
[Type text]

http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com May 2011|2

Created and Published by

Tea-time with Testers.
Hiranandani, Powai- Mumbai -400076
Maharashtra, India.

Editorial and Advertising Enquiries:

Email: teatimewithtesters@gmail.com
Pratik: (+91) 9819013139
Lalit: (+91) 9960556841

© Copyright 2011. Tea-time with Testers.

This ezine is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed or
copied without prior written permission
of original authors of respective articles.

Opinions expressed in this ezine do not
necessarily reflect those of editors of
Tea-time with Testers ezine.

Dear Readers,

A couple of months ago I had presented keynotes in 2nd Monthly Meet

of Mumbai Testers. Topic of my speech was educating the engineering

students as well as students from other faculties with comprehensive

knowledge of Software Testing. The audience out there appreciated my

thoughts and congratulated me for my sincerity behind contributing to

the testing community via Tea-time with Testers. I felt delighted but

that was definitely not the result for which I had presented my

thoughts.

 Whenever I look back into the past, the only thing that disturbs me

most is the fact of not getting to learn anything about software testing

when I was an Engineering student. I am pretty sure that I could have

understood more things well before, than what I know after spending

two years in the field of software testing.

 Every second week I get to read about Fake Resumes, Fake Testers,

Bad Interviews & stuff like that but my question is why this situation

even arises? Don‘t you think that person will fake only when he knows

that he knows nothing? Will anyone ever fake when he/she has enough

knowledge and skills to prove the caliber? I personally feel that bad

practices come into existence out of ignorance about the things. Let it

be the ignorance of an interviewer or that of the one who gets

interviewed, root cause of this ignorance is lack of education. Now, one

would debate that we are not supposed to rely only on college

education, we should study our own. But when things are possible quite

before you enter in the industry, why not to?

The current situation is engineering students don‘t pass out with the

mindset of choosing s/w testing as a career. Why will they, when they

don‘t even know what s/w testing is all about? If students are getting to

learn s/w testing in a poor book of 100 pages, that too in last semester,

why will they even think about taking it as a career?

Well, what is the reason of sudden boom in Private Software Testing

Teaching/Training Institutes in India? What different things they teach

there which can‘t be taught to students in colleges?

Friends, our thinking time is over and this situation now needs some

action. I proudly declare that Tea-time with Testers has already taken

it. Yes, we are straight there in ground with our Teach-Testing

Campaign. What all I request is just your VOTE and VOICE. We are

going to make a report of this campaign and send it to various

Engineering Colleges as well as Universities. If possible, to NASSCOM

too.

Tea-time with Testers is determined to put efforts on it. Let‘s join hands

and make this happen. There is big generation behind the door which

deserves this justice! Enjoy Reading!

 Yours Sincerely,

Lalitkumar Bhamare

mailto:teatimewithtesters@gmail.com?subject=Editotial%20and%20Adevertising%20Enquiries
http://twitter.com/Lalitbhamare
http://www.facebook.com/fndlalit
mailto:fndlalit@yahoo.co.in

 www.teatimewithtesters.com May 2011|3

Why Do People Happily Accept Poor Quality?

-15

Testing and Management Mistakes: Causes

- 19

The Joke’s On You -24

What Holds For You In The Cloud? -29

 Test Cases in Agile -A Waste of Time?-32

Testing Intelligence: A Good Tester Asks

Good Questions - 36

The SCRUM Primer (Part 4) -39

The Diagnosis – 46

 www.teatimewithtesters.com May 2011|4

I mage: www.bigfoto.com

Have you got a BUG?

If you think software testing is layman’s job, think twice!

Software Testers are now considered as a commodity. There
is tremendous demand for software testers and job

opportunities in Software testing across the globe are on rise,
finds Alap Patel.

A submission by Tea-time with Testers Fan.

Time is changing and so is the Industry Outlook for the field of Software Testing. It used to be

defined as a job of finding bugs in software. But wait! Software Testing is not just about finding

bugs in your software under test but to provide stakeholders with information about the quality of

the product and its functioning too.

CHANGING ERA OF SOFTWARE TESTING

Cloud-based applications are becoming a trend in the software market. As a result, the testing market
is also cloud-based. Companies such as IBM, CSS Corp, TCS etc. have started cloud-based testing,

which is likely to reduce the cost and timing of testing the application. Companies are significantly in
building competence in various specialized testing services such as enterprise resource planning (ERP)
testing i.e. Oracle Siebel application testing, web-based application testing, service oriented

http://www.bigfoto.com/

 www.teatimewithtesters.com May 2011|5

architectures (SOA) testing, software-as-a-service (SAAS) testing, wireless and mobile application
testing etc. ―As the domain of software application development is increasing significantly, so is the
need for testing specialized applications,‖ says the report. (Reference)

TESTERS AS A COMMODITY

After interacting with my colleague he said that, ―Companies in India look for quality instead of
quantity that is why the other countries get attracted to outsource major amount of work to the Indian
IT sector‖. A friend of mine who has worked in Finance Sector earlier and now perusing his MBA says

that, ―Companies are on cost cutting globally and they do not want to spend more on software testing.
Indian Consultancy companies offer these services at low cost by recruiting bulk of Testers.‖
One Mumbai based career counselor had said that, ―With more complicated programming languages

and different coding schemes, software testing has become a critical job for the companies. Almost
every large IT Company has more than 18 percent of the total workforce dedicated for the software
testing; a lot of small companies also come up with the only Software testing solutions.‖

BOOMING JOB OPPORTUNITIES

Apart from the IT companies other Industries also require the skilled software testers, like investment
banks, various consultancy firms, retailers, airline Industry and networking companies. Now the
Testing is seen as the high profile corporate job, which has well defined career path e.g. a test
engineer eventually can become a Test Analyst, Senior Software Engineer and Test Manager. If you

know the functionality of what you are testing in better way then you can have better growth.

BASIC REQUIREMENTS

A Btech/BE in Computer Science/ Information Technology or any stream, or MCA can be applicable for
the any testing jobs. There is different area in Software testing like Manual Testing, Automation
Testing and Performance Testing etc. Companies mainly recruit for the manual testing for which it

requires good functional knowledge of the domain, analytical abilities, and good problem solving
capabilities with good communication skills. Companies who recruit the testers for the Automation
testing should have the Experience, good knowledge of programming languages like C, C++, C#,

JAVA, Scripts and knowledge of various Testing Tools.

SKILLS THAT YOU NEED TO HAVE

Special testing skills are in demand now. Generally there is lack of skills in the various areas of test
automation and scripting. Also demands are on rise for technical skill sets like the ability to review and
manage various automation tools, generate test automation frameworks and figure out how to

leverage reusable on-demand components. In a same way there is always consistent demand for the
performance tester to enhance the performance of the application, to offer suggestions. People having
good command over HP QuickTest Professional (QTP), Rational Robot, Microsoft Application Center

Test (ACT), HP WinRunner and also tools like IBM Rational Functional Tester and HP LoadRunner
always are in great demand.

http://callcenterinfo.tmcnet.com/news/2010/06/14/4844569.htm

 www.teatimewithtesters.com May 2011|6

CERTIFICATIONS

Various certification programmes are there to test the software testing skills of a tester.

 Following are the list of testing certificates.

 The International Software Testing Qualifications Board (ISTQB)
 Certified Associate in Software Testing (CAST) offered by the Quality Assurance Institute (QAI)

 CAT offered by the International Institute for Software Testing
 Certified Manager in Software Testing (CMST) offered by the Quality Assurance Institute (QAI)
 Certified Software Tester (CSTE) offered by the Quality Assurance Institute (QAI)

 The Certified Software Test Professional (CSTP) offered by the International Institute for
Software Testing and many more.

- Alap Patel, Mumbai-India

Now there is Testing Puzzle in Bug-Boss

Challenge! Are you Ready?

Scroll down to our Testing Puzzle Page and claim

your Smart Tester Of The Month Award!

 www.teatimewithtesters.com May 2011|7

 It’s definitely going to make the difference!

 Know More

 Click here To Cast Your Vote and Send Your Ideas!

Do you think that Software Testing should be

taught comprehensively in engineering colleges

as well as a separate course under universities?

http://www.teatimewithtesters.com/#!teach-testing
http://www.teatimewithtesters.com/#!teach-testing
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com May 2011|8

 Why Not Just Test Everything?

I was called in to consult recently by a test manager whose manager had demanded that he "test
everything." It was not the first time I'd heard this impossible demand.

Why is it impossible? First of all, the human brain not only makes mistakes, its capacity is finite.
Second, nobody lives forever. So, as much as we would like to perform all possible tests, we can't
think of them, and, even if we could, we wouldn't live long enough to do them all. Besides, for most

situations, it would cost too much—since the number of possible tests for any given program is infinite.
Let's see why.

There are an infinite number of possible tests.

Let's think of the simplest program we could conceive of to test: a program whose function will be
to respond to tapping on the space bar by putting a "Hello Dolly!" message on the screen. What would
we test for? To keep it simple, we'd want to test that every time we pressed the space bar, we got the

"Hello Dolly!" message, and every time we pressed any other key or combination of keys, we never got
anything on the screen.

 www.teatimewithtesters.com May 2011|9

If you can't see inside the program, how many test cases would you need to execute in order to bet
your life that you've tested all possibilities? Identify the number of test cases, write that number down,

and then read the next paragraphs to see if you got it right.

Since you can't see inside the program, you have no idea what bizarre

conditions the programmer might have set up. For example, the
program might be designed so that everything looks normal on the
outside unless the user types an extremely unlikely sequence of

keystrokes. Suppose I set up the program so that if you hit, say, the
W key, then the space bar three times, then the M key, then the
space bar another three times, then the J key, then you type exactly

168 more keystrokes without once using the letter L, the program will
put a message on the screen asking, "Whaaa?" Would your
exhaustive set of test cases have detected this outlandish condition in

which an unwanted and unexpected Whaaa response is hidden in the
program?

Do you think these conditions are outlandish?Unrealistic? During a technical review of a
supposedly highly secure application, we discovered that a programmer named Wanda Marilyn Jones
(not her real name, but her real initials) had placed exactly this backdoor into the software, writing the

password protection so that she could bypass the ordinary password protection, regardless of what the
real password was set to be, thereby enabling her to break in at any time. A highly sophisticated test
plan, executed under strict controls, had not found this backdoor, which lay hidden for three years until

we performed a technical review. To paraphrase Edsger Dijkstra, "Testing can reveal the presence of
bugs, not their absence."

Do you get the point by now? If you didn't guess that the number of tests required to exhaustively
test software is infinite, or at least "a number greater than I could run in my lifetime," you didn't
understand the point of this article. Now you do.

Notice that I didn't even mention the possibility of testing this program on different

configurations, a problem commonly faced by product developers. If a program has to work on ten

different CPUs, each with ten possible memory sizes and ten different disk-drive sizes, that would
mean 10 times 10 times 10 different configurations that would have to be tested.

But that's way too simple for many real testing situations, where the tester has to deal with the
added complexity inherent in having different manufacturers, drivers, operating system versions, other
programs simultaneously operating, and combinations of other different peripheral devices, any of

which could contain errors. Dealing "completely" with all possible configurations like this would
necessitate quadrillions of different test cases. And that's not considering tests for all the different
functions that program is supposed to perform with any of these configurations.

Even this immense number ignores sequence effects reflective of the order in which the tests are

performed. If there are ten functions a user might invoke, it isn't enough to use ten different tests

because they might produce different results if performed in different orders. So, instead of ten tests,
we'd need ten factorial (10!) tests (over six million) tests to cover all sequences.

But that wouldn't be enough, either, because if the program has memory (and all real programs

do), then the second time we perform a test sequence, it may not produce the same results as it did

the first time.And these immense numbers (all multiplied together) also ignore true randomness, like
the exact nanosecond an external device causes an interrupt or the exact timing to the microsecond of
when you strike, say, the J key. All in all, testing can be exhausting, but it can never be exhaustive.

 www.teatimewithtesters.com May 2011|10

Testing is, at best, sampling.

Since we can't test everything, any set of real tests is some kind of sample—a portion, piece, or
segment that is in some way representative of a whole set of possible tests. We, of course, hope it's

a good representative, but that brings up the question, "Good for whom?" Fundamentally, sampling is

yet another psychological process—and an emotional one. A sample that satisfies one person may not
satisfy another in the slightest.

So how do we decide what to sample? How do we know
we're taking a large enough sample to adequately

represent everything? How do we know we've taken an

appropriate sample?

I was musing about this problem with my colleague

Elisabeth Hendrickson as we watched my rain gauge during a

rainstorm in Pecos Canyon, New Mexico. The gauge, which is
attached to the exterior of my porch, had a small opening
through which it was supposed to sample rain—which, at the

time, consisted of large, widely spaced drops splattering on the
ground every few seconds. It would have been an adequate rain
gauge for Seattle, because it would have done well with a fine,

misty rain that fell for hours, but when the Pecos storm stopped
after ten minutes, the bottom of my gauge was completely dry,
belying the fact that any rain had fallen.

But Elisabeth and I had seen the rain fall and, in fact, we were soaked. We quickly realized that

the gauge was taking an inadequate sample when dealing with such huge drops falling several inches

apart over the minutes the storm lasted. Elisabeth looked at my dripping beard and said, "You are a

better rain gauge than the one on the porch."

Notice that it could have worked the other way. If just one or two of those huge drops had
happened to fall into its small opening, the gauge might have reported a full quarter-inch of rain,
which wasn't accurate either. We regularly see this same phenomenon in testing: We take a small

sample—try a few things here and there—and end up under- or over-reporting the density of problems
in the whole product.

The cost of information can exceed the cost of ignorance.

The impossibility of exhaustive testing squeezes us between two difficult and simultaneously

desirable objectives:

1. We want to cover all interesting conditions.

2. We want to reduce the set of tests to a manageable, affordable level.

To understand what I mean by the first, consider the number of times testers stumble across a

critical bug when they aren't looking for that particular type of bug. They find it because they are lucky
(or unlucky, if they don't want to know about it), not because they were executing a set of
meticulously designed tests intended to find that specific problem. The bug just appears, like an ant in

your raisin bran. But is it pure luck? Is there some psychology to figuring out how to find more of these
surprise bugs? I believe that part of the answer lies in expanding our idea of testing.

 www.teatimewithtesters.com May 2011|11

We can obtain more information with less testing— perhaps.

These days, many of the people I talk with are concerned with the second objective stated

above—reducing the set of tests to a manageable, affordable level. They're asked, or commanded, to
subsist and even thrive with smaller teams and greater responsibilities.

In one of the more extreme cases described to me, a tester sought a consultant's advice on

handling the following dilemma: "We were just downsized from a team of thirty testers to three, but

we're still supposed to 'ensure' the product. How do I decide what to test?"
One argument would say that testers can't "ensure" anything at all so they shouldn't even try. But

that argument won't persuade an executive staff struggling to keep a firm afloat during rough

economic times. So what to do? Admittedly, a downsized team can't do everything the larger staff
used to do, but it can pick and choose from among the tests it could possibly perform. It can identify
the tests that make the best use of limited resources.

The consultant's advice was grounding: "First of all, recognize that any set of tests is a sampling

strategy and then, no matter how many or how few your resources, choose the best representative set

of tests you can."

Imagine you are about to dine at the Testing Buffet.

You stand at the head of a long table full of use cases, boundary conditions, compatibility tests,

interaction tests, permissions matrices, and so on, holding a single plate. The Testing Buffet allows a

diner only a couple of trips through the line, so you know that you'd better choose wisely. What should
you do?

Well, if you have ever watched people faced with this
situation in a food buffet, you know that different personalities
attack problems in different ways. Some people will complain

to the maitre d' or waiter about the size of the plates and
continue whining throughout the meal, spoiling everybody
else's meal. Others will simply turn around and walk away in a

huff because they believe they shouldn't be limited in the
amount they may eat.

Some people will start at the head of the line and fill the
plate with the first two dishes that appeal to them. Is this
wise? Maybe at a restaurant, but probably not when testing

with limited resources.

When faced with an insurmountable set of testing tasks (which is, really, always the case in

testing), you may be tempted to begin at the beginning and see how far the testing progresses in the
allotted time. Alternatively, you might pick and choose easy, quick tests across the entire feature set.
Both approaches are convenient for the tester, but do they provide an adequate meal of testing?

To test well, testers must be aware of the constraints of finite tests, resources, and time. Testers

must also be aware of their own personalities—the way they tend to attack the buffet.

Managers also must be aware of these constraints and tendencies. No matter how much you'd

love the luxury, you can't expect testers to perform "exhaustive" tests. You'll have to reconcile yourself
to satisfying your appetite for control in some other way.

 www.teatimewithtesters.com May 2011|12

Summary

There are an essentially infinite number of tests that can be performed on a particular product

candidate. Rather than asking for "all" tests to be performed, managers and testers must strive to
understand the risks added to the testing process by sampling.

Common Mistakes

1. Demanding "test everything": When you demand the impossible, you have no idea what you'll get—

except that it won't be anything impossible.

2. Not understanding sampling: Very few managers (very few people, in fact) understand sampling

very well. Either educate yourself or hire an expert to audit your sampling. In either case, always be
ready for the possibility of a sampling error.

3. Spending too much for information that's not worth it: Do you have a basement or garage full of
expensive gadgets that you never really wanted? Do you realize what else you could have done with
the money spent (or the space occupied)? If so, you understand this error. Be careful what you ask

for.

4. Testing for the sake of appearance: Some

customers and certifying agencies demand "testing." You
can go through the motions if you feel you must, but at
least don't deceive yourself about the quality of the

information you receive.

5. Not using all sources of information: Information

gathered from test results is, by its very nature, limited,
but there are other kinds of information sitting around if
you're alert enough to see it.

6. Thinking that machines can perform exhaustive testing,

even if people can't: It's not just the human brain that's
limited; testing tools are limited, too. Don't buy any
product that claims it can "perform all tests." Even if it

could, you couldn't possibly look at all the results.

7. Increasing risk by constraining resources: When testing resources are cut, the easiest way to

respond is by limiting sample size—running fewer tests. But with a reduced sample size, sampling
errors become more likely. A diverse sample might find more problems than a large sample. Likewise,
diversifying your test team might find more problems than enlarging your test team.

There is an exclusive review of our April 2011 Issue by Mr. Jerry Weinberg

and we have got Feedback from our readers too.

Do not forget to read our Feedback and Responses columns!

 - Editor

 www.teatimewithtesters.com May 2011|13

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of The J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

Perfect Software and other Illusions about

Testing is Jerry‘s one of the best book.

This book focuses on real time issues that

testers face. Not only testers but entire project

team should read this book.

Perfect Software changes the reader‘s way of

looking at things. It answers all the questions

that testers usually come up with.

Tea-time with Testers recommends this book

if you want to learn about bringing intelligence

in your testing as well as to enhance your

decision making ability.

Its sample can be read online here.

To know more about Jerry‘s writing on software

please click here .

TTWT Rating:

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.smashwords.com/extreader/read/25400/1/perfect-software-and-other-illusions-about-testing
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com May 2011|14

Speaking Tester’s Mind

 www.teatimewithtesters.com May 2011|15

Poor quality

At the weekend whilst lounging in a hot bath, after an excellent dinner, I came across this striking article

about kakonomics by Oliver Burkeman in the Guardian‘s magazine.
It sought to explain why so much of life just troubles. Given the extremely comfortable circumstances in
which I was reading his article I wasn‘t entirely convinced that life does trouble all that badly. However, I

certainly was receptive to the deeper meaning; that we are often motivated by laziness and the desire
for an easy, unchallenging life.

People enter into a sly conspiracy in which they happily trade low quality results, whilst indulging in high
quality, but bogus rhetoric, for the record.

Burkeman‘s article was based on the work of the Italian philosopher Gloria Origgi. See these articles

from her blog; ‖Kakonomics, or the strange preference for Low-quality outcomes‖ and The Kakonomics
of Facebook.

I had no difficulty accepting the gulf between grubby reality and the bogus rhetoric of high flying ideals.
That has always been a feature of my working life.

Were people really happy with that gulf? It is of course counter-intuitive. I was sceptical. However, the

more I thought about it the more willing I was to accept Origgi‘s insights.

Transformation Programmes that transform nothing

I have often been puzzled at how some organisations have been seemingly trapped in damaging,
dysfunctional behaviour, with no apparent willingness to break out and transform themselves. They have

certainly been too willing to launch Transformation Programmes (note the deliberately disrespectful and
cynical capital letters).

These programmes have rarely been designed to truly transform anything. They have simply rearranged
anything and everything capable of being rearranged. The real work has carried on in spite of the

transformation.

http://www.guardian.co.uk/lifeandstyle/2011/feb/12/mediocrity-sucks-who-cares-burkeman
http://gloriaoriggi.blogspot.com/2011/01/kakonomics-or-strange-preference-for.html
http://gloriaoriggi.blogspot.com/2011/01/kakonomics-of-facebook.html
http://gloriaoriggi.blogspot.com/2011/01/kakonomics-of-facebook.html

 www.teatimewithtesters.com May 2011|16

Once I really did see one of those programmes produce genuine and exciting benefits. That those
benefits were irrelevant and accidental by-products of the Programme was revealed shortly before it was
wound down.

A review of what had been achieved swept the benefits away in an act of casual destruction that
effectively reinstated the pre-transformation status quo, but with a superficially different structure and
youthful new faces added to the lower layers of the management team.

Was kakonomics at work there? Did the consultants deliver some low grade, but expensive, rubbish,

which the management were happy to take on board because it didn‘t challenge them to change either
their behaviour or the organisation‘s culture?

The last minute review ensured that management could carry on as before, but with the enhanced
prestige of having ―done something‖ about the abysmal quality and late delivery of IT applications.

Kakonomics and traditional development practices?

I have worked on many developments when you could sense the relief at progress meetings when
someone confessed that they‘d had problems and would deliver late. By doing so they let the others off

the hook and no-one would be required to deliver on time.

That is consistent with kakonomics, but it can also be attributed to a natural human desire not to be the
first to admit failure, or an equally natural desire for easier targets. By their actions do people really
solicit and encourage poor quality and performance?

The possibility that Origgi might be right seemed stronger when I reflected on occasions when people

had stood up and not only insisted on high quality outcomes, but delivered them. Were they lauded and
rewarded as heroes?

Well, no. Not consistently.

I remember a friend once saying, shortly before he handed in his notice, that it made no sense to be a

high performer at the company where we worked.

The difference in reward was negligible and insufficient to justify the extra effort. Worse, slovenly and
inefficient work had its own reward in the form of generous, overtime without scrutiny of what was
achieved. Sloppy cowboys could earn more than diligent craftsmen.

The users were untroubled. Everything was late and poor quality. However, the IT people made perfect
scapegoats. Requirements could therefore be late, badly defined, and always open to change. IT would
take the blame without complaint, largely because they knew it was expected of them, and in the full

knowledge that the gap between aspiration and reality would be tolerated and leave them with a
substantial comfort zone.

Both there and elsewhere rewards have gone more consistently to those who play the game rather than
those who seek and even deliver genuine improvement.

Following practices, such as the Waterfall, V Model and Structured Methods, which are inefficient and

ineffective but were widely regarded as ―standard‖ or ―best practice‖ for years reinforced kakonomic
exchanges of low quality throughout the IT profession.

If people follow them and the results are bad then they can always pretend that they tried to do it right,

but were unlucky. No-one is really to blame, or accountable, and we can all carry on as before. The
rhetoric is impeccably high quality. The reality is garbage.

 www.teatimewithtesters.com May 2011|17

Biography

James Christie is a Chartered IT

Professional, and professional
member of the British Computer

Society. He has 24 years
commercial IT experience, covering

test management, information
security management, project

management, IT audit, systems
analysis and programming.

James is particularly interested in
how the quality of applications can

be improved by incorporating
usability engineering and testing

techniques. He is a member of the
Usability Professionals Association.

He is enthusiastic about testing
approaches that move beyond the

traditional V Model and heavily
scripted testing. He writes his

thoughts on testing at his own blog
http://clarotesting.wordpress.com .

James can be reached at

james@clarotesting.com or on
twitter @james_christie .

If people deliver something special and high quality then they
are probably iconoclasts or rebels who have rejected the
methods that would have ensured low quality failure. They

have therefore rejected the cosy consensus of the status quo
and set a challenge to the organisation.

Whereas those who fail do so conventionally, and can

therefore be excused as unlucky but dependable, the rebels
are seen as difficult, spiky individuals. Their success is a one
off, which can‘t offer a pattern, being dependent on individual

skill rather than repeatable process.

There‘s a blog to be written about whether CMMI is misused
so that it encourages kakonomic exchanges by implicitly
valuing repeatable, predictable failure above erratic, but

sometimes brilliant individualism.

Anyway, the rebels have breached the subliminal contract of
the kakonomic exchange, leaving their colleagues distinctly

uncomfortable. No-one would admit to the real reason for that
discomfort, and they happily ascribe it to concern about the
rebels‘ cavalier style, which creates friction and harms morale.

They are ―difficult‖, ―not team players‖.

The conventional team players glide up the organisation, and
if the rebels are wise they head for an organisation where
sparks are welcomed, rather than feared.

Is Agile a panacea?

I‘m not sure there‘s much for proponents of Agile to be
complacent about here. If Agile is badly implemented then I‘d
expect exactly the same reinforcement of bad practice. The

trendier Agile becomes, the greater is the danger that it will
be adopted for the bogus high quality rhetoric.

Perhaps Agile‘s greatest strength in the long run is its

adaptability and flexibility, rather than any particular
technique. Any shrewd practitioner should surely realise that
complacency is deadly to Agile, and would be attuned to the

dangers of kakonomic exchanges, even if the term and the
theory meant nothing to them. In principle, I‘d have thought
that such exchanges could occur anywhere.

What about testers?

I think that kakonomics can explain some of the daft,
damaging and dysfunctional behaviour that happens in
organisations. It might explain why people persist in doing

things that are entirely inconsistent with their supposed
objectives , and why they will do so in the sure knowledge
that their behaviour will not be challenged.

http://clarotesting.wordpress.com/
mailto:james@clarotesting.com

 www.teatimewithtesters.com May 2011|18

Gloria Origgi is rightly critical of the damage this all does. Her analysis is not just an amusing reflection
on the vagaries of life.

She explains that the reason ―it is a form of collective insanity so difficult to eradicate, is that each low-

quality exchange is a local equilibrium in which both parties are satisfied, but each of these exchanges
erodes the overall system in the long run‖.
Testing should be a comfortable home for those who are happy with creating and suffering a little

discomfort! It should be our job not to tell people what they want to hear, or to go through the motions,
or to follow the process blindly, but to shine a light on what‘s really there.

In doing so it helps to think about why people behave as they do, and to understand why good people
do bad things.

I don‘t think it always applies, and it‘s not a magical insight that explains everything, but maybe

kakonomics is one of those things that can help us understand a little better, and to explain just why we
are seeing damaging behaviour. It might not make us popular, but unless the organisation is dying there

should always be a place for unpopular, truthful insights about why we get poor quality.

One of the things about testing that I like is that it is a profession that has genuine respect for the teller
of those unpopular truths.

  

Individuals and Ineractions

 www.teatimewithtesters.com May 2011|19

Testing and Management Mistakes

Markus

Michael Bolton wrote a nice story about a situation at work where the project manager asks a tester

to come in for the weekend. I remember facing such a situation with a colleague at work. He was

asked to stay in, and I explained to him some of the mistakes I saw. I told him about placating

behaviour, and showed him blaming behaviour on the other side of the medallion. Since blaming

probably leads to a showdown, I taught him how to improve the conversation using congruent

communication. That is taking the self, the other, and the context position into consideration. If you

are interested in more about this conversation model that Virginia Satir created, I whole-heartedly

suggest you to read through Weinberg‘s Quality Software Management series ; especially

Volume 3 should be of interest.

I would now like to take a closer look on the underlying problems that make a tester react to

management mistakes in an inappropriate way. By going over the dialogue of our manager, Magnus

and our tester, Tim, we‘ll try to seek out for opportunities on how to solve the process problem.

Magnus the Project Manager: ―Hey, Tim. Listen… I’m sorry to give you

only two days’ notice, but we’ll need you to come in on Saturday again

this week.‖

Tim the Tester: ―Really? Again?‖

Magnus plans in two days of lead time for Tim to re-arrange with his family

in order to get to work on the weekend. This is surely a cause of Tim‘s

behaviour in the previous weeks, as it turns out later. Magnus already

became used to convincing Tim on short-notice to turn in for the weekend. Magnus became

conditioned by Tim‘s earlier behaviour, just as Pavlov’s dog. Operant Conditioning might be a

cure for this underlying cause here. If Tim would now force a punishment, the negative feedback loop

may be broken up. Of course, over time Tim will feel enough pressure to bring in some form of

negative reinforcement for Magnus – one way or the other. So, the root-cause here is placating

behaviour from Tim as a reaction to the (almost) blaming behaviour from Magnus.

http://www.developsense.com/blog/2010/03/management-mistakes-part-1/
http://www.geraldmweinberg.com/Site/QSM_vol_1.html
http://www.geraldmweinberg.com/Site/QSM_vol_2.html
http://www.geraldmweinberg.com/Site/QSM_vol_3.html
http://www.geraldmweinberg.com/Site/QSM_vol_4.html
http://www.geraldmweinberg.com/Site/QSM_vol_3.html
http://en.wikipedia.org/wiki/Classical_conditioning
http://en.wikipedia.org/wiki/Operant_conditioning

 www.teatimewithtesters.com May 2011|20

Magnus: ―Yes. The programmers upstairs sent me an email just now. They said that at

the end of the day tomorrow, they’re going to give us another build to replace the one

they gave us on Tuesday. They say they’ve fixed another six showstoppers, eight

priority one bugs, and five severity twos since then, and they say that there’ll be

another seven fixes by tomorrow. That’s pretty encouraging—27 fixes in three days.

That’s nine per day, you know. They haven’t had that kind of fix rate for weeks now. All

three of them must have been working pretty hard.‖

Tim: ―They must have. Have they done any testing on those fixes themselves?‖

Magnus is diving into interpretation here almost directly. The only thing that I can derive from the

developers‘ thinking they have fixed that many bugs is that they worked on those bugs. It does not

mean they worked pretty hard on it. It just means that the developers think they were fixing many

serious bugs. Actually, ―it‘s nothing until it‘s reviewed‖ goes also for bug fixes. It‘s nothing until it‘s

tested. That said, Magnus dives into interpretation and judging mode far too soon. In addition he

gets attracted by the numbers and the outlook of the promising delivery. Having faced some

assessment and education on Myers-Briggs or another personality model, would reveal his self-

blindness in this situation. Maybe Magnus can become more aware of his deficits by getting taught

about his personality and acting accordingly.

Tim is just a tester. He may not experience consciously this flaw. But he has to suffer under the

outcome of it. So, making Tim aware of the model and talking consciously with Magnus about the

situation, his addiction to numbers in this particular circumstance, could help overcome his self-

blindness. Though, Tim will need some advice on how to give that advice in a manner that Magnus

will accept. Thus far, I never achieved this.

Magnus: ―Of course not. Well, at least, I don’t know. The build process is really

unstable. It’s crashing all the time. Between that and all the bugs they’ve had to fix, I

don’t imagine they have time for testing. Besides, that’s what we pay you for. You’re

quality assurance, aren’t you? It’s your responsibility to make sure that they deliver a

quality product.‖

Tim: ―Well, I can test the product, but I don’t know how to assure the quality of their

code.‖

Magnus: ―Of course you do. You’re the expert on this stuff, aren’t you?‖

There are two messages I can derive from Magnus here, pointing at a serious, but far too common

problem in software management. First, he sends out the signal to his developers that it is more

important to fix bugs than to test them. By measuring the poor bug fixing rate, the emphasis for the

project is clearly given in this situation. Second, he frees precious developer time from testing the

fixes. Actually, he tells his developers, that it‘s more important to fix the bugs, rather than test them.

This is a very bad combination, but far too common.

Tim reacts greatly here, but without Magnus listening to his point the effort is basically wasted.

Magnus should take the time to listen carefully to his tester in this situation. This would not only raise

the trust level for him in the eyes of Tim, but also make him aware of the most serious problems he‘s

introducing. As a manager, you have to pay attention to what is said to you.

 www.teatimewithtesters.com May 2011|21

Tim: ―Maybe we could arrange to have some of the testing group go upstairs to work

more closely with the programmers. You know, set up test environments, generate

data, set up some automated scripts—smoke tests to check that the installation…‖

Magnus: ―We can’t do that. You have high-level testing to do, and they have to get

their fixes done. I don’t want you to bother them; it’s better to leave them alone. You

can test the new build down here on Saturday.‖

Tim seems to be very aware of Agile software development, and knows that co-locating the whole

team is the right way to tackle the team problems they‘re facing caused by bad management. Again,

Magnus is not listening to the points from his tester. Instead he gives in to react upon Tim‘s try to

manage the project by asking for a change in the team settings. Far too often I have seen such

reaction where the project manager explains what type of testing is needed. If the manager starts to

make these decisions, you‘re seriously in trouble. A good testing lead would have explained Magnus

the flaw of his assumption, that high-level testing is sufficient. I wonder when this message will reach

management world-wide, as I see it far too widespread. ―Perfect Software… and other illusions about

testing‖ from Gerald M. Weinberg explains the underlying problems to this thinking.

Tim: (pauses) ―I’m not sure I’m available on Sa…‖

Magnus: ―Why not? Listen, with only two weeks to go, the entire

project depends on you getting the testing finished. You know as

well as I do that every code drop we’ve got from them so far has

had lots of problems. I mean, you’re the one who found them,

aren’t you? So we’re going to need a full regression suite done on

every build from now until the 13th. That’s only two weeks. There’s

no time to waste. And we don’t want a high defect escape ratio like

we had on the last project, so I want you to make sure that you

run all the test cases and make sure that each one is passing

before we ship.‖

Again, Magnus should pay attention to the project here. The cause here is the ignorance of relevant

facts. With the help of systems thinking, he could see the outcomes of his management decisions

here. Tim is not in charge to make the test cases pass. The bugs need to be fixed accordingly by the

developers. But based on the previous statements, they got higher priority for fixing the remaining

bugs. Weinberg called this reinforcing feedback loop that brings relief in short-term, but pain in the

long-run an addiction cycle. Tim is doomed when the developers won‘t start to take care for the

quality of their own product. The short-term relief caused by the mandated overtime for Tim does not

pay this one off, so in the long-term the team will continue to struggle.

Tim: ―Actually, that’s something I’ve been meaning to bring up. I’ve been a little

concerned that the test cases aren’t covering some important things that might

represent risk to the project.‖

Magnus: ―That might be true, but like I said, we don’t have time. We’re already way

over the time we estimated for the test phase. If we stop now to write a bunch of new

test scripts, we’ll be even more behind schedule. We’re just going to have to go with

the ones we’ve got.‖

 www.teatimewithtesters.com May 2011|22

―We don‘t have time to do X‖ almost always boils down to a management problem. Notice that

Magnus uses this phrase quite often in the overall conversation. Bringing in some NLP-approach from

Tim‘s side here could help. Magnus is probably put under pressure, either by time or by his upper

management. But he should relax and take conscious decisions rather than giving in. The first thing

that shuts down in a crisis is the measurement system as I learned from Weinberg in Quality

Software Management Vol. 4. And the situation never improves if you shut your eyes when faced

with problems. Looking away from the flaws in the written test scripts, will not improve them. Neither

will it improve the quality of the delivery. If there is a problem with the time, Magnus should tell Tim

to take the time to improve the scripts. Magnus appears to have not learned to resist this pressure.

Tim: ―I was thinking that maybe we should set aside a few sessions

where we didn’t follow the scripts to the letter, so we can look for

unexpected problems.‖

Magnus: ―Are you kidding? Without scripts, how are we going to

maintain requirements traceability? Plus, we decided at the beginning

of the project that the test cases we’ve got would be our acceptance

test suite, and if we add new ones now, the programmers will just get

upset. I’ve told them to do that Agile stuff, and that means they should

be self-organizing. It would be unfair to them if we sprang new test

cases on them, and if we find new problems, they won’t have time to

fix them. (pause) You’re on about that exploratory stuff again, aren’t

you? Well, that’s a luxury that we can’t afford right now.‖

From this statement it‘s obvious to me, that Magnus just jumped on the Agile wagon without

understanding, what it means. One of the core statements in the Agile manifesto is to embrace

change, even late in the development cycle. In addition, self-organization does not mean self-

leadership. The lack of leading the developers and the testers to success is causing here most of the

problems. Most probably Magnus‘ view here is shaded due to some emotional reaction to some

uncomfortable perception. Therefore he‘s not seeing the underlying problem here. I don‘t claim that

Magnus should be a Vulcanian, but he should at least know how to use his emotional reactions

wisely.

Tim: (pauses) ―I’m not sure I’m available on Sa…‖

Magnus: ―You keep saying that. You’ve said that every week for the last eight weeks, and yet you’ve

still managed to come in. It’s not like this should be a surprise. The CFO said we had to ship by the

end of the quarter, Sales wanted all these features for the fall, Andy wanted that API put in for that

thing he’s working on, and Support wanted everything fixed from the last version—now that one was

a disaster; bad luck, mostly. Anyways. You’ve known right from the beginning that the schedule was

really tight; that’s what we’ve been saying since day one. Everybody agreed that failure wasn’t an

option, so we’d need maximum commitment from everyone all the way. Listen, Tim, you’re basically

a good guy, but quite frankly, I’m a little dismayed by your negative attitude. That’s exactly the sort

of stuff that brings everybody down. This is supposed to be a can-do organization.‖

Tim: ―Okay. I’ll come in.‖

 www.teatimewithtesters.com May 2011|23

Biography

Markus Gärtner studied computer sciences until

2005. He published his diploma thesis on hand-

gesture detection in 2007 as a book.

In 2010 he joined it-agile GmbH, Hamburg,

Germany, after having been a testing group leader

for three years at Orga Systems GmbH. Markus is

the co-founder of the European chapter in

Weekend Testing, a black-belt instructor in the

Miagi-Do school of Software Testing, contributes

to the ATDD-Patterns writing community as well

as the Software Craftsmanship movement. Markus

regularly presents at Agile and testing

conferences, as well as dedicating himself to

writing about testing, foremost in an Agile context.

Markus can be contacted on Twitter @mgaertne

The aforementioned flaws boil down in Magnus‘ last

statement here. He does not know how to give in to

the pressure from multiple sources; he does not know

how to keep his emotion out of the way to do proper

management. Tim is just reacting here to the clear

blaming behaviour from Magnus, and maybe this is

the single alternative he now has in this conversation

– of course, besides leaving the company.

What I‘m really wondering now is, whether Magnus

had some education in managing software projects,

or if all his reactions were self-educated. What about

the manager(s) in your company? What is the

situation that you are facing? Do you find yourself in

the position of Tim? How would you react to Magnus‘

statements? What would be the outcome of that

conversation for you?

Feedback & Responses: April’11 Issue

I'm proud to be read in association with such terrific
authors. And I LOVE the artwork, throughout! I have
some comments on the articles.

Lanette's article is terrific, because it says what needs
to be said & nobody else is saying. We need more
participation, & we also need more conferences where
the participants really get to participate, rather than
simple sit in rows and listen to somebody's powerpoint
lecture.

Adam Yuret's article is again, right on topic. I can't tell
you how many times I've heard the assumptions he
lays open to inspection and rebuttal. A super job!

Brad Swanson's article deserves the same comments
as above. I love to read an author telling it like it is, not
hiding behind the usual myths that "we are doing Agile
Testing." Really terrific, from a guy who has obviously
been in the trenches.

I think Shmuel Gershon's article does an excellent job
of detailing all sorts of ways you shouldn't evaluate
testers, and he also explains what a hard job it is to do
properly. But I think the article misses the main point:
Why are we evaluating individual testers? Especially in
an issue that emphasizes the team-nature of properly
done testing? The article we want is "How do you
evaluate testing teams?" No, wait, after what we know
about Agile teas, why are we evaluating testers
separately from other team components? Sorry, but
this is a sore point with me.

Martin Jansson's article is also excellent. His one big
example is good, but I'd like to see at least one
example give support for each lecture point.

Joel's article is good where it's good, but I disagree on
a number of points, particularly that I don't think testers
should be prioritizing bugs (severity and criticality). I
think I cover this in my book,Perfect Software. It's just
not the tester's job, mostly because the tester does not
have the info to support these ratings

The Scrum Primer was as far as I've gotten so far, but
as usual, it does an excellent teaching job. I'm hoping
the authors will soon assemble all these articles into a
book.

So that's it for the present. I hope to review Tea-Time
on my blog soon. The world needs to know about it.

Thanks for the super job you're doing!

 - Jerry M. Weinberg

Hi Jerry,

We are honored that you consider Tea-Time worth
reviewing on your blog. The greatest honor we have
had yet. We also thank you for your time given to
review our April Issue.

 - Editor.

http://twitter.com/mgaertne

 www.teatimewithtesters.com May 2011|24

joke

I recently had to travel and when browsing through the bookstore on the airport, I stumbled upon the
book ‗Plato and Platypus walk into a bar‘. It‘s a small book, where philosophic principles are explained

through jokes (www.platoandaplatypus.com). I just kept grinning throughout the whole book, right up to
the glossary where even the definitions are explained with humor and a timeline where is stated that at
a certain time Occam invented the Gillette Mach 3 (Occam‘s razor).

So what has this to do with testing? Well actually nothing directly, but the book inspired me to think of
jokes that might spice up my lessons to learn others about testing or to explain things to my customer.

Mind though; jokes aren‘t appropriate at every moment so use them wisely and only if the situation is of
such that a joke cán be used.

So I ran through the book again and noted the jokes there and thought of them where they might come
useful during testing. I haven‘t written down a whole explanation at each joke to specifically highlight it‘s
use, cause I think you can think of the situations yourself and that makes good food-for-thought. Enjoy…

―Is that defect (or behavior) truly caused by that action?‖

Sometimes you have two similar outcomes that might let you think that the causes are the same (in
Philosophy this is called ‗Argument from Analogy‘). So here‘s the joke that shows that this isn‘t
necessarily true:

A ninety-year old man went to the doctor and said, ―Doctor; my eighteen-year-old wife is expecting a
baby.‖

The doctor said, ―Let me tell you a story. A man went hunting, but instead of a gun, he picked up an
umbrella, shot the bear and killed it.‖

file:///C:\TEG%20QA%20Related\Tea-time%20with%20%20Testers\Magazine\Mag%20versions\May%202011\www.platoandaplatypus.com

 www.teatimewithtesters.com May 2011|25

The man said, ―Impossible. Someone else must have shot

that bear.‖

The doctor said, ―My point exactly!‖

―Jumping to conclusions‖

There are situations that tempt us to jump to conclusions,
specifically when doing root cause analysis. Just because
something might seem that way doesn‘t mean it is that

way, sometimes the cause is something that might seem
highly unlikely or illogical to us.

―An Irishman walks into a Dublin bar, orders three pints of
Guinness and drinks them down, taking a sip from one, the a sip from the next, until they’re gone. He
then orders three more. The bartender says, ―You know, they’d be less likely to go flat if you bought

them one at a time‖.

The man says, ―Yeah, I know, but I have two brothers, one in the States, one in

Australia. When all went our separate way, we promised each other that we’d
all drink this way in memory of the days when we drank together. Each of
these is for one of my brothers and the third one is for me.‖

The bartender is touched, and says, ―What a great custom!‖

The Irishman becomes a regular in the bar and always orders the same
way.

One day he comes in and orders two pints. The other regulars notice, and
a silence falls over the bar. When he comes to the bar for his second

round, the bartender says, ―Please accept my condolences pal.‖

The Irishman says, ―Oh no, everyone is fine. I just joined the Mormon Church, and I had to quit
drinking‖.

I could just go on and on with citing jokes and relate them to situations that might occur during our
work as tester, but I encourage you to find them yourselves and make a collection that you can use

directly when the situation calls for it. I think that sometimes a joke can be more effective than any
other lengthy explanation and most of the times the message will also stick.

With regards to the last remark about lengthy explanations I have one final joke, also about (inductive)
logic and keeping things simple.

It doesn’t have to be complicated…

Holmes and Watson are on a camping trip. In the middle of the night Holmes wakes up and gives Dr.

Watson a nudge.

―Watson,‖ he says, ―look up in the sky and tell me what you see‖.

―I see a million of stars, Holmes.‖ Says Watson.

 www.teatimewithtesters.com May 2011|26

―And what do you conclude from that, Watson?‖.

Watson thinks for a moment. ―Well,‖ he says, ―astronomically, it tells me that there are millions of

galaxies and potentially billions of planets. Astronomically, I observe that Saturn is in Leo. Horologically,
I deduce that the time is approximately a quarter past three. Meteorologically, I

suspect that we will have a beautiful day tomorrow. Theologically, I see that God
is all-powerful, and we are small and insignificant. Uh, what does it tell you,
Holmes?‖

―Watson, you idiot! Someone has stolen our tent!‖

Okay, I said I had only one joke for you. But when looking into the book again, I
saw the next two, that might benefit you. The first is all about asking the right
questions, which are an essential part of our expertise of software testing, but

also might learn your client something when making a (change)request. The
seconds one is a good one when thinking about the context somebody is thinking
in and that it might not be the same as yours, that happens when one sentence

can have two meanings…

What is the question again?

A young married couple moves into a new apartment and decides to repaper the
dining room. They call on a neighbor who has a dining room the same size and
ask, ―how many rolls of wallpaper did you buy when you papered you dining

room?‖

―Seven‖ he says.

So the couple buys seven rolls of expensive paper, and they start papering. When
they get to the end of the fourth roll, the dining room is finished. Annoyed, they go

back to the neighbor and say, ―We followed your advice, but we ended up with
three extra rolls!‖

―So,‖ he says, ―that happened to you too…‖

That can mean two things…

In a bar is a piano player with a monkey that goes around after each number
collecting tips. While the piano player is playing, the monkey jumps up on the bar,

walks up to a customer, and squats over his drink, putting his testicles in the drink.
The man is miffed, walks up to the piano player, and says, ―Do you know your
monkey dipped his balls in my martini?‖.

The piano player says, ―No man, but hum a few bars, and I can probably pick it up‖

Sometimes a small Tea-time offers you something that definitely makes others‘ time worth enjoying.
I hope you had a nice Tea-time while reading this. 

 www.teatimewithtesters.com May 2011|27

 Biography

Nathalie has been in working at Capgemini since November

2004. She fulfills various roles within the Capgemini

organization on the Software Testing field of expertise, being

an ExpertGroupLeader of Testing Technologies and Processes,

the CoP Testing leader and Software Testing (and Quality)

advisor in the Dutch CTO office. Besides these internal roles

she also is active in the (inter)national Software Testing

Community, where she is a regular attendee and speaker at

various conferences and publicist in various magazines.

She is actively involved in the development of the new

international standard (ISO 29119) for Software Testing via

the Dutch NEN committee for Software & System

Development.

Nathalie can be contacted via her e-mail id funtestic.fanatic@gmail.com or on Twitter

@FunTESTic

mailto:funtestic.fanatic@gmail.com
http://twitter.com/FunTESTic
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com May 2011|28

In the School of Testing

 www.teatimewithtesters.com May 2011|29

cloud comp value

This is going to be series of articles that I‘d be writing for Tea Time with Testers. The idea is to get some

more awareness on the ‗cloud‘ which is becoming the buzz word for tomorrow. And if this is the space

where development is headed to, how can we testers be far behind.

Reminiscing history; ‗Cloud‘ is a term that has mesmerized me since my childhood. How could water

vapor converge to something so beautiful ?? …. It used to be my favorite pastime to watch the clouds be

blown about with wind making interesting shapes that I tried to identify with my childish imagination

mapping to various known things to me like shapes, animals etc.

With age, it was a fascination to dream if angels actually lived in clouds Or there was any truth in Enid

Blyton stories when she described a beautiful world up above the cloud with candies, pixies and

adventures in her novels .

Growing up, another big fun was to know how would the colors and feel of cloud impact the weather and

our day today life. But for each of these questions my first seeking point was my grandfather, parents or

other elder family members…..

Today, as I grow up in the role of a professional in IT field, I also realize that there is a new meaning to

the term ‗cloud‘ in my life…. This a term that started picking up few years back and more I heard of it,

more it intrigued me. And when I set out to seek an answer my first seeking point was google that

instantly lead to my next favorite Wikipedia 

 www.teatimewithtesters.com May 2011|30

And lo-behold …I was introduced to the world of cloud computing in 5th generation of computing. It also

made me go back to the nostalgic days of my learning on VM.

It was from Wikipedia that I learnt that ―The actual term "cloud" borrows from telephony in that

telecommunications companies, who until the 1990s primarily offered dedicated point-to-point data

circuits, began offering Virtual Private Network (VPN) services with comparable quality of service but at a

much lower cost. By switching traffic to balance utilization as they saw fit, they were able to utilize their

overall network bandwidth more effectively. The cloud symbol was used to denote the demarcation point

between that which was the responsibility of the provider, and that which was the responsibility of the

user. Cloud computing extends this boundary to cover servers as well as the network infrastructure. The

first scholarly use of the term ―cloud computing‖ was in a 1997 lecture by Ramnath Chellappa.

And I was WOW!! I like it …another Indian to get credit for a discovery 

When cloud was initially introduced, the concept was around making the customers free from nuances of

so many things that have to be dealt with on Infrastructure and environment part (like servers, networks,

services, storage devises and applications) from the end user perspective.

In layman‘s understanding world, ―cloud‖ can be used to describe the infrastructure and the network

which are not visible to the end user but provide service as needed by the user. It is like a big black-box
in the network domain.

Wikipedia further describes it as

Cloud computing describes a new supplement, consumption, and delivery model for IT services based on
Internet protocols, and it typically involves provisioning of dynamically scalable and often virtualized

resources. It is a byproduct and consequence of the ease-of-access to remote computing sites provided
by the Internet. This frequently takes the form of web-based tools or applications that users can access
and use through a web browser as if they were programs installed locally on their own computers.

Typical cloud computing providers deliver common business applications online that are accessed from

another Web service or software like a Web browser, while the software and data are stored on servers.

Why are we, the IT industry drawn to the cloud has been primarily coz the ROI benefit is immense to be

ignored. They also help provide us with related advantages like

1. Benefit on speed, complexity and cost

2. No investment required on additional hardware for storage, data management and servers etc

3. Providing independence to use the applications from anywhere and at anytime

4. Allowing to reach far and wide with internet connectivity

The cloud mainly comprises of 5 layers on an IP covering

1. Client

2. Application

3. Platform

4. Infrastructure

5. Server

http://en.wikipedia.org/wiki/Telephony
http://en.wikipedia.org/wiki/Virtual_Private_Network
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Business_application
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Server_(computing)

 www.teatimewithtesters.com May 2011|31

Biography

Dr. Meeta Prakash is a passionate

tester who strongly believes in

leadership by example. She is a PhD in

software testability. Has 12+ years of

experience in Software Testing and

Automation. Has worked on multiple

domains and technologies across

product and service industry in IT. She

has extensive experience in program

management, project management,

people management and defect

handling. She also has experience in

the Global Delivery Model of IT

Industry, Offshore Development Centre

and the Build Operate Transfer Model.

Test techniques and test process

improvement are her key interest

areas. She is trained by some of the

best teachers in software testing

industry and is an active member of

international testing community.

Meeta blogs at

testingthetestable.blogspot.com &can be

reached on Twitter @meetaprakash

You can use the link to read more on Wikipedia on cloud and its

basics.

The first technique to get popularized on cloud computing was

SAAS (Software As A Service). In this case the software is

placed in some central place and not hosted on local machines.

It is shared with users virtually based on their needs.

The next popular thing to be introduced was PAAS (Platform As

A Service). In this case it was not only the software but also

centralizing the end user‘s platform on which they were

working.

Further to this we were also introduced to IAAS (Infrastructure

As A Service) and CAAS (Communications As a Service) where

the Infrastructure and the communication were centralized for

the end users.

While the cloud has a lot of direct tangible benefits, there are

multiple risks associated with it to. These risks have a high

impact testing dependency. Some of the key risks can be

around the following areas

 Downtime of the environment

 Technology change on cloud that can impact the

solution which is hosted

 Control and safety of the data hosted on the cloud

 Security of sensitive information transfer

 Compatibility issues

I‘ll end this article here and my next article will talk more into

the intricacies of cloud which further we‘ll be exploring into

testing nuances.

Claim ur S.T.O.M.

Award.

Jump on to Page 59

http://testingthetestable.blogspot.com/
http://twitter.com/meetaprakash
http://en.wikipedia.org/wiki/Cloud_computing

 www.teatimewithtesters.com May 2011|32

v

Petteri

Introduction

There are a lot of discussions related to testing and quality assurance in the LinkedIn discussion

groups. Every now and then a topic pops up that attracts a lot of attention, plenty of comments and

even causes some heated debates. One such topic was the matter of test cases in agile(1). That

particular discussion thread went on for close to a year before showing any signs of fading. There

were a lot of good comments in the thread and I thought it would be nice to share some thoughts of

the discussion with people who were not aware of it. So when I was asked to write an article of a

topic of my choosing in this magazine I decided to share those thoughts here instead of blogging

them.

Many of the more heated comments in the discussion were a result of a communication gap that was,

at least partially, caused by a very clear distinction between people from different schools of software

 www.teatimewithtesters.com May 2011|33

testing. Personally, I associate myself strongly with the context-driven school of testing (though I do

not claim to speak for the school itself).

So, what is a test case anyway?

An interesting aspect of the discussion was that there were a lot of people talking about test cases

but there was no clear consensus of what constitutes a test case. This, obviously, was a cause for

some misunderstandings and heated comments since people were speaking in the same terms but

talking about entirely different things.

Some people stated that a test case refers to a predetermined sequence of steps to execute in set

order, with exact inputs to use and with expected results for each step. Others defined a test case as

a set of instructions to execute but leaving the testers with some room for exploration by not stating

exact inputs to be used. Yet others stated that all testing should be automated as much as possible

and a test case simply refers to a specific automation script.

Personally, I find these definitions lacking. They may be repeatable but running through the exact

same motions every time is unlikely to reveal anything new. Additionally, it is mind-numbingly boring

and a bored tester is more prone to making errors.

In my view, one of the main purposes of testing is to keep looking for new ways how an application

might misbehave. After all, our number one deliverable is information about the state of the

application so that the team can either proceed confidently or take corrective measures to address

discovered issues. Later on, the same information we testers help provide will be needed by the

management or a customer so they can make a well-informed, responsible decision about shipping.

You can not achieve that with strict test cases that allow no deviation – unless you increase the

number of such test cases to absurdity minus one to account for as many scenarios and exceptions

as possible.

Also, you can not automate intuition.

 The definition I use is that a test case is a representation of an idea for a test. These ideas can

then be used to support the actual testing depending on what tests are the most valuable or the

most important at any given point in time. There are no predetermined scripts so the tests can be

freely adjusted when a project‘s needs and requirements invariably change over time. Also, there are

no limitations as to where this approach can be used. You can use the ideas to support testing of a

specific functionality, the user interface, or the integrity of data transmitted via some underlying

communication protocol.

In brief: The idea is a guideline – it is a support that the tester can use to execute an actual test. The

ideas help the tester get the big picture before drilling down to the specifics in practice. More about

the practical implementations next.

Documentation in agile

One of the principles behind the agile manifesto says: ―Simplicity – the art of maximizing the amount

of work not done – is essential‖. This is also in line with lean principles where the aim is to minimize

the amount of unnecessary work and maximize the amount of value-adding work. Some people in

 www.teatimewithtesters.com May 2011|34

the discussion interpreted these to mean that test cases are not needed at all if your project model of

choice is any one of the agile variants around.

I disagree.

No agile method I am aware of encourages you to drop out documentation entirely but to simply use

it more effectively and for the right reasons, in the right place, at the right time. In my view, test

cases work as an excellent form of documentation of testing in agile. Especially when they are

written when needed and only contain just enough information to be useful. That is not enough,

however. At least personally, I have found it helpful if I also know where and what kind of issues an

application has had in the past. Bugs tend to cluster and sometimes old issues reappear, even after a

long time. So, couple the test cases with a bug tracking system and you will also have historical data

supporting your testing – provided the bug tracking system is used in a responsible, consistent

manner.

Other people in the discussion stated that regardless of project model you will need an exhaustive

set of test cases with exact steps to follow, inputs to use and results to expect.

I disagree again.

Not only does that claim directly contradict the agile manifesto (―working software over

comprehensive documentation‖), it also contradicts lean principles. You would be creating a lot of

waste in the form of an inventory of test cases that are not needed right now and with too much

detailed information in them that will rapidly deteriorate. Requirements change so the more detailed

test cases you have the faster and more often the details in them will become outdated. As a result,

the amount of non-value adding effort required increases – which is another form of waste in lean.

Based on the above, my personal approach is something that I call Iterative Test Development. It

means that when I read through a user story/use case or some specification, depending on the

project at hand, I write down some simple one-liners on what I think needs to be taken into account

when testing. These are my ideas for tests. I also often briefly discuss with other team members to

see if they can come up with an idea or two I may have missed.

After that, I will fill in the minimum required amount of details needed for each test case. That may

mean giving a URL to a web page, stating some specific constraint set by the application, or anything

else that a tester absolutely has to be aware of in order to be able to perform testing of that idea.

Summary

Agile models are widely misunderstood and often consciously abused for a number of reasons.

Testing in an agile environment is no exception. So, it is no wonder that many people are confused.

In my opinion, the discussion was a good proof of that. Not many of them go on actively for almost a

year.

Project models and testing methodologies may change but the ideas remain and my view is that test

cases have not become obsolete just because software is developed in a different way but it is likely

more effective to write them in the agile spirit as well. The point is to do it but not overdo it.

 www.teatimewithtesters.com May 2011|35

Biography

Petteri Lyytinen works as a Test

Manager in a small Finnish IT service

company called Uoma Oy.

He is a co-author of an upcoming book

titled ―How to Reduce the Cost of

Software Testing‖, a conference

speaker, blogger and a member of the

Miagi-Do School of Software Testing.

He was also nominated as a candidate

for Finnish ―Tester of the Year 2011‖.

Petteri can be reached via LinkedIn or

Twitter, under the name @plyytinen.

 While I realize, and readily admit, that this article has a

strong bias towards the context-driven school of testing,

my point was not to go through all of the views

presented in the discussion but to share my thoughts

inspired by it. Hopefully, I have given you some food for

thought.

For anyone interested, I have included a direct link to the

discussion below. It can be found under the group

―Software Testing & Quality Assurance‖.

Also, should you have any comments or questions

regarding this article, I would be happy to discuss them.

Reference

[1]:

http://www.linkedin.com/groupItem?view=&gid=55636&type=me

mber&item=18633715

Feedback & Responses:
April’11 Issue

Wow! I Am so Humbled! It makes me so proud to see my article
printed with such wonderful, trusted testers and authors who I've
admired for years. In the same issue to also be included with some
of the newest bold writers in the industry, like Adam Yuret is great
fun!

 - Lanette Creamer

Hi Lanette,

It’s our pleasure that you enjoyed writing a fresh article for Tea-time
with Testers. Thank You.

 - Editor.

 --

Great work guys! And for me at the right time. My organization is
going to implement Agile and the Scrum . Both articles are really
helpful!

 - Rajeshwari Yedravkar

Hi Rajeshweari,

We are glad to know that we could be of indirect help. Thanks for
writing us. Keep reading Tea-time .

- Editor

http://www.linkedin.com/groupItem?view=&gid=55636&type=member&item=18633715
http://www.linkedin.com/groupItem?view=&gid=55636&type=member&item=18633715

 www.teatimewithtesters.com May 2011|36

A Good Tester Asks Good Questions!

Testing a new application or product is always challenging. There‘s the challenge of working with new
technologies, new languages and even new platforms; forcing us to investigate and learn how to
cope with these new paradigms. But in a sense all these technical issues can be easily solved by

turning to the best-friend of most geeks (like me).

Chances are that if you are asking yourself what tools

to use in order to automatically test a new technology,
how to write tests for a specific scripting language, or
what are the weak spots on an operating system or

mobile platform; the answers will already be available
on the Internet, written by some early adopter or
tester who took on the challenge and posted a paper or

blog explaining what he did and how.

 www.teatimewithtesters.com May 2011|37

But the real challenge is coping with the things that cannot be searched on the Internet, and the
ones you will need to figure out by yourself. I am referring to the functional and business aspects of
your new application and the way your users will work and interact with your product once it is

released.

Who do I talk to in order to get information?

The first question to ask is ―Who do you need to talk to in order understand what to test?‖ and

the answer, at least in the beginning of the process, is simple – TALK TO EVERYONE YOU CAN.

When you start a new project or when you‘re asked to test a new application you need to start by

mapping all the people who can provide you with information. So make a list of everyone you can
talk to – Marketing, Development, Sales, Support, the CEO – and try to talk to each of them in order
to understand what you need to test (and why)!!!???

Even if you don‘t manage to talk to all of them (sometimes it can be tricky to get a 30 min session
with your CEO…) at least try to make the list and cover as many different people as possible in order

to get different perspectives and testing inputs.

What questions to ask?

Here is the hard part of the problem…

Imagine the following scenario:

You finally schedule the meeting with your CEO in order to get her inputs into what should be tested

in the system. You arrive at the meeting and ask her: ―Mrs. CEO, I have been given the task of
testing the new product, and I wanted to ask you what do you think should be tested?‖.
She stops and looks at you for a couple of seconds before answering: ―Well, I don‘t know, aren‘t you

the testing expert here…? I guess you better test everything, right? We don‘t want any bugs
slipping out the door, do we?‖

What‘s wrong with the scenario above? Well, basically we came to the person and asked him the
wrong questions…

If you pay attention to what the CEO said she was right, we are the testing experts. She expects you
to come up with what should be tested in the system, but on the other hand she is also living under
the illusion that everything should or even can be tested (something we all know is impossible and

even when possible, not economical in the long run).

The problem here is that we asked someone else to do our work for us, to come up with what to test,

instead of asking for the input we need to understand by ourselves what needs to be tested and how.
So going back to our CEO meeting scenario, what questions would have been valuable to ask? Well,
you need to ask for her inputs on the system, without even talking about the testing operations. Try

to understand what areas are important from a user perspective, or based on our competitive
advantages, or based on what makes our application unique, etc. You should focus your questions

on what is important for them.

Here are a couple of examples you can ask your CEO or VP Marketing or even Director of Sales:

- What are the most important aspects of our Product? The things that make us unique?

 www.teatimewithtesters.com May 2011|38

 Biography
Joel Montvelisky is a tester and test manager with over 14 years of experience in

the field.

He's worked in companies ranging from small Internet Start-Ups and all the way to

large multinational corporations, including Mercury Interactive (currently HP

Software) where he managed the QA for TestDirector/Quality Center, QTP,

WinRunner, and additional products int he Testing Area.

Today Joel is the Solution and Methodology Architect at PractiTest, a new

Lightweight Enterprise Test Management Platform.

He also imparts short training and consulting sessions, and is one of the chief editors

of ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under - http://qablog.practitest.com

and regularly tweets as joelmonte

- What areas in the product are the most widely used by our customers? What type of things would
make our users angry and make them choose not to work with our product?

- Where is the market focusing on today?

- How are we better than our competitors? What areas are the ones that are the most problematic in
our competitors, the same areas where we want to exceed?

- Are there any risks you think we should be especially aware off? Risks in our technology, risks in
the product?

Notice that we didn‘t ask them what to test, but we did ask what‘s important in their eyes (based on
their experience).

In the case of the CEO, Marketing and Sales functions we will want to talk about stuff that relates to
the functionality of the product. If we were to talk to our Support Team we would ask them questions
related to the areas in which our users find bugs, focusing both on the places where there are the

largest amount of bugs as well as where the most critical issues are found.

Finally, when talking to our development peers we will ask them about technological risks, as well as

places where they are making the most changes, or where the product is relatively weak or complex
and so where we should be putting more testing efforts.

The art of listening (and putting together the puzzle)

So what do you do with all the information? Basically you

need to take the stuff you got, and process it in order to
get a 360-degree reading of your application. What do I
mean by 360-degrees? I mean from all the different

angles that matter: Technology, Usability, Supportability,
Competitiveness, etc.
After all, your work is to test and to provide visibility into

whether the application is meeting the quality standards of
your users and stakeholders. The only way to do this is by
understanding what‘s important to all of them and creating

a test plan (or work plan!) that will effectively cover it.

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte
http://qablog.practitest.com/wp-content/uploads/2011/04/human_puzzle.jpg

 www.teatimewithtesters.com May 2011|39

 Readers are encouraged to read the first 3 parts of this series in our Previous Issues – Editor

 Starting the Next Sprint

Following the Sprint Review, the Product Owner may update the Product Backlog with any new

insight. At this point, the Product Owner and Team are ready to begin another Sprint cycle. There is
no down time between Sprints – Teams normally go from a Sprint Retrospective one afternoon into

the next Sprint Planning the following morning (or after the weekend).

One of the principles of agile development is ―sustainable pace‖, and only by working regular hours

at a reasonable level can Teams continue this cycle indefinitely.

Release Sprint

The perfection vision of Scrum is that the product is potentially shippable at the end of each Sprint,
which implies there is no wrap up work required, such as testing or documentation. The implication is
that everything is completely finished every Sprint; that you could actually ship it or deploy it

immediately after the Sprint Review. This means that each increment is complete slice of the final
product and gives complete transparency to the Product Owner and stakeholders. They know exactly
where they are at the end of every Sprint.

However, many organizations have weak development practices, tools and infrastructure and cannot
achieve this perfection vision, or there are other extenuating circumstances (such as, ―the machine

broke‖). In this case, there will be some remaining work, such as final production environment
integration testing, and so there will be the need for a ―Release Sprint‖ to handle this remaining

work.

http://www.teatimewithtesters.com/#!downloads

 www.teatimewithtesters.com May 2011|40

Note that the need for a Release Sprint is a sign of some weakness; the ideal is that it is not
required. When necessary, Sprints continue until the Product Owner decides the product is almost

ready for release, at which point there will be a Release Sprint to prepare for launch. If the Team has
followed good development practices, with continuous refactoring and integration, and effective

testing during each Sprint, there should be little pre-release stabilization or other wrap-up work
required.

Release Planning & Initial Product Backlog Refinement

A question that is sometimes asked is how, in an iterative model, long-term release planning can be
done. There are two cases to consider: (1) a new product in its first release, and (2) an existing
product in a later release. In the case of a new product, or an existing product just adopting Scrum,

there is the need to do initial Product Backlog refinement before the first Sprint, where the Product
Owner and Team shape a proper Scrum Product Backlog. This could take a few days or a week, and
involves a vision workshop, some detailed requirements analysis, and estimation of all the items

identified for the first release.

Surprisingly in Scrum, in the case of an established product with an established Product Backlog,

there should not be the need for any special or extensive release planning for the next release. Why?
Because the Product Owner and Team should be doing Product Backlog refinement every Sprint (five
or ten percent of each Sprint), continuously preparing for the future. This continuous product

development mode obviates the need for the dramatic punctuated prepare-execute-conclude stages
one sees in traditional sequential life cycle development. During an initial Product Backlog refinement
workshop and during the continuous backlog refinement each Sprint, the Team and Product Owner

will do release planning, refining the estimates, priorities, and content as they learn.

Some releases are date-driven; for example: ―We will release version 2.0 of our project at a trade-

show on November 10.‖ In this situation, the Team will complete as many Sprints (and build as many
features) as is possible in the time available. Other products require certain features to be built
before they can be called complete and the product will not launch until these requirements are

satisfied, however long that takes. Since Scrum emphasizes producing potentially shippable code
each Sprint, the Product Owner may choose to start doing interim releases, to allow the customer to
reap the benefits of completed work sooner. Since they cannot possibly know everything up front,

the focus is on creating and refining a plan to give the release broad direction, and clarify how
tradeoff decisions will be made (scope versus schedule, for example). Think of this as the roadmap
guiding you towards your final destination; which exact roads you take and the decisions you make

during the journey may be determined en route.

Most Product Owners choose one release approach. For example, they will decide a release date, and
will work with the Team to estimate the Release Backlog items that can be completed by that date.
In situations where a ―fixed price / fixed date / fixed deliverable‖ commitment is required – for

example, contract development – one or more of those parameters must have a built-in buffer to
allow for uncertainty and change; in this respect, Scrum is no different from other approaches.

Application or Product Focus

For applications or products – either for the market or for internal use within an organization – Scrum

moves groups away from the older project-centric model toward a continuous application/product
development model. There is no longer a project with a beginning, middle, and end. And hence no
traditional project manager. Rather, there is simply a stable Product Owner and a long-lived self-

managing Team that collaborate in an ―endless‖ series of fixed-length Sprints, until the product or

 www.teatimewithtesters.com May 2011|41

application is retired. All necessary ―project‖ management work is handled by the Team and the
Product Owner – who is an internal business customer or from Product Management. It is not
managed by an IT manager or someone from a Project Management Office.

Scrum can also be used for true projects that are one-time initiatives (rather than work to create or

evolve long-lived applications); still, in this case the Team and Product Owner do the project
management.

What if there is insufficient new work from one or more existing applications to warrant a dedicated
long-lived Team for each application? In this case, a stable long-lived Team may take on items from
one application in one Sprint, and then items from another in the next Sprint; in this situation the

Sprints are often quite short, such as one week.

Occasionally, there is insufficient new work even for the prior solution, and the Team may take on

items from several applications during the same Sprint; however, beware this solution as it may
devolve into unproductive multitasking across multiple applications. A basic productivity theme in
Scrum is for the Team to be focused on one product or application for one Sprint.

Common Challenges

Scrum is not only a concrete set of practices – rather, and more importantly, it is a framework that

provides transparency, and a mechanism that allows ―inspect and adapt‖. Scrum works by making
visible the dysfunction and impediments that are impacting the Product Owner and the Team‘s

effectiveness, so that they can be addressed. For example, the Product Owner may not really know
the market, the features, or how to estimate their relative business value. Or the Team may be
unskillful in effort estimation or development work. The Scrum framework will quickly reveal these

weaknesses. Scrum does not solve the problems of development; it makes them painfully visible,
and provides a framework for people to explore ways to resolve problems in short cycles and with
small improvement experiments.

Suppose the Team fails to deliver what they committed to in the first Sprint due to poor task analysis
and estimation skill. To the Team, this feels like failure. But in reality, this experience is the

necessary first step toward becoming more realistic and thoughtful about its commitments. This
pattern – of Scrum helping make visible dysfunction, enabling the Team to do something about it – is
the basic mechanism that produces the most significant benefits that Teams using Scrum experience.

One common mistake made, when presented with a Scrum practice that is challenging, is to change
Scrum. For example, Teams that have trouble delivering on their Sprint commitment might decide to

make the Sprint duration extendable, so it never runs out of time – and in the process, ensure it
never has to learn how to do a better job of estimating and managing its time. In this way, without
coaching and the support of an experienced ScrumMaster, organizations can mutate Scrum into just

a mirror image of its own weaknesses and dysfunction, and undermine the real benefit that Scrum
offers: Making visible the good and the bad, and giving the organization the choice of elevating itself
to a higher level.

Another common mistake is to assume that a practice is discouraged or prohibited just because
Scrum does not specifically require it. For example, Scrum does not require the Product Owner to set

a long-term strategy for his or her product; nor does it require engineers to seek advice from more
experienced engineers about complex technical problems. Scrum leaves it to the individuals involved
to make the right decision; and in most cases, both of these practices (along with many others) are

well advised. Something else to be wary of is managers imposing Scrum on their Teams; Scrum is
about giving a Team space and tools to manage itself, and having this dictated from above is not a
recipe for success. A better approach might begin with a Team learning about Scrum from a peer or

 www.teatimewithtesters.com May 2011|42

manager, getting comprehensively educated in professional training, and then making a decision as a
Team to follow the practices faithfully for a defined period; at the end of that period, the Team will
evaluate its experience, and decide whether to continue.

The good news is that while the first Sprint is usually very challenging to the Team, the benefits of

Scrum tend to be visible by the end of it, leading many new Scrum Teams to exclaim: ―Scrum is
hard, but it sure is a whole lot better than what we were doing before!‖

Appendix: Terminology

Burn Down
The trend of work remaining across time in a Sprint, a Release, or a Product. The source of the raw

data is the Sprint Backlog and the Product Backlog, with work remaining tracked on the vertical axis
and the time periods (days of a Sprint, or Sprints) tracked on the horizontal axis.

Chicken
Someone who is interested in the project but does not have formal Scrum responsibilities and

accountabilities (Team, Product Owner, ScrumMaster).

Daily Scrum
A short meeting held daily by each Team during which the Team members inspect their work,
synchronize their work and progress and report and impediments to the ScrumMaster for removal.
Follow-on meetings to adapt upcoming work to optimize the Sprint may occur after the Daily Scrum

meetings.

Done
Complete as mutually agreed to by all parties and that conforms to an organization‘s standards,
conventions, and guidelines. When something is reported as ―done‖ at the Sprint Review meeting, it

must conform to this agreed definition.

Estimated Work Remaining (Sprint Backlog items)
The number of hours that a Team member estimates remain to be worked on any task. This estimate
is updated at the end of every day when the Sprint Backlog task is worked on. The estimate is the

total estimated hours remaining, regardless of the number of people that perform the work.

Increment
Product functionality that is developed by the Team during each Sprint that is potentially shippable or
of use to the Product Owner‘s stakeholders.

Increment of Potentially Shippable Product Functionality
A complete slice of the overall product or system that could be used by the Product Owner or
stakeholders if they chose to implement it.

Sprint
An iteration, or one repeating cycle of similar work, that produces increment of product or system.
No longer than one month and usually more than one week. The duration is fixed throughout the
overall work and all teams working on the same system or product use the same length cycle.

Pig
Someone exercising one of the three Scrum roles (Team, Product Owner, ScrumMaster) who has

made a commitment and has the authority to fulfill it.

 www.teatimewithtesters.com May 2011|43

Product Backlog
A prioritized list of requirements with estimated times to turn them into completed product

functionality. Estimates are more precise the higher an item is in the Product Backlog priority. The
list emerges, changing as business conditions or technology changes.

Product Backlog Item
Functional requirements, non-functional requirements, and issues, prioritized in order of importance
to the business and dependencies and estimated. The precision of the estimate depends on the

priority and granularity of the Product Backlog item, with the highest priority items that may be
selected in the next Sprint being very granular and precise.

Product Owner
The person responsible for managing the Product Backlog so as to maximize the value of the project.

The Product Owner is responsible for representing the interests of everyone with a stake in the
project and its resulting product.

Scrum
Not an acronym, but mechanisms in the game of rugby for getting an out-of-play ball back into play.

ScrumMaster
The person responsible for the Scrum process, its correct implementation, and the maximization of

its benefits.

Sprint Backlog
A list of tasks that defines a Team‘s work for a Sprint. The list emerges during the Sprint. Each task
identifies those responsible for doing the work and the estimated amount of work remaining on the
task on any given day during the Sprint.

Sprint Backlog Task
One of the tasks that the Team or a Team member defines as required to turn committed Product
Backlog items into system functionality.

Sprint Planning meeting
A one-day meeting time boxed to eight hours (for a four week Sprint) that initiates every Sprint. The
meeting is divided into two four-hour segments, each also time boxed.. During the first four hours

the Product Owner presents the highest priority Product Backlog to the team. The Team and Product
Owner collaborate to help the Team determine how much Product Backlog it can turn into
functionality during the upcoming Sprint. The Team commits to this at the end of the first four hours.

During the second four hours of the meeting, the Team plans how it will meet this commitment by
designing and then detailing its work as a plan in the Sprint Backlog.

Sprint Retrospective meeting
A time boxed three-hour meeting facilitated by the ScrumMaster at which the complete Team

discusses the just-concluded Sprint and determines what could be changed that might make the next
Sprint more enjoyable or productive.

Sprint Review meeting
A time-boxed four hour meeting at the end of every Sprint where the Team collaborates with the

Product Owner and stakeholders on what just happened in the Sprint. This usually starts with
demonstration of completed Product Backlog items, a discussion of opportunities, constraints and

 www.teatimewithtesters.com May 2011|44

Pete Deemer is a founder of

GoodAgile, and co-founder of the

Scrum Training Institute.

Pete is an honors graduate of

Harvard University, and has spent

the last 22 years leading teams

building products and services at

global companies. Most recently

he served as Vice President of

Product Development for Yahoo!,

where he led Yahoo’s global

adoption of Scrum, which grew to

over 2000 developers worldwide

during his tenure.

He can be reached at his mail id –

petedeemer@scrumtraininginstitute.com

findings, and a discussion of what might be the best things to do next (potentially resulting in
Product Backlog changes). Only completed product functionality can be demonstrated.

Stakeholder
Someone with an interest in the outcome of a project, either because they have funded it, will use it,

or will be affected by it.

Team
A cross-functional group of people that is responsible for managing themselves to develop an
increment of product every Sprint.

Time box
A period of time that cannot be exceeded and within which an event or meeting occurs. For example,

a Daily Scrum meeting is time boxed at fifteen minutes and terminates at the end of fifteen minutes,
regardless. For meetings, it might last shorter. For Sprints, it lasts exactly that length.

Gabrielle Benefield is a Certified

Scrum Trainer based in London

offering classes in the United

Kingdom and Europe. Gabrielle

has over 18 years experience

building enterprise software and

web products at global

companies and is a founder of

the Scrum Training Institute, with

Jeff Sutherland, the co-creator of

Scrum, Pete Deemer and Jens

Ostergaard.

Gabrielle works with clients from

diverse industries including

banking, telecommunications,

and internet.

Craig Larman works as the lead

coach of lean product

development adoption at Xerox,

and serves as a consultant for

large-scale Scrum and enterprise

agile adoption at Nokia and

Siemens Networks (now, NSN), at

Statoil and Kongsberg Maritim

and Cisco-Tandberg (in Norway),

at Alcatel-Lucent, and at

Schlumberger and UBS, among

many other clients.

He can be reached at his mail id -

craig@craiglarman.com

Bas Vodde is originally from

Holland, however he has

lived in China, Finland,

China again and currently

lives in Singapore. He led

the Agile transformation

project at Nokia Networks

and later Nokia Siemens

Networks, and currently

works for his own company

called Odd-e. He's been

working with several large

products and several large

company change projects.

Bas can be reached at his

website www.odd-e.com

mailto:craig@craiglarman.com

 www.teatimewithtesters.com May 2011|45

 www.teatimewithtesters.com May 2011|46

The Diagnosis

One day Joe's roommate David was unwell. After a busy day at work, grappling with unruly software,
Joe returned to his apartment and took the stairs to his pad on first floor, and set his heavy laptop
back down. He opened the bag, searched for the house key and unlocked the door, welcomed by the

typical darkness that he was accustomed to.

He knew the placement of the light switches very well, as he stepped to turn it on, he heard a groan.

He froze, frightened by the noise; he quietly tip-toed to the light switch, turning it on rapidly. David
was an owl who worked late and came in after Joe. He was shocked to see his roommate David
moaning in pain.

As Joe touched David lightly, he opened his eyes lightly and said "Sorry man, it hurts, feels like I am

in labour" and smiled weakly. David loved life and everybody liked his funny bone humor. Joe smiled
and said "Let us go to a doctor now".

"No Joe, it was pretty bad couple of hours ago, I have taken medication and it is a lot better now. I
have found a comfortable posture and would not mess with it right now. Let us go in the morning".
"Ok. Do you need something?" "No, Thanks." said David as he curled up and continued to take deep

breaths to alleviate the pain.

 www.teatimewithtesters.com May 2011|47

Joe left, washed up and went to the bed. He was feeling bad and slightly worried. Slowly his thoughts
drifted back to office. He was getting into a new project in a domain where he had never worked
before. This was a new product, he was a little lost and had trouble understanding the application.

There was very little written documentation and the key folks were in a different continent. Today
afternoon when it was going nowhere, he had walked into his manager's office and whined.

"Well, you have to be creative and got to come up with good questions."

Joe had played with a similar application and seemed to understand some parts of the application.
But he was not able to visualize the application and its usage in its entirety. Slowly he drifted into
sleep. He was awakened by sound of constant flushing in the adjacent bathroom.

"David - are you ok?" asked Joe.
"Yeah man" said David softly. "Guess something that I ate yesterday is really working out my

system". As David came out, he looked pale and tired, hobbled to the nearest chair, sat down and
laid his head into his cupped hands.

"Boy you look terrible, guess we better go see the doc now".
"Yeah, what time is it now?"
"8:30"

In a few minutes, they were out of the apartment, hailed a taxi and was in GoodLife hospital at 9:00.

"Hi, Is the doctor in?" Joe asked the pretty lady behind the front desk.

"No Sir, he is expected any moment. You are the first one and I will call you as soon he is in."

After a few minutes, they were ushered in to the office of Dr Holmes.

"Good morning. David, I presume you have serious pain in the abdomen with frequent vomiting in
the morning" said the observant doctor surprising David thoroughly.

"Yes doctor, but how did you know my name?" David asked, not realizing that his name with #8 was
displayed prominently on the back of his T Shirt.

David was an avid basketball fan and played for the local city team.

 Dr. Holmes smiled and got onto the business.

"David, when did the pain commence?"
"Couple of days ago doctor, it became intense yesterday evening"

"So what do you do David?"
"I work in an ad agency as a copywriter"

"Late nights and irregular sleep?"

"Yes doctor, the day starts late and it is pretty long"

Dr. Holmes asked David to lie down and gently touched the lower part of abdomen and David winced.

 www.teatimewithtesters.com May 2011|48

 Biography

 T Ashok is the Founder & CEO of STAG Software Private Limited.

Passionate about excellence, his mission is to invent technologies to
deliver “clean software”.

He can be reached at ash@stagsoftware.com.

As Dr. Holmes continued to ask questions on family history, what he ate yesterday, prior history of
sickness, Joe was transported to a different world. A reflective person that he was, he was thinking
about the problem of understanding the application.

He realized that Dr Holmes was employing a pattern of questioning that was structured yet creative.

Joe knew a bit of mind mapping, and realized that the doctor was seeking information on some
standard aspects like family background, lifestyle, food habits, recent activities and came up with
questions when he connected these aspects. He also realized that certain answers resulted in more

questions. Slowly the mist lifted and he realized that as a tester, he also needed blobs of information
like customer types, types of end user, #users/type, profile of usage, key attributes, architecture,
stage of development, relative ranking of the features/ users, interaction between features, feature

volatility, deployment environment. It dawned on him that these blobs of information and their
connections would enable him to construct a "Landscape" of the system helping him to visualize the
system..

It flashed on him that good questions can be asked when these connections are
attempted to be established.

"Do you have any questions David?" asked Dr. Holmes.

"YES!" said Joe emphatically as he thumped the Doctor's desk, his reverie
broken. Realizing his faux-pas, he sheepishly looked at a confused David and an

amused doctor.

"Guess you solved the problem. Good understanding requires an open mind,

and connecting the dots‖ said Dr Holmes surprising Joe.

―Wow, you are a mind reader‖ exclaimed Joe. ―Guess you are Sherlock Holmes!‖

Dr Holmes smiled and said ―Good understanding is like mind reading. Good Day Gentlemen‖.

Joe escorted a bewildered David out of the doctor's office, said ―Have a great day‖ loudly to the
pretty receptionist, winking at the elderly lady seated past the reception.

Joe knew the answer to his problem and looked forward to a lovely day at work.

P.S: Landscaping is a technique inspired by Mind mapping and is a core concept in HBT (Hypothesis

Based Testing). It enables a scientific approach to questioning that aids in rapid understanding of a
system. I will be talking more about this in my next article for Tea-time with Testers’ June‘11 Issue.

Note: Drop me a note at ash@stagsoftware.com or tweet me @ash_thiru if you liked this. Thank you.

mailto:ash@stagsoftware.com
http://twitter.com/Ash_Thiru
http://www.stagsoftware.com/

 www.teatimewithtesters.com May 2011|49

Tool Watch

 www.teatimewithtesters.com May 2011|50

 Tea-time with Testers Rating:

practitest

Apart from the Requirement gathering, writing Test Cases & raising Bugs, we Testers also perform

one equally important job i.e. Test Execution & Management in Test Management Tool.

No doubt, we all learn & adopt ourselves best to work with different Test Management Tools. But

have we ever thought of something much simpler, interesting, innovative and definitely astonishing?

Well…won‘t it be an easy job just to have a look on Auto Generated Graphs of your Test Execution

Status, Bug Statistics, Project Assignments to specific group and much more, that too just with a
single sign on?

 What if your tool itself tells you that the bug you we are about to write is a duplicate of an

existing bug?

 What if you can set the visibility of your project to other users?

 What if your tool is intelligent enough to handle the parent-child hierarchy of issues?

 What if your tool provides the flexibility to the views according to the user using it?

And…How about managing your Tests and Bugs from your very own I-PAD?

Well, PractiTest is the Tool. Let us walk you through this best Test Management Tool we have ever
come across.

We will continue from the features that we have covered in April-2011 Issue of Tea-time with Testers.

PART 2

http://issuu.com/teatimewithtesters/docs/tea-time_with_testers_april_2011__year_1__issue_ii

 www.teatimewithtesters.com May 2011|51

3. Key Features of PractiTest

 Flexibility in User Login :

Within a single login, a provision to switch between different projects with different role (Admin/Tester/Developer)

is given.

 Traceability

You can create traceability links to Tests in the

system; this way you can keep track of your

application and project‘s status, based on the

execution and results of the tests that are linked

to your requirements.

Here is how you create traceability links:

1. Go to the ―Traceability‖ sub-tab in

―Requirement‖ tab and choose the tests

related to the requirement by either adding

its ID, or clicking on the ―show tests‖ link to

choose the relevant tests from the list.

2. You can also link between tests and

requirement from the tests themselves.

To do this, go to the traceability sub-tab within a

test. Enter a requirement‘s ID or click on the

―show requirements‖ link to choose a

requirement from the list.

 www.teatimewithtesters.com May 2011|52

 Views and cascading of views :

Views can be used to manage all phases of your

Software Testing Life Cycle, and also can

customize views and filters for each application

module.

 Note: Views are also used in the system to create reports, dashboard entities, etc.

To create a view (for example, for issues):

1. Go to the Issues tab and then click on the

―Custom Views‖ sub tab.

2. Create a child view by clicking on the ―add

child view‖ button next to the parent

view. For example, the view we create will

be under ―All issues‖. You can create a

child view under any existing view.

3. Choose the View Type from the drop-

down list and enter a name for your view

in the field below.

Note: The content of this field is chosen

automatically when you create views from

the view tree.

4. Enter a name for your view. It‘s best to

use a descriptive name, for example,

―open issues‖.

5. In the Field Selector section, choose the

columns you want displayed on your grid

by moving them to the Selected Fields

box, using the blue arrow.

6. You can also rearrange the selected fields‘

order by pressing the arrows on the right

of the Selected Fields box.

7. The filter defines the issues that will be

displayed in the view. Click the ―Add AND

filter‖ link and choose the criterion you

would like to filter the view by.

8. In this example, the filter will only show

bugs with status ―opened‖

Note: you can add several criteria to your

filter.

9. Finally, press the Create View button at

the bottom of the page to save your view.

You will be redirected to the relevant

library.

 www.teatimewithtesters.com May 2011|53

 Import Test case

One can start using PractiTest without losing

any of the existing data. Simply import the

requirements, tests, test steps or issues into

PractiTest from any CSV file.

One can create a CSV file using MS-Excel or

Open-Office. Just click on ―Save As‖, and select

―CSV‖.

To import your data, follow these easy steps.

1. Go to the Settings link at the top right side

of your screen, and then go to the Project

and Import sub-tab.

2. At the bottom of the page, you can choose

which entities you would like to import into

PractiTest. You can import issues, tests, test

steps and requirements.

 3. Select the CSV file you‘d like to import the

 data from.

4. Map the columns in your existing file by

choosing the column for each of the system

or custom fields you‘ve already created.

There‘s no need to make changes to your

CSV file!

 For example, let‘s say this is your excel file.

 www.teatimewithtesters.com May 2011|54

Mapping will be done according to your current columns on the CSV file. In this example, the ―Title‖ field is in

column A, the ―Description‖ field is in column B, the ―Status‖ field is in column D, etc.

Note:

An asterisk * denotes mandatory fields. Your imported data will be saved correctly even if these fields are empty

or missing altogether; however, the next time you edit one of these issues, you will be required to select values

for the mandatory fields before saving.

5. Note that in this example, the first row in the CSV file is headlines. In this case, you can check the ―ignore

first row‖ checkbox at the bottom of the page. You can also choose if you‘d like to receive mail notifications of

this operation for every imported entity. The default value is to disable mail notifications.

6. Click on the Import button at the bottom of the page. Once the import is completed you will be taken to a

results window.

 EXPORTING DATA

Export to CSV (Excel)

CSV exports are available in the

requirements, test library and issues

modules. Using the ―Views and

Reports‖ button in each module, you

can export the information to CSV.

1. Go to the Issues tab (for

example)

2. Make sure to select the view you

want to export to excel by

choosing it from the View Tree

on the left side of the screen.

Note: this step is only relevant

for Issues. In other modules, all

items will be exported regardless

of your current view.

3. Press the Views & Reports button

& select the Export as CSV

option.

Note: You will be prompted to open

the file or save it to your desktop.

The file generated by PractiTest is in

CSV format (Comma Separated

Values) and can be opened using

multiple applications, such as MS-
Excel.

 www.teatimewithtesters.com May 2011|55

Stats

Stats are available in test library and test sets & runs tabs.

1. Go to the test library.

2. Choose the relevant data you‘d like to see in the Stats, by selecting the checkboxes on the left side

of the test library grid.

3. Click on the ―Stats‖ link. You will be redirected to a new window where you can see your stats.

4. Click on the link to view the Run status numbers by ―Assigned To‖.

5. You can also see execution trends by choosing a date range to view the relevant data for these

dates.

 Customizing your fields

Custom fields allow you to customize your

entities (requirements, tests, test sets and

issues) to match your project and process‘

needs.

To create a new field, for example, to create

a list of all the browsers supported by your

system.

1. Click on the Settings link at the top right

side of the screen

2. Go to the Project Fields sub tab

3. Under ―Custom Fields‖, press the Create

New Custom Field link at the bottom of

the list.

 www.teatimewithtesters.com May 2011|56

6. Under ―Field linkage to entities‖, select the entities you want to assign this new field to, as well as whether it is

mandatory or if it has a default value. In this example, we made the browser field available for issues, tests and

requirements, and we made it mandatory for issues.

7. Press the Submit button to be taken back to the list of Custom Fields already defined. Your new custom field

has been added to the chosen entities; here you can see it was added to Issues as a mandatory field.

 Customizing users & groups and give permissions

Groups help organize users and control their permissions Within PractiTest.

Follow these steps to create a new group.

1. Go to the Settings link and then to the Users &

Groups sub tab

2. On the right side of your screen you can add

new users and create groups. Add a new user

by entering their email in the ―add a new user‖

section. Choose the group you would like to add

the user to. Users are added by default to the

Testers group.

4. Enter the values for your list (for example IE, FF, Safari) and press the Add value link after each value.

5. Enter the name of your field and choose the value List from the Field Format drop-down list. (This is where

you can choose different formats if you want to add, for example, a text field, a memo field, a checkbox, etc.)

Note: You can re-order the display of the values using the arrows next to the list, as well as delete unwanted values using the delete value

link.

 www.teatimewithtesters.com May 2011|57

 Customize your workflow

PractiTest allows to customize issues‘ Life-Cycle by adding statuses to the workflow or editing existing ones. For

example, add a new status called ―reopened‖, and define that issues can only go from ―closed‖ and ―fixed‖ to

‖Reopen‖ .

Note:

When new users are added to PractiTest, the users receive an Email with their initial login info. However, when

adding existing users to an additional project, they will not receive an Email, and will be able to see the project

on their ―project list‖ the next time they log into PractiTest, or after refreshing the screen.

3. Create a new group by entering a name for the group and clicking the Create group button.

4. To edit a group‘s permissions and users, click on the ―edit‖ link next to the group‘s name. To add a user,

simply choose the user‘s name from the dropdown list and click on the ―Add‖ button. Use the checkboxes to

determine the group‘s permissions.

Note: you can add a user to more than one group.

 Go to the Settings link & then to the Project

Workflow sub tab.

 Select the value issue from the Entity Type

drop-down list.

 Type the name of your new status (for example,

‗Reopened‘) and press the Add button. The

new status is added at the bottom of the list

 Define the transitions to your new status by

selecting values in the appropriate status, based

on your organization‘s Bug Lifecycle.

Note:

The stats displayed in the transitions box on the

right of each status name indicate the states to

which the issue can be transitioned to. Select

additional states by choosing them from the drop

down list and pressing the Add link.

For example, we will make it possible to change a

status from ―reopened‖ to ―assigned‖ and to
―rejected‖ only.

If we decide that an issue can go from ―closed‖ and ―fixed‖ to
―reopened‖, we should add this transition to these statuses as
well.

You can limit the groups that can perform the transition by
selecting them from the selection box and clicking ―Add‖.
By default, each transition can be made by all groups.

In this example, the status ―closed‖ can be changed to ―opened‖

by ALL GROUPS. Choose a group from the dropdown list to
change this default value.

 www.teatimewithtesters.com May 2011|58

Biography

Sharmistha Priyadarshini is currently

working as a Test Engineer at Tata

Consultancy Services (Mumbai).

Sharmistha is die hard lover of Data Base

testing as she finds is challenging. Being

a programmer in past she now loves

software testing too as it gives her more

scope for analysis.

Sharmistha can be reached via her mail

id sharmistha.priyadarshini@tcs.com

Biography

Juhi Verma is an Electronics Engineer

working with Tata Consultancy Services

(Mumbai) as a Tester. During her spell she

has also worked as a programmer but she

now prefers software Testing over

programming as it’s a dual fun, she says.

Testing is her passion and she enjoys

participating and conducting testing

related activities.

Juhi also works as a Team member at

Tea-time with Testers.

She can be contacted at her personal mail

id juhi_verma1@yahoo.co.in or on Twitter

@Juhi_Verma .

mailto:juhi_verma1@yahoo.co.in
http://twitter.com/Juhi_Verma
http://twitter.com/TtimewidTesters

 www.teatimewithtesters.com May 2011|59

Puzzle

Introducing a new way of claiming your

Smart Tester of The Month Award.

Send us an answer for the Puzzle bellow

b4 10th June 2011 & grab your Title.

Gear up guys...

........Time To Tease your Testing Bone!

 www.teatimewithtesters.com May 2011|60

 www.teatimewithtesters.com May 2011|61

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for more than 5 years.

He is currently hosting European Weekend Testing.

He considers himself a context-driven follower and he is a fan

of exploratory testing.

He tweets as @testalways. You can find some interactive

testing puzzles on his website www.testalways.com

Example:

Send us your answer with proper justification to teatimewithtesters@gmail.com with Sub: Testing Puzzle

http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com May 2011|62

o

Glad to receive you

ezine to stay tuned

with testing related

trends & discussion

- Jon

― Great magazine & concept.‖

 -Lee Gilchriest –firstrepublic.com

―Read past months - good content,

plenty to read/review. Thx S‖

 - Scott Green -playup.com

 ―Nice magazine!‖

 - Huib Schoots

―Your magazine is a pleasure to read.

- an agile software developer .

 - Wim van de Goor

―I appreciate your efforts in promoting

the software testing community.‖

 - Ramkumar – Stagsoftware.com

Dear Mauri,

Thanks for counting on us. We shall provide you with the best
we can.

-Editor

 www.teatimewithtesters.com May 2011|63

If you have any questions related to the

field of Software Testing, do let us know.
We shall try our best to come up with

the resolutions.

- Editor

 www.teatimewithtesters.com May 2011|64

http://twitter.com/joelmonte
http://tashok.blogspot.com/

 www.teatimewithtesters.com May 2011|65

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Kavitha Deepak (Bristol, United Kingdom)

Debjani Roy (Didcot, United Kingdom)

Kavitha Debjani

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Cover Page – Master Merchants International

Mascot Design & Online Collaboration:

Juhi Verma (Mumbai, India)

Romil Gupta (Pune, India)

 Juhi Romil

 Tech -Team:

Subhodip Biswas (Mumbai, India)

Chris Philip (Mumbai, India)

Gautam Das (Mumbai, India)

Subhodip Chris Gautam

 www.teatimewithtesters.com May 2011|66

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982?v=info
http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
mailto:teatimewithtesters@gmail.com?subject=My Feedback on "Tea-time with Testers"

