties. The customers were enraged with the IT manager because a new

system wasn't ready on time, and IT manager was enraged with the customers because they hadn't

delivered some essential information as promised, thus causing the entire project to lag its schedule by

four months.

It was over 100 degrees outside, but even hotter inside—emotionally. Jeff, the IT manager, would

smack the table and say, "You promised that the component pricing data would be in our hands by

February first."

Penny, the catalog manager, would give him a steely-eyed glare and mutter, "We never promised that.

Never!"

"Yes, you did!"

"No, we didn't."

 ... to be continued in Next Issue

 www.teatimewithtesters.com June 2011|12

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of The J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

More Secrets of Consulting is another book

by Jerry after his world famous book Secrets of

Consulting.

This book throws light on many aspects, ways

and tools that consultant needs.

 ―Ultimately, what you will discover as you read

this book is that the tools to use are an

exceptionally well tuned common sense, a

focus on street smarts, a little bit of technical

knowledge, and a whole lot of discernment‖,

says Mr. Michael Larsen.

More Secrets is definitely useful not only to

consultants but to anyone for building up

his/her own character by implementation of the

tools mentioned in day to day life.

Its sample can be read online here.

To know more about Jerry‘s writing on software

please click here .

TTWT Rating:

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://mkl-testhead.blogspot.com/2011/03/book-review-more-secrets-of-consulting.html
http://www.smashwords.com/extreader/read/32199/1/more-secrets-of-consulting
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com June 2011|13

Speaking Tester’s Mind

 www.teatimewithtesters.com June 2011|14

Fiona

Alice laughed. “There’s no use trying,” she said: “one CAN’T believe impossible things.”

“I daresay you haven’t had much practice,” said the Queen. “When I was your age, I always
did it for half-an-hour a day. Why, sometimes I’ve believed as many as six impossible things

before breakfast...”

―Aha!‖ I thought, ―Then you must have worked on software projects!‖

Waiting for a bus a couple of years ago, I began listing software project lies. The exercise kept me

nicely occupied until the bus arrived and through most of the ensuing ride. I ended up with an
astonishing thirty categories of lies.

In case you think that sounds like an improbable number, I‘ll begin by outlining the parameters I set.
First and foremost, I had personally to have heard the lie told one or more times. Each lie or category
of lies had to be material to a software project, though it could have been told to make a sale before a

project began or to describe a project after its end. Each lie had to be relatively common in the
industry—or at least not rare. A lie had also to be significant to a project: to have influenced
perceptions and/or decisions. And finally, I excluded malicious lies intended to subvert or sabotage an

individual on a project, though I have both heard and (on one unhappy project) been the object of
some of these kinds of lies.

Reviewing the list as I prepared to write this article, I immediately added a couple more.

The (depressing) reality is that in a career spanning three decades, I cannot recall a single project

where there was not at least one significant and material lie. I thought I remembered consulting on one
very nice-minded and squeaky-clean project, but then I recalled the programme manager telling a PM,

―We‘re pushing the date of your project out, but it‘s vital that you do not tell your teams. Everyone
needs to believe in the original date so they don‘t slack off.‖

 www.teatimewithtesters.com June 2011|15

Does the number of lies on my list horrify you? Am I exaggerating? Or could it be that we have all
heard so many lies so often on software projects that we‘ve become desensitized? I mentioned the
―don‘t tell the team‖ lie to a notably honest programmer friend, and he said, ―Well... we hear that one

so often it almost doesn‘t qualify as a lie.‖

―Right‖, I said. ―And how is it different from those other oldies but goodies:

‗We‘re running 3 weeks behind, but it won‘t impact the end date.‘

 and

‗We just need to work a couple of weekends to sort out all the quality problems.‘‖

(A project manager I once worked with used to say, ―Show me where on your project plan it says ‗A

miracle happens here‘!‖)

Perhaps you‘ll say team lies like this aren‘t deliberate lies—that the techies or the testers are just

being over-optimistic, persuading themselves that the commitments they‘re making aren‘t patently
impossible. We‘ve all done it, haven‘t we? And yes, we probably have. But self-deception is still
deception. A lie to one‘s self is no less a lie.

How far really are all those ―we‘re going to make it‖ team lies from the infamous bait-and-switch
scam some consulting firms routinely practice, or the deliberate underbids put forward to make a

sale? (―We‘ll more than make it up in change requests,‖ the sales people say.)

Lying of various kinds is quite common on software projects. Past the sale, the lies often continue

with management arbitrarily slashing estimates and imposing upfront commitments to deliver fixed
scope with fixed staffing within unachievable timeframes and budgets.

On projects that start out with fraudulent commitments, lies are propagated in the hotbed of fear.
Managers demand certainty from people who are often barely in a position to give better than rough
estimates, plus or minus fifty percent. Programmers and testers make desperate commitments they

know they can‘t really achieve, and then, week after week, over-optimistically report their progress
and status (lie). People lie—or avoid telling the truth, which is pretty much the same thing—to deflect
blame and to get management off their backs, hoping to put off well-founded suspicions that they

aren‘t going to deliver the impossible, and anxious to get on with productive work.

How many so-called ―troubled‖ or ―failed‖ projects would actually have gone much over time and over

budget if they hadn‘t started out committed to fiction?

We may think lies like these are symptomatic of big waterfall projects, and indeed that is often true.

But Agile projects are not immune to deception. A quick scan of the Agile blogosphere reveals plenty
of discussion about impossible project or sprint commitments made by stakeholders outside the
project teams or even by the teams themselves.

The rapid feedback built into an Agile process leaves much less room for practitioners to hide
impossible estimates or falsify status. But teams calling themselves Agile have been known to play

games with the concept of ―done‖, redefining it to meet the actual state of the work when they
haven‘t achieved their goals. Human nature is what it is, on Agile or waterfall projects.

It‘s a healthy sign, therefore, that two recent books by well-known and respected authors robustly

address the topic of dishonesty on software projects and by software practitioners.

 www.teatimewithtesters.com June 2011|16

The Dark Side of Software Engineering: Evil on Computing Projects,i by Johann Rost and Robert L.
Glass, is a survey of the bad things people do on software projects, plus some other software-related
evils like hacking and computer scams. The range of subjects means the book is a bit of a

hodgepodge, but it‘s a fascinating read. There‘s some numerical analysis I found less than compelling,
mainly because the samples are too small for the numbers to have real statistical significance. This

doesn‘t detract from the book overall, which has lots of good stories, qualitative analysis and
suggested remedies from which we can learn important lessons. Among other benefits, you can learn
to spot patterns of certain kinds of nefarious behaviour you may not previously have noticed on

projects.

 A nice counterpart to Dark Side is The Clean Coder: A Code of Conduct for Professional

Programmers,ii by Robert C. Martin (Uncle Bob, as he‘s known in the Agile world.) I doubt anyone will
be surprised to hear that Bob Martin comes out strongly against lying on software projects. You may
be surprised at how he defines lying, including that it‘s a lie to say you‘ll try to meet a date when you

already know you cannot achieve it. That advice alone is worth the price of the book. Martin also
emphasizes the importance of learning to say ―no‖—an essential skill for people who want to tell the
truth (one that Jerry Weinberg has been promoting and teaching for a long time).

Dark Side and Clean Coder are important for software practitioners of all specialities, including
testers. The subject of professional ethics is vital for us all. We need to learn to recognize and stamp

out lies and other ethical lapses on our projects—not just in other people, but in ourselves. These
books will help. It‘s a bonus that they are also good reads: engagingly written and full of good stories
we can relate to.

I don‘t know whether people on software projects are any more prone to dishonesty than the culture
at large. I do know that deception in varying degrees is common on software projects. It‘s a dirty little

secret we don‘t much explore, although it‘s an open secret in the business. I‘m glad to see that other
people are writing about it.

One of my articles on tester and consultant ethicsiii prompted a reader to protest that people can take
grave risks telling the truth on software projects, and in a tough economy truth may be a luxury some
can‘t afford. I believe that an expedient lie is the luxury we can‘t afford. Not for our professional

reputations, not for our projects, not for our self respect. I think most testers would agree.

Lying hurts software projects. How many projects have you been on where ―everyone knew‖ the

schedule was fiction? Everyone except management, that is, the managers having conveniently
forgotten they‘d set the project up for failure at the beginning. And perhaps those managers had
confidently told senior executives the fake schedule was all certain and wonderful—and now they‘re

running out of budget and running scared. So they put pressure on their teams.

Apart from the cynicism engendered by living a lie, software people do shoddy work under pressure.

Designing, coding and testing are all difficult work that requires a clear head. In my experience, the
projects where people lie the most produce the worst software.

Lying hurts people too. Every time I present at a conference on ―When a Tester is Asked to Lie‖,iv one
or two people take me aside and say, ―This is so timely. It‘s happening for me right now and I don‘t
know what to do.‖ Others tell me it has already happened to them, and it‘s a nightmare they don‘t

ever want to repeat. A test manager told me he‘d been fired because ―we don‘t think you‘re
comfortable lying to the customer.‖ (―Too right I‘m not!‖, he said to me.)

Yes, it can be risky to tell the truth when others are lying. It can also be unexpectedly rewarding. I

have more than once seen an unhappy project benefit from the act of a single tester or programmer

 www.teatimewithtesters.com June 2011|17

bravely stepping forward and saying, ―I‘m way behind. I‘m not going to make the schedule, and I‘d
like to explain why.‖ Sometimes that can be all that‘s needed to enable others to speak openly.
Though the ensuing discussion might be painful, it could lead to a realistic replanning exercise that

puts a project on an achievable path to recovery.

So why don‘t we just stop lying? We don‘t have to practice believing ANY impossible things before
breakfast. We don‘t have to convince other people to believe them.

I‘ve loved reading Alice most of my life, but I‘ve never taken the White Queen to be a role model.
Have you?

What lies have you heard on software projects?

Add to my list.

I‘ve written mostly in this article about schedule and

status lies, but my list of thirty-plus includes many other

types.

I‘ve put it on my blog at http://quality-intelligence.blogspot.com/ so

you can see the whole list and add your comments.

Can you add to the list?

Do you have experiences of project lies (or truth-tellings)

you‘d like to share?

Notes:

1 Lewis Carroll, Through the Looking-Glass (Kindle edition),

Chapter V.

2 Johann Rost and Robert L. Glass, The Dark Side of Software

Engineering: Evil on Computing Projects (IEEE Computer

Society, John Wiley and Sons, 2011).

3 Robert C. Martin, The Clean Coder: A Code of Conduct for

Professional Programmers (Prentice Hall, 2011).

4 I‘ve published 4 other articles dealing with the subject of

ethics, all on Stickyminds.com. Copies are also on the

Publications page of my website www.quality-intelligence.com.

Search for the titles:

 Sophie’s Choice (September 1, 2007)

 Deception and Self-Deception in Software Testing

(June 1, 2009)

 Negative Positive (February 8, 2010)

 No Compromise (June 21, 2010)

5 Besides the conference presentation ―What Price the Truth:

When a Tester is Asked to Lie‖, which deals with a specific

type of project lying, I also lead an experiential workshop on

the broader topic of ―Deception and Self-Deception in

Software Testing‖.

Biography

Fiona Charles teaches organizations to match

their software testing to their business risks and

opportunities. With 30+ years experience in

software development and integration, she has

managed testing and consulted on testing on

many challenging projects for clients in retail,

banking, financial services, health care,

telecommunications and emergency services.

Throughout her career Fiona has advocated,

designed, implemented, and taught pragmatic

and humane practices to deliver software worth

having—in even the most difficult project

circumstances. Her articles on testing and test

management appear frequently and she speaks

and conducts experiential workshops at

conferences. Fiona edited The Gift of Time, and

guest-edited ―Women of Influence‖, the January

2010 special issue of Software Test &

Performance magazine. Fiona is co-founder and

host of the Toronto Workshop on Software

Testing.

She can be contacted on Twitter

@FionaCCharles

http://quality-intelligence.blogspot.com/
http://www.quality-intelligence.com/
http://twitter.com/FionaCCharles

 www.teatimewithtesters.com June 2011|18

Team

When I married a Civil Engineer, I should have considered that I was buying into devoting a portion of

my conversation to storm water management. I also hadn't anticipated that driving down the road I

would glance over to see that look on his face gazing out into the passing scenery, analyzing the
concrete and asphalt. But then he should have been warned that I would repeatedly bemoan various
retailers' credit card authorization systems that are not PCI compliant or otherwise print odd data on

their credit card slips.

We analytical types engineer or otherwise, are an interesting mix. While we geek out about different

subjects, we still have that passion to gather details and apply some rigor to the system. Our computer
scientists and programmers also have their areas of absorption that diverge from our own. The great
task before us is finding a way to connect despite those variations and to find - or perhaps build -

common ground and avoiding the "us versus them" sentiment.

 www.teatimewithtesters.com June 2011|19

When I was younger, I was even more ignorant about what goes on under the hood of my car than I
am now. After an unfortunate incident with family van, I had the good fortune to meet one mechanic

who was purchasing the remains. He was very passionate about his area of expertise and excitedly
expounded on the restoration and improvements he would make to the vehicle, teaching me enough to

appreciate his excitement. Listening to him talk about the car produced an echo of his enthusiasm in
me that I would never have expected. Although we didn't initially have a common interest, I responded
to the joy in his expression and became engrossed in his plans and projects. It would be so easy to see

this man as the exception to the rule. Instead, he has given me a lasting appreciation for car
mechanics, who previously had been objects of suspicion when it came to recommending pricey
courses of action for car maintenance. I finally had an exemplar to break down my impression of this

group of people as "the other."

How do we move from that fear of the unknown to embracing

the new and novel? Part of the fear is admitting the gap in
our own knowledge. We are afraid that not knowing will lead
others to think we are weak or unworthy. We need to let go

of the compulsion to prove ourselves worthy adversaries and
instead move toward becoming worthy apprentices. In my
experience, software producers love to educate others,

sometimes vociferously! When I approach my co-workers as a
disciple to a master, they are often happy to elaborate on a
variety of subjects, often ones that are new to me. Never

underestimate the appeal of the uninitiated! As a developer,
wouldn't you relish the opportunity to form a tester in your
own image? When we absorb contrasting perspectives, we

become better testers with a wider variety of ideas about how to pursue quality on the current project
and in future projects. When we improve our technical understanding of the application under test, we
ask better questions that might improve more than just the software; we may even influence the

process.

One of the important things I work on every day is avoiding the ―us versus them‖ sentiment that may

once have been the norm between QA and developers. Although my development team has long been
pseudo-Agile, I am not embedded and so there is the opportunity to view each team as ―the other‖
and form opinions that way. Thankfully, I work with some great folks who want to produce high quality

software and who don‘t want false assumptions to get in the way of that. We‘re all rather likeable as
geeks go and try to play to each other‘s strengths. We choose to work together and we inspire each
other to do the job well.

How do we encourage our developers to open up to us in this way? We want our team to want to
produce high quality software and to avoid false assumptions that get in the way. We need to have

personal connections that soften the edges of our professional roles. We need to have a genuine
interest in the people around us so that we know them well enough to play to each other's strengths,
encourage each other to take calculated risks, and compensate for each other's weaknesses, learning

from our mistakes. We want to smooth any feathers ruffled by defect reporting and make our
constructive criticism more palatable.

We can start with the basic facts that might be listed in a personnel file: gender, age, birth date,
formal training, immediate family members, etc. Do we already have commonality here? People tend

to be drawn to others like them, so we may already be ahead of the game. Can we remember events
that matter to them (co-worker's birthday, wedding anniversary, welcoming a new child, loss of a
pet)? Perhaps we empathize with their current state in life (starting a new job, empty nester,

 www.teatimewithtesters.com June 2011|20

experiencing health challenges). We want to be thoughtful about and toward the people with whom we
spend so much time on the job.

From there, we can move on to look at their interests. Do we share any cultural shorthand? Or does
each of us create new opportunities for growth? When we allow ourselves to disrupt the daily routine

with less formal and more interactive pursuits, we produce opportunities to be vulnerable and to build
camaraderie and trust. When we can laugh together, we can break the tension of taking ourselves and
our roles so seriously. We can banter and bandy ideas about along with critiquing each other - and we

must invite feedback from the developers on our testing! We need to keep each other honest about our
needs so that we continue to work toward our shared purpose.

Gathering around the proverbial water cooler or eating together
provide us invaluable chances to exchange thoughts, discuss the
news of the day, clear the air of rumors, and many more benefits

that come from simple conversation. The better we know our group
members, the better we can serve each other. The most readily
available source of information about our co-workers is often

themselves. People tend to take advantage of openings to talk about
themselves, so give them what they want. Ask questions about the
things that occupy their minds. Get inside their heads and you can

get a better feel for how they think about problems. Give yourself
permission to venture outside your comfort zone. I welcome the
opportunity to get out of my routine. That‘s usually the best way to

get to know people. Civilly disagree. You will have a richer work life
and might even end up with some lasting friendships that merit

keeping in touch even when someone moves on to a different job.

For a while, my developers and I had scheduled a Munchkin card game tournament over the course of
many lunch breaks. After we burnt out on that game, many others followed, supplied by our resident

board game and card game enthusiasts. For years now, we haven‘t run out of options. Though I tend
to do well the first time through when they coach me enough to get the hang of things, I don‘t mind
being trounced by more experienced players. Perhaps beating me at board games makes my

constructive criticism more palatable? Either way, I don‘t have as many opportunities for gaming in my
personal life as I once had, so I enjoy it.

I think of myself as a people collector. I can't help talking to whoever crosses my path. Some of those
encounters change me for the better. I put in the time to show someone else that I value him or her
and people respond to being appreciated and respected for who they are. At the end of the day, the

social geek inside me relishes this merely for the fun of it all.

 www.teatimewithtesters.com June 2011|21

Feedback & Responses: May’11 Issue

Why Do People Happily Accept Poor Quality?

This question is important for testers to ask, and seek

answers. James Christie has done a fine job of laying

out a set of reasons based on Kakaonomics. Our job is

not to change people's attitudes about quality. Our job

is showing people exactly how some product behaves

(as exactly as we can). If they don't care about quality,

they'll ignore what we show them. On the other hand,

some people care too much about quality as they

define it. We don't need people pushing testers.

Testing and Management Mistakes: Causes

The previous article has a blaming flavor to it, but in

this article, Magnus the Manager's behavior seems

more super reasonable than blaming. In any case, it's

not taking Tim into account at all. And, of course, Tim

hasn't helped the situation by placating. But Tim's

behavior is not unreasonable, because Magnus has

power over him, so Tim fears what Magnus might do to

him. Markus Gartner's article makes a strong case for

why we need better managers in Testing.

The Joke's On You

Nathalie has given us some lightness, and argued for

lightening up in testing once in a while. It's a good

lesson and a fun read. I hope we have more jokes with

morals. Here's my contribution, the classic of all testing

jokes (with at least two endings):

A cop sees a drunk on his knees under a streetlight

and asks him what he's doing there. "I'm looking for my

keys," says the drunk.

The cop kneels down and helps him search, but finds

no keys. "Are you sure you dropped them here?"

"Oh, no," says the drunk, pointing up the street. "I

dropped them there."

"Then why are you looking here?"

ENDING 1: "Because the light's better here."

ENDING 2: "Because this is where I found them last

time I lost them."

If you can't see why this is a testing joke, you're in the

wrong business.

Test Cases in Agile a Waste of Time ?

This is a terrific article about Petteri Lyytinen's

philosophy of testing. It could be improved in two ways:

a. a more descriptive title

b. at least one example of what he writes down as the

result of his Iterative Test Development.

- Jerry Weinberg

Biography

Claire Moss has been testing software for over 7 years.

Although authoring a testing blog and article are new for

her, Claire has always had a passion for writing, which

might be a strange trait for a Discrete mathematician.

After working briefly as a software programmer during

college, Claire signed on as a quality engineer after

graduation.

When you find your calling, you never look back! Claire

continues to use her evil powers for good on the job and

on her blog: http://blog.aclairefication.com

Claire can be contacted on Twitter @aclairefication

Hi,

James Bach recommended your magazine at his Rapid Software

Testing course in Melbourne which I completed today. I look

forward to reading your insights and contributing where possible.

Best wishes,

Suzan Moses,

Melbourne, Australia

- - - - - - - - - - -

Dear Suzan,

Thanks for writing us. Getting recommended by Great Testers in the

community is our biggest honor and we consider it as a receipt of

the hard work that we are doing.

Feel free to send us your article. We would like to hear and publish

your thoughts around Testing.

Sincere Regards,

Editor

http://blog.aclairefication.com/
http://twitter.com/aclairefication
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982

 www.teatimewithtesters.com June 2011|22

ATTD

I realize I go on incessantly about what a revelation Elisabeth Hendrickson‘s ―Introduction to Acceptance

Test Driven Development‖ class was for me. I wanted to write about areas where I‘ve seen opportunities

to benefit from implement it. But first I‘d like to give some background of what I learned from this
course.

In a nutshell ATDD (Acceptance Test
Driven Development) involves
bringing every team member that will

touch a user story together at the
beginning of a sprint to discuss the
story to outline acceptance criteria

and attain a shared understanding of
the stakeholder‘s vision.

There is a lot more to ATDD to discuss

however for the sake of brevity I‘d like
to focus on the aspect that excited me

the most, story workshops.

http://www.qualitytree.com/company/elisabeth/

 www.teatimewithtesters.com June 2011|23

In a story workshop every team member who will touch the user story is gathered to discuss details of
the story. One person facilitates the discussion, and after the story is described, testers and
programmers ask questions and share concerns with the stakeholder. The end goal is to have shared

understanding through examples of the stakeholder‘s expectations. Programmers might ask if an
implementation strategy is acceptable, testers almost certainly will discover areas of risk in the story‘s

description.

For the purposes of this class Elisabeth ran us through a few mock story workshops during which Dan
Snell volunteered to play the part of the stakeholder. This was a brilliant way to teach by doing. We

uncovered many interesting aspects of the story workshop that were best illustrated by allowing the
group to collaborate on this mock story.
Some of the things we uncovered may seem rudimentary and obvious. When defining acceptance

criteria it‘s important not to take these important details for granted. Other things were less predictable.
As testers in the room began to come up with test cases Elisabeth wrote them down on her flip chart.
Some test cases were too deep to merit being included in basic acceptance. But mostly the test cases

were simple. It may seem like a small thing to stand up and say ―If the user inputs a date which occurs
in the past, and it still posts a listing, this story fails acceptance.‖ until this seemingly obvious
assumption is immediately shot down by the stakeholder in the room. She might say ―I never thought to

write that case into the story, but now that you mention it, I want it to post outdated listings.‖

Maybe adding this feature is so involved that the engineer in the room pipes up and says ―If you want
me to code something that will allow an expired listing to be created it will conflict with existing code and
require a significant refactor.‖ Maybe the stakeholder demands this feature. She can most certainly have

it, but the effort to create and test it will drive it well out of scope for the story. In this case a new story
is born and we move on to wrapping up the story in question.

http://testobsessed.com/
http://twitter.com/#!/dsnell
http://twitter.com/#!/dsnell
http://testobsessed.com/
http://sailingtheseasofbs.files.wordpress.com/2011/05/atdd2.jpg

 www.teatimewithtesters.com June 2011|24

One of the testers in the front row actually exclaimed in mock-frustration ―I don‘t care it‘s your product!‖

This simple story resulted in a lot of discussion. Elisabeth was flipping that flip chart and taping paper to

the wall as quickly as we were defining criteria. In the end we felt like we had achieved a shared
understanding of what the stakeholder wanted to get from the story. Every boundary we could think of

at the time was addressed and accepted or rejected by the stakeholder. This didn‘t mean the story was
chiseled in stone, but I believe by having the story workshop we significantly reduced the odds that
changes would be needed. Or if changes were needed it would not be due to a lack of communication. I

would imagine that this understanding would reduce the amount of discussion necessary later when
changes are needed.

During sprints I see a need for this kind of shared understanding. I find issues when testing that are not
bugs but might be areas that might confuse a user.

I always take these concerns to the stakeholder and sometimes they tell me they are perfectly happy
with the story the way it is. But sometimes they decide to accept my suggestion and make a change.
When that happens the dev has to double his effort. He now has to remove what he did and replace it

with the change. I think this is where a team pays the cost of not having story workshops.

Alternatively a programmer while trying to implement something defined in a wire frame or a user story

might discover something unforeseen that requires diverting from the defined criteria. I see this
sometimes in story notes (e.g. ―This story is ready to be tested, as per my discussion with (the
programmer) these changes to the user story were made.‖

Of course it‘s hard to quantify that cost. Story workshops are definitely expensive. A complex story
workshop can take hours to wrap up. Lean/agile methodologies abhor rigorous documentation and

http://testobsessed.com/
http://sailingtheseasofbs.files.wordpress.com/2011/05/atdd31.jpg

 www.teatimewithtesters.com June 2011|25

heavy process. This can make story workshops a tough sell. How does one explain that we‘re not
proposing to create a tome of specifications for each story. We‘re not trying to revert to a waterfall
process. We‘re not slowing the process down with this story workshop, ultimately we‘re trying to speed it

up. Much like test driven development it seems like a lot of overhead at the start of the project but I
suspect, like TDD, the end result can be increased throughput and improved quality.

There is a lot more to ATDD than the story workshop I‘ve described here and as I learn more about
those aspects I‘ll share them in this blog. In 10 days or so I‘ll be taking what I‘ve learned and holding
my first mock story workshop with my product and development teams. Hopefully, despite having taken

her class way back in October, I do Elisabeth justice. I am eager to hear other people‘s experiences with
this process and thoughts about this post. Please comment and discuss, as I still only have an academic
understanding of ATDD. I am very eager to hear others‘ real world experiences.

 Biography

After 8 years at WebTrends testing an enterprise level SaaS data

warehousing product which included building and maintaining a large

scale testing environment, Adam currently works as an "army of one"

tester for VolunteerMatch. VolunteerMatch is a national nonprofit

organization dedicated to strengthening communities by making it

easier for good people and good causes to connect.

Adam is a relative newcomer to the context Driven community and is

currently working to build a testing process for a project that is

transitioning to an agile/scrum methodology.

Adam has recently made a presentation at QASIG (March 2011). Its video streaming can be viewed

here. He can be contacted at adam.yuret@gmail.com or on twitter @AdamYuret.

A Voice on “Teach-Testing” Campaign!

Hello Tea-time ,

Here in Brazil the Education is the same. We don't have Software Testing as a separated course. We don't
learn Software Testing in Engineering Courses. So, we need to accomplish these courses and begin with MBA
or Postgraduate.

We could have separated subjects on these courses, preparing us to the world, instigating to learn more about
testing and bringing out better professionals thereby.

Thank you for the magazine and this initiative!

- João Paulo Percy, Brazil

http://testobsessed.com/
http://www.ustream.tv/recorded/13216508
mailto:adam.yuret@gmail.com
http://twitter.com/AdamYuret

 www.teatimewithtesters.com June 2011|26

  

 www.teatimewithtesters.com June 2011|27

In the School of Testing

 www.teatimewithtesters.com June 2011|28

lISA

Recently, my team decided we needed another tester. We discussed what qualifications we‘d like to

see in a. The programmers on our team said they wanted a tester with some programming experience.

This puzzled me, because on our team, though I and the other tester have a programming

background, the programmers do most of the test automation. Why do we need a tester who

understands programming? The programmers thought about this for a long time. Then they said, ―We

can communicate so much better with a tester who understands programming concepts‖.

Personally, I would be happy to hire a tester who is good

at collaborating with customers to understand

requirements, and who is an awesome exploratory tester.

But I understand my programmer teammates‘ viewpoint.

We use the Whole Team approach to software

development, including testing. Everyone on the team

takes responsibility for making sure all testing activities

are completed for each user story. This requires intense

collaboration. If a programmer feels that a tester doesn‘t

―speak her language‖, that creates a barrier.

 www.teatimewithtesters.com June 2011|29

Communication between testers and programmers is a two-way street. Since this article is in the Tea-

time with Testers, I‘m going to focus on what testers can do to enable better communication with

programmers. What can we testers learn in order to communicate more effectively with the

programmers on our development team? Here are some suggestions based on my experience.

Learn Programming Concepts

A common vocabulary always helps. I was a programmer back in the structured programming days.

I also programmed in a 4GL. This experience is useful, but I still had to learn object-oriented (OO)

concepts. I taught myself Ruby with the help of books and a kind teammate. Though our application is

written in Java, experience with coding Ruby helps me understand design discussions.

Years ago, I worked in a company where the QA group was separate from the

programming group, and they didn‘t want to help us with test automation.

The application was written in TCL, and I heard it was a good language for

scripting automated tests as well. I got a book and taught myself some TCL,

and started automating tests with it. Whenever I had a problem, the TCL

programmers were happy to help me with it.

If you have no programming experience, where should you start? There are so many resources, but

here‘s what I suggest. Get Everyday Scripting with Ruby: For Teams, Testers and You (Brian Marick,

2006). Work through all the examples, and you‘ll develop competency with Ruby, OO concepts, and

programming terminology. For some introductory object-oriented design knowledge, check out this

article by Dave Thomas and Andy Hunt, http://media.pragprog.com/articles/may_04_oo1.pdf.

Integrated Development Environment

There are many different IDEs, and plenty of personal preferences as to which are the best. I highly

recommend that you ask for the same IDE that is used by the programmers on your team. Install it,

and ask for help setting up the project for your team‘s source code. You‘re not going to write

production code, but you can use the IDE to look at the source code and (hopefully) unit tests. If you

do any test automation, such as GUI tests, you can take advantage of your IDE‘s features.

My first venture into an IDE was with Eclipse. At the time, a couple of programmers on my team used

it, and they helped me set up a project for the production and test source code. However, everyone on

my team eventually moved to IntelliJ Idea. This seemed harder to use at first, but here‘s the news – if

you are using the same tools as the rest of your development team, they‘re much more likely to help

you. Because I use an IDE, I can look at production code and even ask intelligent questions about it.

Ask a teammate to help you install an IDE and set up your project.

Database

Over my career, I‘ve always found that understanding the database design is essential, not only for

communicating with other development team members, but to do a good job of testing. I spent years

testing database software, so I‘m familiar with many different ones. Your team most likely uses some

relational database such as Oracle or MySQL. There are tools that can help you navigate the database

tables even if you don‘t have much SQL experience. For example, I use SQL Developer to retrieve

information from our Oracle database.

http://media.pragprog.com/articles/may_04_oo1.pdf

 www.teatimewithtesters.com June 2011|30

SQL is indispensable if your application works with a relational database, and it‘s easy to learn simple

SQL queries. Any motivated tester can develop competency in SQL quite rapidly. We hired a tester who

didn‘t know SQL or Unix, but since he was teaching himself Ruby, we trusted that he was motivated to

learn them quickly, and we were right. If you need some grounding in SQL, check out online tutorials

such as http://www.sqlcourse.com/index.html and http://www.w3schools.com/sql/default.asp .

Maintaining Test Environments

Large companies have entire organizations devoted to maintaining all the development and test

environments. In smaller ones, such as my own, testers need the skills to maintain their own test

environments. Depending on your situation, this could mean Windows, Unix or who-knows-what. Your

willingness to maintain your own test environment, and control what gets deployed there, is the most

important factor. Learning some basic administrator commands isn‘t difficult. You can find plenty of

introductory tutorials online, such as http://www.ee.surrey.ac.uk/Teaching/Unix/. There are also

classic books including Unix in a Nutshell (Arnold Robbins, O‘Reilly, 2005)

Domain Knowledge

We can‘t be effective testers without understanding the domain. Programmers need to know the

domain too, but they are so focused on getting each piece of functionality to work, they often lack time

to see the larger view. Testers tend to be ―big picture‖ people. Spend time understanding all the

business problems, and you‘ll be able to add much more value to your programmers‘ efforts.

Be a Valuable Tester

If you can collaborate well with programmers on your team, you have a big advantage over testers

who work in isolation. Make time to understand basic programming concepts and your product‘s overall

architecture. Learn skills that let you manage your own test environments. Learn your business domain

so you can help your teammates provide the right business value.

Naturally, you don‘t forget your valuable testing skills. The programmers on your team can help ensure

you have time for exploratory testing by ensuring adequate automated regression test coverage. You‘ll

help the programmers both by finding issues in their code, and by helping them to better understand

customer needs. When the whole team works to ensure all testing activities are planned and executed,

we all enjoy our work more and can be proud of the software we deliver.

 Biography

Lisa Crispin is the co-author, with Janet Gregory, of Agile Testing: A Practical

Guide for Testers and Agile Teams (Addison-Wesley, 2009), co-author with Tip

House of Extreme Testing (Addison-Wesley, 2002) and a contributor to Beautiful

Testing (O‘Reilly, 2009). She has worked as a tester on agile teams for the past

ten years, and enjoys sharing her experiences via writing, presenting, teaching

and participating in agile testing communities around the world.

Lisa was named one of the 13 Women of Influence in testing by Software Test

& Performance magazine. For more about Lisa‘s work, visit

www.lisacrispin.com.

Lisa can be contacted on Twitter @lisacrispin .

http://www.sqlcourse.com/index.html
http://www.w3schools.com/sql/default.asp
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://www.lisacrispin.com/
http://twitter.com/lisacrispin

 www.teatimewithtesters.com June 2011|31

david

―Imagination is more important than knowledge. For knowledge is limited to all we now
know and understand, while imagination embraces the entire world, and all there ever
will be to know and understand.‖—Albert Einstein

As with any profession, testing has both a fun and tedious side. Creating test strategies and

exploratory testing are very enjoyable and intellectually challenging activities, while doing manual
setup and manually executing scripts are not. Most of the test automation efforts have focused on
automating test scripts and automatically checking the results, but there are many other useful

instances of automation.

In this article I present several examples from my tool smything experience. While none of them may

be directly applicable to your situation, I hope that they will inspire you to look for opportunities
where custom-built tools can make your work more enjoyable.

Speeding up Sanity Tests

At one of my engagements I observed the QA team do a fair amount (about two person days worth)
of scripted manual testing for each patch and minor release. This sanity testing effort happened
every three weeks on average. When I asked about the effectiveness of this exercise I was told that

the last time any bug was found using this testing process was about two years ago. This seemed
rather expensive, but the team was adamant about keeping this process because the memories of
delivering buggy patches were still fresh in their mind.

This manual testing was in addition to many thousands of automatic tests that ran for each build, but
the key was that testers wanted to see the software work with their own eyes. The solution we

implemented consisted of Selenium/WebDriver automation of all the manual scripts -- we only
automated the steps, not the results checks. For each transition in the UI we took a snapshot of the

 www.teatimewithtesters.com June 2011|32

screen and wrote it into a file organized in such a way that all of the snapshots for each test were in
a separate directory.

This greatly sped up the sanity testing for each release; all we had to do was to look through the
snapshots to convince ourselves that no serious badness had occurred. The time we saved was put to

better use by performing exploratory testing based on the specific changes documented for each
release.

Improving Reports Testing

Later that year I was assigned to test the reports feature. The setup was as follows: reports were

produced via a third-party tool and ran in a separate server that talked directly to the database
server. There was only one Report Analyst for the entire company — needless to say he was a very
busy guy. Setting up the reports server when the reports configuration changed was tedious and

error prone, so testers always put off reports testing to the end of the release cycle. Thus reports
were always late, dreaded by testers and often had to miss the main product release and shipped
separately.

I started to look for opportunities to apply automation to fix some of these pains. First I looked at
automating the checking of the final report. This was a non-starter because the report UI was using

copious amounts of custom JavaScript and was not amenable to web automation tools such as
Selenium/WebDriver.

To establish testing priority, I examined the history of the testing effort in this area which has been
ongoing for several years. It was obvious that most of the bugs were related to schema drift, but
there was no easy way to determine which reports were affected by schema changes because report

templates used a custom format to represent the data model.

Then it hit me: the reports server probably has diagnostic logging capability to trace the SQL that it

sends to the DB server. Sure enough, after a quick search through docs, I was able to see the
generated SQL.

Next I ran each report by hand to capture the generated SQL for the most common scenarios. With
SQL in hand, I created plain old JUnit tests whose sole purpose was to break when the DB schema
changed. These tests ran in a few seconds and I was allowed to check them into the main continuous

integration server suite. Now when one of these tests broke, we could disable it and file a bug
against the reports component.

Failed tests notified the Reports Analyst about upcoming work much earlier in the cycle and were
able to schedule his time much better. On the testing side, I wrote a script to deploy the reports
server using a single shell command. With the tedious and error-prone setup eliminated, testers were

happy to do exploratory testing as soon as the new reports were checked in. When the bug was
fixed, we replaced the SQL string in the JUnit test and re-enabled it.

Fixing the Build

This last example is perhaps the most bizarre. I started working as a QA engineer for a company that
produced an enterprise product where the user interface was heavily customized by the customers.
The UI source code was shipped along with the product. Half of the customers were using Java; the

other half were using C#. When I arrived, the team was using a free Java to C# translator to write
the system in only one language. This particular translator was not designed for repetitive use in a

 www.teatimewithtesters.com June 2011|33

continuous integration environment. It did not even produce C# that was 100% correct and, after
each translation cycle, an engineer had to manually fix the missing parts.

The translator took about six hours with our code and then the engineer usually spent a few more
hours. Needless to say this approach could not scale and was not Agile at all. This state of affairs

really bothered me and I wanted to find a fix, but writing compilers was not part of my background
then. Luckily I have an outgoing personality and I am not afraid to ask for help from other engineers.
Several solutions were offered but seem too expensive to implement for our budget.

Then one day over lunch an engineer suggested that we try the java compiler that is part of the
tools.jar library that comes for free with the Java language. This was our breakthrough as we learned

that it contained at least 70 percent of our solution and, most importantly, it was rock solid, having
been tested by thousands of developers over many years.

With this approach we were able to finish the project in about four months and translate our entire
code base in under four minutes with 100 percent accuracy. The build was fast again and we could
get back to our normal work.

If you are a tester and you notice that you are doing boring and repetitive work, or the system is
hard to setup for testing, don‘t despair. Talk to your programmers (and managers where

appropriate). Programmers love to solve problems and chances are good that you will get your tools
built in short order.

Testing should be a fun and creative activity. Demand it!

Claim ur S.T.O.M. Award.

Jump on to Page 51

Biography

David Vydra has been building software since

1987 and has been a practitioner of the Agile

style since 1998. He has been an application

developer, tester and tools builder with some of

the top companies in the Bay Area.

His current interests focus on Agile Testing,

Executable Examples, Developer/QA collaboration

and building tools to support

complex continuous integration scenarios and

exploratory testing.

David's blog is http://testdriven.com & he can

be reached on Twitter @vydra .

http://testdriven.com/
http://twitter.com/vydra

 www.teatimewithtesters.com June 2011|34

Mobile Apps Testing: Need, Challenges and Opportunities

The world today can surely experience the boom of

Mobile arena. From feature phones to Smart phones

mobile handsets are entering into market like never

before.

According to Gartner, 428 Million Mobile

Communication Devices Sold Worldwide in First

Quarter 2011, a 19 Percent Increase Year-on-Year.

Manufacturers, Carrier Platforms are coming up with

their own mobile application stores with hell of free

and paid application. From mobile games to

business applications and from entertainment to

LBS applications mobile application stores are

having applications from all horizons.

Who is Anurag?

Anurag Khode is a Passionate

Mobile Application test engineer

working for Mobile Apps Quality

since more than 4 years.

He is the writer of the famous blog

Mobile App Testing and founder of

dedicated mobile software testing

community Mobile QA Zone.

His work in Mobile Application testing has been well

appreciated by Software testing professionals and UTI

(Unified Testing Initiative, nonprofit organization working

for Quality Standards for Mobile Application with members

as Nokia, Oracle, Orange, AT & T, LG Samsung, and

Motorola).

Having started with this column he is also a Core Team

Member of Tea-time with Testers.

http://www.mobileappstesting.com/
http://www.mobileqazone.com/

 www.teatimewithtesters.com June 2011|35

Over 300,000 mobile apps have been developed in last three years and apps have been downloaded

10.9 billion times. But with the opportunities in this market the competition is also getting much

tougher day by day. Just to add to the fact that 1 in 4 mobile apps once downloaded are never used

again. So there is no doubt that in order survive in this market, Mobile Developers needs to come up

with good ideas and superior quality of Mobile applications and thus, here “Mobile Application

Testing” comes in the picture. Mobile Application Testing is the new area in the field of testing.

Talking about the challenges I would like to emphasize that Mobile Application Testing challenges are

somewhat interrelated but little different for Mobile Developers and those for Mobile Testers. However

before indulging directly in to Mobile Application testing we should know the real challenges which

community of Mobile developers is facing.

Challenges in Mobile Application Testing for Mobile Developers/Industry:-

1) Thousands of Mobile Handsets: - For mobile developer it is one of the biggest challenges
that he may ever face. In order to make a mobile application, one needs to be very sure about
the devices he/she is targeting. According to a research, 1388.2 million handsets were sold in

year 2010. These devices are of different screen sizes, input methods (QWERTY, touch, normal)
with different hardware capabilities. Knowing the fact that testing on every device is not
possible and feasible at all, the diversity in handsets is a big challenge for Mobile developers.

2) Different Mobile Platforms/OS: - There are different Platforms/OS currently present in the

market. Android, IOS, BREW, BREWMP, Symbian, Windows 7, Blackberry (RIM) and so on.

Diversity in mobile platforms, different OS versions, and platform limitations make it a bit
difficult and challenging for developing mobile apps and so for testing them. There might be
chance of inconsistency in terms of functionality across multiple devices of same platform and

every platform may have some limitations.

3) Different Mobile Carriers/Manufacturers:- There are different mobile carriers in the market
and every manufacturer may have some norms for the mobile applications if that application is
coming preinstalled on the device. Verizon wireless, AT & T, T-Mobile, Orange, Docomo, Airtel,

Vodafone, Reliance are some of the carriers. Please note that Mobile developers here means
entity (may be any organization) or a person developing the mobile application and not mere

the software developers.

I hope now you are clear about the need of Mobile Application testing and the real challenge this

industry s is facing for Mobile Application Testing. Here I have just tried to give insight of Mobile

Industry growth and Industry challenges as per Mobile Application is Concerned. As now I am

associated with ―Tea Time with Testers‖ we will be exploring all the area of Mobile Application Testing

from Mobile Apps Testing Challenges for QA‘S to Mobile Testing Strategies, Mobile Tools and Utilities,

Mobile Automation Tools and much more. We will not only explore testing aspects for mobile apps but

will also keep look in to market trends and scope and role of Mobile Testers in to them.

Just to precise Mobile Application Testing market has a great potential and it can be considered as one

of the most immerging field/domain in Software Testing. The more you dig the more it will come out

with something. Due to dynamic nature of Mobile Applications and small release cycle of mobile apps

there are many challenges for Mobile Testers also and we will take a look in to this in my upcoming

articles in Tea-time with Testers. Till then Stay tuned and have nice Tea-time !

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats#mobile-app-flops
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats#mobile-app-flops

 www.teatimewithtesters.com June 2011|36

Testers !! Know your Business !

In April issue of Tea-time with Testers, I wrote an article titled Principles of good bug reporting.

It talked about the basic things that make a good bug report and helps testers not to make the typical
mistakes that will be criticized by other members in their team. One of the points I mentioned is to
always make sure you are giving bugs the correct Severity & Priority grades, since it is typical of

inexperienced testers to give their bugs higher severity with the (sometimes unconscious) aim of
having them corrected by the development team.

Jerry Weinberg commented about this article saying among other things ―I don’t think testers
should be prioritizing bugs―; and when I look back at what I wrote I agree with him, I was only
half right on asking tester to set their severity and priority grades correctly.

http://qablog.practitest.com/2008/12/principles-of-good-bug-reporting/

 www.teatimewithtesters.com June 2011|37

A tester should know his business

The half that I was right was that a tester should be able to set the Severity of his bug correctly.

Severity should be (as much as possible) an objective measure of the damage caused by the specific
bug to the Application Under Test (AUT). And it is something a tester should be able to determine

correctly.

The best way for testers to set the severity of a bug correctly is by understanding enough of his
product.

-What does the product do (and not only what is written in our site or in the marketing brochures)?
-Who uses the product and under what circumstances?

- What are the different flows a user can work with the product?
- How knowledgeable are the users in order to find workarounds to specific bugs?

And all the rest of the non-trivial information about the product and its users that will allow him to
determine correctly how severe is a specific bug in the system.

I expect every tester, within a logical amount of time and with the correct guidance and information
from his team, to reach this level of knowledge. And the reason she needs to know the product this
way is not only in order to set the severity right, this is the only way by which this person will be able

to define, design and execute his tests correctly.

A tester should also know NOT to do the work of others in his team

On the other hand, and here is where the criticism from Jerry came, we should not require of a tester
to determine the priority of a bug, remembering that priority is related to the time when a bug should

be fixed, and it is only partially determined by its severity.

Let‘s understand first of all that priority unlike severity is a subjective measure, subjective because it
will be determined based on many personal (or team-related) factors and so it cannot be giving

outside the context of the whole team.

What factors may affect the priority of a bug:

- Obviously one of the most important factors is the severity. We will want to fix critical bugs before

we solve the less critical bugs.

But there are many other factors such as:

- Complexity of the fix. We will want to solve complex fixes before we solve the trivial ones. We do
this in order to assure that a complex fix will be tested more and more thoroughly. On the other hand
sometimes we will choose not to solve a bug because there is not enough time to test it enough and so

we prefer to release the bug as is than to solve it and introduce more severe bugs or delay the release
of the version.

 www.teatimewithtesters.com June 2011|38

- Available resources. Sometimes we choose to solve bugs based on the developers who are
available, for example solve a simple GUI bug now and leave the complex DB bug for later due to the
fact that the GUI developer is leaving on vacation next week, or because we need to send the screens

now to the customer for validation.

- Bug fix clustering. It is logical that if we are going to be working on a specific area of the code we
try and fix as many bugs in it as possible, and so sometimes we will give bugs priority based on where
we are already fixing other bugs.

- Earlier promises. This is one of the most problematic, but also very easy to understand… We will
want to fix first the bugs we already promised to customers, since they are already aware of them and

they are expecting them to be fixed. So if we have 2 bugs with the same severity or even a bug that
has a lower severity but was already promised to be fixed to a paying customer, we will most probably
be taking care of it before we handle other bugs.

As you see, there are many reasons (all of them good and sensible) why we cannot set the priority of a
bug, and why we should leave this to either the person who has all the information or at least make

sure the decision is taken by the whole team in order to reflect as many of these points (and also the
ones I left out) into consideration.

 Biography

Joel Montvelisky is a tester and test manager with over 14 years of experience in

the field.

He's worked in companies ranging from small Internet Start-Ups and all the way to

large multinational corporations, including Mercury Interactive (currently HP

Software) where he managed the QA for TestDirector/Quality Center, QTP,

WinRunner, and additional products int he Testing Area.

Today Joel is the Solution and Methodology Architect at PractiTest, a new

Lightweight Enterprise Test Management Platform.

He also imparts short training and consulting sessions, and is one of the chief

editors of ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under - http://qablog.practitest.com and regularly tweets as

joelmonte

A group of managers were given the assignment to measure the height of a flagpole. So they

go out to the flagpole with ladders and tape measures, and they're falling off the ladders,

dropping the tape measures - the whole thing is just a mess.

A tester comes along and sees what they're trying to do, walks over, pulls the flagpole out of

the ground, lays it flat, measures it from end to end, gives the measurement to one of the

managers and walks away.

After the tester has gone, one manager turns to another and laughs. "Isn't that just like a

tester, we're looking for the height and he gives us the length."

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte

 www.teatimewithtesters.com June 2011|39

 www.teatimewithtesters.com June 2011|40

Landscaping: A Technique to Aid Understanding

In my last article (The diagnosis) Joe faced with the problem of understanding a new application in a

domain that he is unfamiliar with, has the ―Aha‖ moment at the doctor‘s office during the process of
‗diagnosis‘. He sees parallels in doctor‘s questioning technique to diagnose the problem and his
problem of understanding of the application. He understands that decomposing the problem into

information elements and establishing the connections between these elements enables him to come
up with good questions to understand the application. Voila!

Joe figured that understanding an application is not just about walking though the various features via
the user interface(assuming that the application has an UI), it requires a scientific/systematic
walkthrough of various elements commencing from the customer‘s needs/expectations and then into

the application‘s deployment environment, architecture, features, behavior and structure.

This is a technique called Landscaping, a core concept in HBT (Hypothesis Based Testing) that enables

one to systematically come with meaningful questions to understand the end users, application and
the context. It is based on the simple principle ―Good questions matter more than the answers‖. Even
if questions do not yield answers, it is ok, as it is even more important to know what you do not

know.

 www.teatimewithtesters.com June 2011|41

Now onto Landscaping in detail...

The objective of testing is to ensure that the product or application meets the expectations of the

various end users. That said, how does one get into the mind of the end-users to be able to
appreciate expectations that they have? Let us dissect the problem...

Firstly start from the outside - the marketplace and various types of customers in the marketplace
where the application is going to be used. Then identify the various types of end users (or actor) in

each type of customer in the marketplace. Now identify the various use cases/requirements for each
user type and then the technical features that constitute the business use case or requirement. Now
viewing each requirement from the perspective of the end user, identify the attributes that matter for

each requirement/feature and then ensure that they are testable.

Then move inwards. Understand the deployment environment, structure of the application

(architecture) and the technologies used. Moving further in, identify who uses what feature, the
profile of usage, ranking of a feature/requirement in terms of business importance and then the
conditions that govern the feature. Finally understand how each feature/requirement affects the other

features/ requirements and then understand the state of a feature (new, modified, status quo).

Let‘s picturize this...

 www.teatimewithtesters.com June 2011|42

What are we trying to do? We are trying to create a mindmap that consists of various information
elements, then question to understand the information elements and more importantly establish
the connections between the various elements. The act of understanding the individual elements

and their connections results in questions that aid understanding. As we proceed, we establish a
clear baseline of end user types, requirements/features, attributes, environment, usage profile...

Let us look at some of the questions that emanate by applying Landscaping...

Marketplace What market place is my system addressing?
Why am I building this application? What problem is attempting to
solve? What are the success factors?

Customer type Are there different categories of customers in each marketplace?

How do I classify them? How are their needs different/unique?

End user (Actor) Who are the various types of end users (actors) in each type of
customer?

What is the typical/max. number of end-users for each type?

Note: An end user is not necessarily a physical end user, a better word

is ‗actor‘

Requirement
(Use case)

For each end user, what do they want? What are the business use cases
for each type of end user?
How important is this to an end user - what is the ranking of a

requirement/feature?

Attributes What attributes are key for a feature/requirement to be successful
(for an end user of each type of customer)?

How can I quantify the attribute i.e. make it testable?

Feature What are the (technical) features that make up a requirement

(use-case)?
What is the ranking of these?
What attributes are key for a successful feature implementation?

How may a feature/requirement affect other feature(s)/requirement(s)?

Deployment
environment

What does the deployment environment/architecture look like?
What are the various HW/SW that make up the environment?
Is my application co-located with other applications?

What other softwares does my application connect/inter-operate with?
What information do I have to migrate from existing system(s)? Volume,

Types etc.

 www.teatimewithtesters.com June 2011|43

 Biography

T Ashok is the Founder &

CEO of STAG Software

Private Limited.

Passionate about excellence, his mission is to

invent technologies to deliver ―clean

software‖.

He can be reached at

ash@stagsoftware.com .

Technology What technologies may/are used in my applications?
Languages, components, services...

Architecture How does the application structure look like?
What is the application architecture look like?

Usage profile Who uses what?
How many times does a end user use per unit time?

At what rate do they use a feature/requirement?
Are there different modes of usage (end of day, end of month) and what
is the profile of usage in each of these modes?

What the volume of data that the application is subjected to?

Behavior

conditions

What are the conditions that given a behavior of a requirement/feature?

How each condition is met - what data (& value) drives each condition?

Summarizing Landscaping is a core concept in HBT (Hypothesis Based Testing) that identifies the
various information elements and the process of understanding the element details and their

connections enables questions to arise. These questions when answered allow one to understand the
application (system), customer and the context, and construct a clear baseline for subsequent stages
of testing.

We have also seen that when applying this, we uncover the missing parts of the puzzle and this has
helped us to improve/fix the requirements. In a nutshell, good questions aid in early defect

detection/prevention and we have used this to test requirements and not only code.

Have a great day!

Note: Drop me a note at ash@stagsoftware.com or tweet me @ash_thiru if you liked this. Thank

you.

mailto:ash@stagsoftware.com
mailto:ash@stagsoftware.com
http://twitter.com/Ash_Thiru
http://www.stagsoftware.com/

 www.teatimewithtesters.com June 2011|44

Tool Watch

 www.teatimewithtesters.com June 2011|45

 Tea-time with Testers Rating:

practitest

Apart from the Requirement gathering, writing Test Cases & raising Bugs, we Testers also

perform one equally important job i.e. Test Execution & Management in Test Management Tool.

No doubt, we all learn & adopt ourselves best to work with different Test Management Tools.

But have we ever thought of something much simpler, interesting, innovative and definitely
astonishing?

Well…won‘t it be an easy job just to have a look on Auto Generated Graphs of your Test
Execution Status, Bug Statistics, Project Assignments to specific group and much more, that too
just with a single sign on?

 What if your tool itself tells you that the bug you we are about to write is a duplicate of an
existing bug?

 What if you can set the visibility of your project to other users?

 What if your tool is intelligent enough to handle the parent-child hierarchy of issues?

 What if your tool provides the flexibility to the views according to the user using it?

And…How about managing your Tests and Bugs from your very own I-PAD?

Well, PractiTest is the Tool. Let us walk you through this best Test Management Tool we have
ever come across.

In this last part, we will continue from the features that we have covered in May-2011 Issue of
Tea-time with Testers.

PART 3

http://issuu.com/teatimewithtesters/docs/tea-time_with_testers_may_2011__year_1__issue_iv

 www.teatimewithtesters.com June 2011|46

Dashboard

The Dashboard provides overall information about

the current state of the requirements, issues,

tests and test sets. PractiTest‘s allows customizing

dashboard according to one‘s priorities & process.

You can choose the information to display as part

of you dashboard, and even organize the

information under different tabs.

You can add new dashboard items under the

―Summary Home‖ tab, or create a new tab

with new dashboard items.

To add a new dashboard tab:

1. Click on the ―Customize Dashboard‖ link on

the right side of your screen.

2. Click on the ―New Dashboard Tab‖ link.

3. Select a name for your new tab. For

example, ―Issues overview‖

4. Start adding dashboard items you would

like to see. For example, if you would like

to see a pie chart of issues, choose the

values ―Issue‖ from the Entity dropdown

list, ―Pie Chart‖ from the Item Type

dropdown list. Click on the ―continue‖ link.

Note that each dashboard tab can only hold

up to 6 items.

5. Select the issues you‘d like to see by

selecting a view from the Custom View

dropdown list.

6. Select the parameter that will be used for

sorting the issues. In this example we have

chosen to show all issues, according to

priority.

7. Click the ―Save changes‖ button.

8. You can go back to the Dashboard to see

your new item under the sub-tab you

created.

 www.teatimewithtesters.com June 2011|47

Report center

The report center allows creating reports and seeing all the previous reports generated for your project. You can

create reports based on 3 templates: Tabular, Traceability and Detailed report; and you can use these templates for

each of the PractiTest entities (Issues, Tests, Test Sets & Runs, and Requirements).

Note: your report will be created and saved under ―Available Reports‖, so that you can view it again in the

future.

 To create a report:

1. Click on the ―Report Center‖ link at the

top right side your screen.

2. Click the ―New Report‖ link

3. Choose a name for your report

4. Choose a report entity (for example:

issues).

5. Select a view from the Custom View

dropdown list.

6. Select the report type:

Tabular Reports will display all the

entities and fields based on the view or

filter you select.

Traceability Reports will display all the

entities (also based on the view/filter)

with their

 corresponding related issues, tests and

 requirements.

Detailed Reports will provide all the

information for the entities you selected,

including all fields, comments, history,

etc.

7. Click the ―Create Report‖ button. Your

reports can be viewed in XML, HTML &

PDF formats.

 www.teatimewithtesters.com June 2011|48

 Linking of issues with tests, requirements and other issues

Issues can be linked with other issues; this way you can keep track of your application and project‘s status,

based on the issues raised and their resolution that are linked to your issue.

 Batch edit

You can apply changes to Tests, Test Sets & Runs, and Requirements tabs individually based on your

project requirements.

For example, changing the execution date for test sets and runs :

1. Click on the Batch Edit link after selecting the

2. Click on ―Update‖ after making the necessary require changes. Test sets in the Test sets & Runs tab.

Reordering of test steps

In the Test Library, you can reorder the steps of the already created test case by clicking on the ‗Reorder Steps‘

and dragging the test steps in the opened window.

 Tags

 www.teatimewithtesters.com June 2011|49

You can provide tags in requirements, test library, test sets & runs, and issues. For example, tag in test library

as shown in the below screenshot:

Can use the Tags for searching in which results are obtained from all the requirements, test library, test sets &

runs, and issues with the same tag.

 Using the XBot, you can run automated tests and scripts created with virtually any tool (Selenium, Watir, QTP,

etc) or any homegrown testing framework.

 ** PractiTest will be releasing an API that will allow you to create your own custom integrations pretty soon.

http://www.practitest.com/help/test-library/automated-tests/
http://seleniumhq.org/
http://watir.com/
http://en.wikipedia.org/wiki/HP_QuickTest_Professional

 www.teatimewithtesters.com June 2011|50

Biography

Sharmistha Priyadarshini is currently

working as a Test Engineer at Tata

Consultancy Services (Mumbai).

Sharmistha is die hard lover of Data

Base testing as she finds is

challenging. Being a programmer

in past she now loves software

testing too as it gives her more

scope for analysis. Sharmistha can

be reached via her mail id

sharmistha.priyadarshini@tcs.com

Biography

Juhi Verma is an Electronics Engineer

working with Tata Consultancy Services

(Mumbai) as a Tester. During her spell she

has also worked as a programmer but she

now prefers software Testing over

programming as it’s a dual fun, she says.

Testing is her passion and she enjoys

participating and conducting testing

related activities.

Juhi also works as a Team member at

Tea-time with Testers. She can be

contacted at her personal mail id

juhi_verma1@yahoo.co.in or on Twitter

@Juhi_Verma .

mailto:juhi_verma1@yahoo.co.in
http://twitter.com/Juhi_Verma
http://twitter.com/TtimewidTesters

 www.teatimewithtesters.com June 2011|51

Puzzle

Introducing a new way of claiming your

Smart Tester of The Month Award.

Send us an answer for the Puzzle

bellow b4 10th July 2011 & grab your

Title.Send -> teatimewithtesters@gmail.com with Subject:Testing Puzzle

Gear up guys.......

 Time To Tease your Testing Bone !

mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com June 2011|52

Puzzle “Fill the Dots”

Fill the red circles with 12 consecutive numbers in order to match the

math expressions shown in picture Bellow:

Answer for Last Month’s Puzzle:

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for

more than 5 years. He is currently hosting

European Weekend Testing.

He considers himself a context-driven follower

and he is a fan of exploratory testing.

He tweets as @testalways.

You can find some interactive testing puzzles

on his website www.testalways.com

There is a math expression with 10 consecutive

prime numbers.

11+13+17+19*23+29+31+37*41-43=2012
13*17-19+23-29-31+37+41*43+47= 2012

17+19-23*29+31+37+41+43+47*53=2012
19*23+29+31+37*41-43+47+53-59=2012

23*29+31*37+41+43+47-53+59+61=2012
29-31*37+41+43+47+53*59-61-67=2012

31-37*41+43+47-53+59*61-67-71=2012

It starts from the 5th consecutive number,

which is 11.

http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/

 www.teatimewithtesters.com June 2011|53

 www.teatimewithtesters.com June 2011|54

o

Tea-time with Testers really makes

a person think on the kind of quality

that can be delivered & Make you

feel proud for being a Tester.

It has always motivated me

whenever I felt low.

Keep up the Good work Tea-time

with Testers!!!

- Mary Oommen, Bangalore

―Great Mazaines... enjoyed reading them all... keep up

the great work...!

- - Ritesh Gudhka

―I have been looking for this kind of magazine. Great Job!

Keep doing! -Senthilnathan

― Hi I read your may 2011 Issue & found it brilliant for
me to study as my per interest.‖ -Naveddp Tura

―I find this platform very interesting to share the
knowledge and experience. I would like to participate in
this. -Avinash Verma

―For the first time I found something like this in the field
of Testing! Great!‖ -Kumar Prateek

―I would like to enjoy your magazine in the future and
will not miss any issues.‖ -Vladimir Zak

―Interesting...‖ -Chris Saunders

―Brilliant. Keep up the good work. Thanks‖ -Jan Syrinek

―Thanks for this cup of Teeeea......‖ -Kishore Kar

―I read TTWT for the first time and liked it very much.
Superb work. Testers Rock.!!‖ – Rahul Srivastava

―Thanks guys, read one issue so far - really nice and
helpful! Excellent job!‖ - Andrey

I am very much interested to subscribe to TTWT. It
is very much helpful to keep us up to date of recent
happenings in testing & much more.................”

 -Kusuma Adayapalam

This is treat for testers... a special magzine which will

help provide new changes coming into testing domain

and helpful knowledge sharing with all testers.

- Aniruddha Malvi

―I've heard your magazine is "surprisingly good." I

like surprises, so please subscribe me .‖

 – Curtis Stuehrenberg

Dear Haripriya,

Thanks for counting on us. I would recommend that you read all
Issues of Tea-time. Any article that we publish will definitely help you
to improve your skills.

-Editor

HI Guys,

 I am Haripriya, a Software Tester working in Bangalore. I have gone
through the Edition of May 2011. It was Awesome. And until now I
didn’t know these kind of Magazines will be there also. Presently I
have a Free time to go on Browse some new Topics. So I asked my
Friend to give some site where it can help me. She gave Jonathan
Kohl’s Web site and there in Publications I found ur Magazine. I just
want to be a Smart tester where I can find the Bugs very easily and
where I can deliver the Quality Product to the Customer. So please
give me some tips to improve My Self.

Regards,

Haripriya,

 www.teatimewithtesters.com June 2011|55

If you have any questions related to the

field of Software Testing, do let us know.
We shall try our best to come up with

the resolutions.

- Editor

 www.teatimewithtesters.com June 2011|56

 www.teatimewithtesters.com June 2011|57

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Kavitha Deepak (Bristol, United Kingdom)

Debjani Roy (Didcot, United Kingdom)

Anurag Khode (Nagpur, India)

Anurag Kavitha Debjani

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Cover Page –Randi Scott Photography

Mascot Design & Online Collaboration:

Juhi Verma (Mumbai, India)

Romil Gupta (Pune, India)

 Juhi Romil

 Tech -Team:

Subhodip Biswas (Mumbai, India)

Chris Philip (Mumbai, India)

Gautam Das (Mumbai, India)

Subhodip Chris Gautam

http://randiscottphotography.blogspot.com/

 www.teatimewithtesters.com June 2011|58

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

