

 www.teatimewithtesters.com November 2012|2

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com November 2012|3

Tea-time with Testers.
Hiranandani, Powai,
Mumbai -400076

Maharashtra, India.

Email: editor@teatimewithtesters.com
Pratik: (+91) 9819013139

Lalit: (+91) 9960556841

This ezine is edited, designed and published by
Tea-time with Testers.

No part of this magazine may be reproduced,
transmitted, distributed or copied without prior written

permission of original authors of respective articles.

Opinions expressed in this ezine do not necessarily

reflect those of the editors of Tea-time with Testers.

mailto:editor@teatimewithtesters.com

 www.teatimewithtesters.com November 2012|4

Edi torial new

„If…‟ – for Software Testers

I have a question for you.

“Whenever you feel low, what is that thing which sets your mood, motivates you and

makes you feel alive again?”

For me, it is good music, novels and one poem which is close to my heart. If you ask me

which poem is it ? My answer would be ‘If…’ by Rudyard Kipling. This poem shows us

the way to deal with hard times and situations around us.

On similar lines, most of the times we (testers) come across situations which we can‟t

control and people that we can hardly change. Shall we give up and change our path at

such times? Of course not!

When I was reading this poem last time, a funny thought sprigged in my mind. “If this

poem would have been written for testers, how would it have looked like?”

I replaced some words in original poem and here is what I came up with. Hope you‟ll

enjoy it

 ‘If…’ – for Software Testers*

If you can keep your head when stakeholders around you

Are losing theirs and blaming it on you,

If you can trust yourself when all developers doubt you,

But make allowance for their doubting too;

If you can question and not be tired by questioning,

Or being lied about, don't deal in lies,

Or being neglected, don't give way to neglecting,

And yet don't look too good, nor talk too wise:

If you can think beyond the specifications - and not make just FSD your master;

If you can find bugs - and not make just bug-finding your aim;

If you can meet with very good product and a broken code

And treat those two impostors just the same;

http://www.davidpbrown.co.uk/poetry/rudyard-kipling.html

 www.teatimewithtesters.com November 2012|5

If you can bear the rejection of bug you have raised

Misunderstood by Devs to keep the count low,

Or see the analysis you gave your time to mistaken

And stoop and build it up with facts that flow:

If you can make one heap of all your test cases

And risk it on one turn of requirement change,

And lose, and start again at your beginnings

And never breathe a word about your rework;

If you can talk with team and keep your virtue,

Or walk with thought leaders- nor lose the common touch,

If neither developers nor fellow testers can hurt you,

If all stakeholders count with you, but none too much;

If you can fill the unforgiving minute

With sixty seconds' worth of great test ideas -

Yours is the product and everything that's in it,

And - which is more - you'll be a Good Tester my friend!

Enjoy another nice issue of Tea-time with Testers!

Yours Sincerely,

- Lalitkumar Bhamare

editor@teatimewithtesters.com

* This customization is purely for a light humor. We do not intend to disrespect the original poem by any means.

file:///F:\Tea-time%20with%20%20Testers\Magazine\Mag%20versions\March%202012%20Issue\editor@teatimewithtesters.com
mailto:fndlalit@yahoo.co.in?subject=Editorial Inquiry
http://twitter.com/Lalitbhamare
http://www.facebook.com/fndlalit

 www.teatimewithtesters.com November 2012|6

 topIndex P Quicklookfinal i INDEX

The Rise of Zombie Epidemic – 19

The Best and Most Humble Test Team in the

World – 26

To Protect and Serve -32

How do You Solve A Problem? – 36

Cow_Magnets#_Use_

 www.teatimewithtesters.com November 2012|7

I mage: www.bigfoto.com

NEWS

 The Global Software Testing Services Market to Grow At A CAGR Of 5.16 Percent

By Business Wire

Research and Markets has announced the addition of the "Global Software Testing Services Market 2011-

2015" report to their offering.

One of the key factors contributing to this market growth is the reduction in operational time and cost. The

Global Software Testing Services market has also been witnessing a shifting focus toward cloud-based testing.

Moreover, the shortage of skilled labor could pose a challenge to the growth of this market.

Key vendors dominating this market space include Accenture plc, Cognizant Technology Solutions Corp., IBM

Corp., and Wipro Ltd.

Other vendors mentioned in the report: Cap Gemini SA, HP Co., Infosys Ltd., TCS Ltd., Micro Focus

International plc., HCL Technologies Ltd., AppLabs Technologies Pvt. Ltd., Logica plc., Software Quality

Systems AG, Thinksoft Global Services Ltd., Tech Mahindra Ltd., and Hexaware Technologies Ltd.

Commenting on the report, an analyst from TechNavio's IT Services team said: ''The Global Pure Play

Software Testing Services market is witnessing a trend of vendors offering cloud-based testing solutions. By

moving IT infrastructure to the cloud, organizations reduce the capital investment as well as the cost of

maintenance, security, and infrastructure. Furthermore, with the testing taking place over the cloud, testers

can work independently to decrease the testing time by accessing the tested software on the cloud even in

the product development stage.''

http://www.bigfoto.com/
http://www.researchandmarkets.com/research/mw7xgt/global_software

 www.teatimewithtesters.com November 2012|8

According to the report, one of the major drivers in this market is the reduction in operational time and

cost. As a result of the intensifying competition in the Global Software Testing Services market, companies

are increasingly focusing on product development and R&D to develop a superior-quality product. As a

result, companies are increasingly hiring independent testing vendors that specialize in testing services and

possess the necessary tools required for testing.

Further, the report discusses that one of the major concerns for the market is the shortage of skilled labor.

For more information visit http://www.researchandmarkets.com/research/mw7xgt/global_software

Original News Report - http://www.sys-con.com/node/2437229

Sp

http://www.researchandmarkets.com/research/mw7xgt/global_software
http://www.sys-con.com/node/2437229
mailto:contact@teatimewithtesters.com

 www.teatimewithtesters.com November 2012|9

How would you like to reach over 19,000 test professionals across

97 countries in the world that read and religiously follow

“Tea-time with Testers"?

How about reaching industry thought leaders, intelligent managers

and decision makers of organizations?

At "Tea-time with Testers", we're all about making the circle

bigger, so get in touch with us to see how you can get in touch with

those who matter to you!

ADVERTISE WITH US

To know about our unique offerings and detailed media kit

write to us at sales@teatimewithtesters.com

Want to connect with right audience?

mailto:sales@teatimewithtesters.com

 www.teatimewithtesters.com November 2012|10

Note for Prize Winners: We will inform you about your prize details

via e-mail.

Names of other winners who had sent us correct answers will be

declared on our Facebook Page.

https://www.facebook.com/TtimewidTesters

https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com November 2012|12

 Intelligence, or Problem-Solving Ability (Part 1)

Working with programmers, is working with people possessing above average in intelligence.

Although no formal study has been reported on the subject, we could make a fair guess that the

average programmer's IQ is well above the average even of college graduates, and that the more

successful programmers, by and large, have an even higher average 1Q. Not, of course, that
intelligence is all there is to the matter—we have long since disposed of that fallacy. But since above

average intelligence is something most programmers possess, we are sure to understand programming
better if we look at it in the context of how programming work is affected by intelligence, whatever that

may be.

PSYCHOLOGICAL SET

For certain types of error location activities, psychological set proves a major impediment. Numerous
experiments have confirmed that the eye has a tendency to see what it expects to see. For instance,

when looking rapidly over lists of words, a subject may encounter a "word" which is actually not a word
at all, such as "dack." The first influence of set can be seen in the fact that the subject sees this

nonword as a word, for he finds it among words and thus has a predisposition, or set, to see it as
aword. Secondly, if the subject has been told that the words in the list have to do with "animals or

birds," he is quite likely to read "dack" as "duck." If, on the other hand, he has been told the words
have to do with "means of transportation," he will much more often read it as "deck" or "dock."

 www.teatimewithtesters.com November 2012|13

Anyone who has ever tried proofreading is aware of this type of set phenomenon, and anyone who has

ever tried to locate a mistyped word in a computer program is more than just aware—he is scarred. In
such tasks as proofreading, it is hard to measure the difficulty in overcoming the effects of set, for texts

sufficiently perfect to serve as standards and sufficiently difficult to simulate actual condit ions are

difficult to obtain. Not so in computer programs, for the computer provides an automatic testing ground

for the efficacy of proofreading.

The testing a computer can provide for this type of error in its own programs has quite a range of
subtlety and power. On the simple end of the range lie the tests for unrecognizable syntax, misspelled

keywords, and ill-formed constants. The type of cross-checking provided by symbol tables, cross-
reference lists, and flow analyses go one step deeper, but are still essentially static. Dynamic checking

for uninitialized variables, flow-tracing, and subroutine call-tracing contribute to cleaning up such
typographical errors as may have sifted through the other levels. Nevertheless, no automatic system

can be guaranteed to locate all such errors, and we may expect certain improvements by attention to
psychological facts when the programs are written or languages are designed.

Related to the concept of "set" is the concept of "distance." Not all misreadings are equally likely,
regardless of the set of the reader. Thus, "daxk" is less likely to be mistaken for "duck" than was

"dack," because the reader will have to make two letter transformations instead of one. In information
theory, two "messages"—which may be taken to be strings of bits—-have a "distance" that can be

obtained by counting the number of bit positions in which they differ. The importance of this measure is
that it indicates the number of bits that would have to be changed to transform the one message into

the other—as might happen if noise were present in the transmission.

For the symbols of a programming language, just as for the words in a natura l language, such a simple
measure of "distance" can only be taken as a first approximation to the likelihood that one symbol will

not be mistaken for another. For instance, psychological tests have shown a tendency for initial and
final letters to be more significant in making distinctions.

Thus, "gucr" would be much less likely to be seen as "duck" than would "daxk," even though they each

differ in exactly two letters from "duck." Moreover, each pair of symbols cannot be assumed to be the
same distance apart as each other pair.

Although the exact relationship must depend upon the typescript used, letter pairs such as "x" and "k"

would seem to be more readily confounded than such pairs as "x" and "o."

One of the first lessons the novice programmer learns is to make careful distinction between his
handwritten "zero" and "oh," if someone else is keying his program. This sort of caution existed before

computers, when typesetting was done by hand using slugs of movable type. One particularly common
error was to pick a letter's mirror image—d for b, and b for d. From this practice, we derived the

expression: "Mind your p's and q's!"

Most programmers, unfortunately, never advance much beyond this point in developing habits that will
facilitate the conquest of set as a programming hazard. For example, no matter how carefully one

writes the zero in the symbol "ST0P," it will be mistaken for an "oh" all along the line. The psychological
distance between "STOP" and "ST0P" is so slight—because of the similarity of the zero and oh, the
middle position of the single differing letter, and the set within the symbol which strongly biases us

toward the English word—the programmer who habitually makes such poor symbol choices is headed

for certain disaster.

No doubt, the rather extensive success of automatic methods of detecting such errors has lulled many

programmers into carelessness when choosing symbols. Nonetheless, there will always be some

 www.teatimewithtesters.com November 2012|14

situations in which the compiler or interpreter cannot make a sensible conclusion that there is an error.

In one case, a programmer had used both the symbols "SYSTSTS" and "SYSSTSTS" in the same code
and only discovered that one had been substituted for the other after hundreds of hours of erroneous

simulations had been run, a book had been published containing these results, and several systems had

been misdesigned on the basis of their errors. All this could have been avoided if he had adopted the

practice of keeping a minimum distance of two (dissimilar) characters between his symbo ls, and
perhaps ensuring that at least one of these differences was at the beginning or end.

Mnemonic symbols are particularly susceptible of inducing a torpor in the program reader. Mnemonic

symbols expose us to misreading for several reasons:

• They tend to make programs seem "sensible" by their satisfaction of our general set toward sense
over nonsense.

• They play upon our tendency to believe in the name, rather than the denotation of the name. Who
would believe that the symbol "FIVE" denoted a value of 4? But it did, in one case where the

programmer had to modify his code and didn't have time to change all references to "FIVE." He did,
however, have time to rerun the program—after having taken much time to locate the source of

difficulty.

• They tend to give something less than an optimal "distance" pattern. English words, for example,
are not random collections of letters. Some patterns such as consonant-vowel-consonant, or

consonant-vowelvowel- consonant, tend to occur more frequently. Even worse, there are
homographs such as "LEAD" and "LEAD," which might pop up in the same program from two

different origins.

Optimal distance is further reduced because of regularit ies in the way we abbreviate, leading to such
ambiguities as "PEND," for a record that is held in pending status, and "PEND," short for "end of part P."

We cannot abandon the subject of set errors without a comment on comments. The whole idea of a
comment is to prepare the mind of the reader for a proper interpretation of the instruction or statement

to which it is appended. If the code to which the comment refers is correct, the comment could be
useful in this way; but if it happens to be incorrect, the set which the comment lends will only make it

less likely that the error will be detected.

This effect of comments on interpretation of erroneous code can be measured quite nicely in an
experiment in which several versions of the same code are produced, one with correct comments, one

with one or two incorrect comments, and one with perhaps no comments at all (Okimoto, 1970). For
certain types of code, at least, correct interpretation of what the program does can be obtained more

reliably and faster without any comments at all. Correct comments, if well constructed, reduce errors
when compared with cases in which incorrect or misleading comments are used. Nevertheless, many

experienced programmers make a habit of covering all comments when scrutinizing a program listing
for errors, thus reducing set which, though helpful to understanding a correct program, only

complicates the already impossible job of debugging.

SOME DIMENSIONS OF PROBLEM SOLVING

In psychology, "set" is usually considered part of the study of "perception" rather than part of

"intelligence." Yet it should be clear from the preceding section that set phenomena can influence

behavior which we would surely label "problem solving."

 www.teatimewithtesters.com November 2012|15

Of course, even before the question of problem solving comes, the question of problem avoiding. As we

saw, numerous techniques exist whereby a programmer can avoid the problems of set altogether in
certain s ituations. Considered in the abstract, a programmer who avoids a problem altogether is more

"intelligent" than one who brings it upon himself, whether or not he ultimately "solves" it.

However, abstract ideas about intelligence rarely fall into accord with our beliefs about concrete
situations. Lacking any objective measure, we often judge how difficult a program is by how hard a

programmer works on it. Using this sort of measure, we can easily fall into believing that the worst
programmers are the best—because they work so hard at it. A case in point was a programmer who

worked 14 hours a day, seven days a week, for eight weeks to get a small program running in a new
installation. For his efforts, his company gave him an award for exceptional service. Shortly thereafter,

another programmer (for the first had been promoted to a management position as an additional
reward) was given the job of making some changes to this program. He found the program to be such a

confusing mess it was easier to rewrite it than to try and modify it.

The rewriting and debugging took exactly one week, working normal hours. Even considering that

writ ing a program for the second time is far easier than writ ing it the first, the difference is significant.
Moreover, the new program ran eight times faster than the old, took half the storage, and was half as

many lines of coding. Clearly, the first programmer had been rewarded for making a mountain out of a
molehill. The discovery of this misapplication of management largesse then led to a severe drop in

morale in this programming group.

Problem-avoiding behavior, then, is intelligent behavior at its highest, although not very intelligent if
one is trying to attract the eye of a poorly trained manager. It will always be difficult to appreciate how

much trouble we are not having.

Similarly, it will always be difficult to appreciate a really good job of problem solving. Once the problem
solution has been shown, it is easy to forget the puzzlement that existed before it was solved. For one

thing, one of the most common reasons for problem difficulty is overlooking some factor. Once we have
discovered or been told that this factor is significant, working out the solution is trivial. If we present

the problem to someone else, we will usually present him with that factor, which immediately solves
nine-tenths of the problem for him. He cannot imagine why we had such trouble, and soon we begin to

wonder ourselves.

Overlooking a factor in a problem is just one special case of assumptions leading us astray. We assume
that a certain factor is not important—probably without even thinking about it in any conscious manner.

We are led similarly astray by assuming that a certain factor is important, when it has no significance
for the problem at hand. People who spend much time debugging other people's programs soon learn

not to listen to explanations before tackling the problem. Such explanations tend to put the listener on
the same false track of assumptions that prevented the speaker from finding the bug for himself.

Psychological set, of course, is another form of making assumptions. Although the assumptions may be

buried more deeply in this case, they have the same effect on problem solv ing. Could we not say, then,
that the first rule of problem solving is "don't make assumptions"?

We could say that, but we would be precisely wrong. If we are to be successful at solving problems, we
must make assumptions. If we really faced each problem as entirely new, it would be impossible to

improve our problem-solving performance. The set we have, for example, which enables us to read a

misprint as if it were correct, is a most valuable asset— in most situations.

 www.teatimewithtesters.com November 2012|16

Only when we are proofreading, something few of us spend much time doing, does this particular set

cause trouble. Intelligent behavior, then, does not consist in eschewing assumptions, but in being
sufficiently flexible to manipulate assumptions as the occasion demands. In other words, being

intelligent is not having some magic formula which one can apply to every problem. It is, rather, having

a number of "formulas" and not being so much in love with one that it cannot be dropped for another.

Before we leave the topic of adaptability in problem solving for closer examination of some of the

"formulas" selectively applied by the successful problem solver, we must lay to rest one more fallacy
about intelligence. Intelligence, however it is ultimately defined, is, at best, a statistical concept. We

cannot ever hope to measure intelligence by performance on one particular problem, for there are as
many non-intelligent reasons for getting the "right" solution as there are intelligent reasons for getting

the "wrong" solution. Indeed, the explanations for success given by some programmers bring to mind
the story of the village idiot who won the monthly lottery. When asked to explain how he picked the

winning number, he said, "Well, my lucky number is seven, and this was the seventh lottery this year,
so I multiplied seven times seven and got the winning number—63."

And, when someone tried to tell him that seven times seven was forty-nine, he merely answered with
disdain, "Oh, you're just jealous"—which, of course, was true.

to be continued in next issue…

 www.teatimewithtesters.com November 2012|17

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

TTWT Rating:

Jerry‘s another book The Psychology of

Computer Programming is known as the first

major book to address programming as an

individual and team effort.

―Whether you're part of the generation of the

1960's and 1970's, or part of the current

generation . . . you owe it to yourself to pick up

a copy of this wonderful book.‖ says

Ed Yourdon, Cutter IT E-Mail Advisor

Sample of this book can be read online here.

To know more about Jerry‘s writing on software

please click here .

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.amazon.com/gp/reader/0932633420/ref=sib_dp_kd#reader-link
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com November 2012|18

Speaking Tester’s Mind

 www.teatimewithtesters.com November 2012|19

Michael bol ton

Time

janet
Fiona

MIKE Tben kell y

In my first article on The Testing Dead, I identified a number of patterns of behavior that I like to call

Zombie Testing.

Is this really a problem we need to be concerned about?

I think it is, for a number of reasons.

I think Zombie Testing has the ability to infect an organization. It‘s a generally less grisly process than
your traditional zombie, but the downside is it takes a lot longer to die and it‘s only slightly less

painful.

How does Zombie Testing infect non-testers? I mentioned in a previous post things like arbitrary

entry/exit criteria. Have you ever seen programmers changing bug severity or priority (or reassigning

them or closing them) to meet these bogus criteria? Ever been in sign-off meetings where project

managers argued about which bugs were severity 1 and which were severity 2 and go on to (re)define
what they meant?

 www.teatimewithtesters.com November 2012|20

This one little artifact that says ‗no more than 1 severity 1 bug and 5 severity 2 bugs or else your code

doesn‘t get signed off‘. It‘s a sign that zombie testing has taken hold. Anyone with kids will tell you – it
doesn‘t matter if it‘s number one or number two, you just have to take action before it gets messy.

When Zombie Testers hold themselves up as the quality police, there‘s a tendency for others to see

them that way also. That invites dysfunction like the segregation of testers and programmers –
because the dark gods forbid they should unduly influence one another. The testers need to remain

―objective‖. Segregation of testers and programmers is one of those ‗won‘t someone think of the
children‘ arguments. It‘s a solution in search of a problem that I‘ve yet to ever actual ly see.

Imagine a straight-laced chaperone at a formal high school dance, insisting that testers and

programmers may dance, but must keep at least two feet apart whilst they do so. That might seem
very civilized and genteel, but everyone knows the real magic happens when the testers and

programmers slip away behind the bike sheds and show each other their notes.

More recently I‘ve heard and read about some programmers calling to do away with testers all

together. It‘s a misguided notion, but I can understand where they‘re coming from. If your only
exposure to testing has been with people that enforce unhelpful rules, have an adversarial attitude,

waste your time and otherwise make your life difficult, (whilst adding questionable value) why wouldn‘t
you want to do away with them?

The problem for thinking testers isn‘t so much that Zombie Testers exist. It‘s that they‘re so prevalent

that they‘re seen as the norm by non-testers. We need the people that hire testers, the people that
manage testers and the people that testers serve to understand what it means to be a thinking,

professional tester.

Moreover, we need to them to understand it in a way that‘s meaningful to them.

Easier said than done. It‘s a tough sell.

Can we go to upper management and tell them that quality will improve as a result of our
participation?

No.

It may indirectly, but that‘s not generally something we have direct control over. We don‘t make

design decisions, we don‘t hire or fire programmers, we don‘t decide what gets fixed or deferred – we
might influence one or more of these things, but the final decision is not ours.

Can we tell them their product will be released bug-free?

No. Finding bugs is part of what we do and while we can test for their presence, we cannot prove their

absence. Some less scrupulous companies (who may well have a large stable of test zombies corralled
somewhere) might say otherwise, but that‘s not a claim a tester can make in good conscience.

What then?

The alternative we have is to tell them that we can reveal risks and problems to them much earlier

than they might otherwise find out about them, giving them time to take action.

 www.teatimewithtesters.com November 2012|21

It doesn‘t sound like a particularly attractive alternative. In my experience, people don‘t want you to

tell them about problems (unless you‘re also telling them about how you fixed them). They want
solutions.

Moreover, many people seem to cling to the broken Taylorist model that software development is mass

production. Programmers turn out widgets that come down the conveyor belt. Testers pick up these
widgets, compare them to spec and/or known good widgets and if they‘re within tolerable limits of

variance then all is well.

It‘s an attractive fantasy. It‘s measurable. It‘s controllable. The workers can be switched in and out
because it‘s repeatable labor. Unfortunately (for those that believe it), it‘s complete bullshit.

So how do we put that alternative in a way that is more palatable to an audience that needs to hear

such a message, but may not be ready to accept it?

There are no easy answers to that question (that I know of). There‘s no silver bullet.

In episode three I‘ll talk about what can be done to help educate our non-testing peers about what

software testing is, and what can be done about stemming the flow of zombie testers.

Ben Kelly is a software tester living and working in Tokyo, Japan.

He has done stints in various industries including Internet statistics

, insurance and most recently online language learning.

When he’s not agitating lively discussion on other people’s blogs,

he writes sporadically at testjutsu.com and is available on twitter

@benjaminkelly.

 www.teatimewithtesters.com November 2012|22

Do YOU have IT in you what it takes to be GOOD Testing Coach?

We are looking for skilled ONLINE TRAINERS for Manual Testing, Database Testing and Automation Tools like Selenium,

QTP, Loadrunner, Quality Center, JMeter and SoapUI.

TEA-TIME WITH TESTERS in association with QUALITY LEARNING is offering you this unique opportunity.

If you think that YOU are the PLAYER then send your profiles to trainers@qualitylearning.in .

Click here to know more

mailto:trainers@qualitylearning.in
http://www.qualitylearning.in/
http://www.qualityjobsportal.com

 www.teatimewithtesters.com November 2012|23

Image courtesy : MMVI New Line Production

 www.teatimewithtesters.com November 2012|24

 www.teatimewithtesters.com November 2012|25

In the School of Testing

 www.teatimewithtesters.com November 2012|26

martin janson

Let’ s talk testing

SPE

Lets talk testing

Introduction

Why is this important? The view on testing has been terrible for a long time. Many organisations view
testing as a necessary evil. Many people have been ―demoted‖ to testers, who now lack ambition, self-

confidence in going somewhere else or trying to become great in their current role. Some believe that a
mere certificate creates a great tester, but in fact it just hurt the reputation of testers [1]. Some have

stopped caring about their work as a tester, stopped their cooperation with non-testers and ignore what
value they provide to the organisation [2]. Many testers accept that someone else write them detailed

instructions on how to exactly perform their work, a tayloristic view of the (zombie) tester [3], where no
knowledge or skill is needed to be able to execute the script. Some call what they do testing [4], but is it

something else? Many are uncertain how to get better and do not strive for becoming great [5].

Many of these things stop you from being jelled as a team, from being creative, from having the

freedom to do things that fit best in your context or in essence from being great.

 www.teatimewithtesters.com November 2012|27

Background

After several years of struggle within the QA department, at a former employer, we reformed into

something new. Instead of being split between the projects, working differently, with different workload,
different ambition and with varied result of testing, we rallied under one flag, unified under a set of

goals. Former conflicts and misunderstandings where shaded out by working together with new found
respect, but first of all with too much to do.

Some years earlier we had discussed the test team motto and tried to find one that was suitable for us.
We had read Brian Marick‘s Test Team Motto [6] and let that guide part of where we were heading. We

were also greatly inspired by the Black Team from Peopleware by Timothy Lister and Tom DeMarco [7].
We were setup in a way so that we served many parts of the organisation (several projects, support,

marketing and CEO). After having this setup for a while, we started to grow in pride of our work and our
skill. It was then that we started to call ourselves ―The best, and most humble, test team in the world! ‖

with some seriousness and a lot of humour. We challenged the rest of the organisation to bring us more
things to test, we would report enough bugs to keep the rest of the organisation occupied. This was a

clear statement to the rest of the organisation about our ambition, but was this our motto as well? What
did it actually mean?

Our line manager for QA did not react well in how we behaved at the t ime. The company culture
nurtured and valued individual success, but our team valued that the whole team succeeded. Was this

one of the reasons perhaps? Sometimes we forgot the humility trait when our pride and cockiness got
too high. Still, we aimed for being great and I think we were. Looking back at the team members at that

time, most have gone separate ways but the journey we took together has certainly made us greater
testers.

What is included in the concept of ―The best, and most humble, test team in the world!‖?

Expectations

To be able to show an ambition and mindset that fits with being able to state the motto ―We are the

best, and most humble, test team in the world!‖ we have identified several important aspects to
consider in specific roles and in the team as a whole.

Scott Barber has expressed his view of being a context-driven tester [8] that resonates with our thinking

and expectations of someone working in the testing domain.

 www.teatimewithtesters.com November 2012|28

Tester expectations

• You are among many things a service provider to many different stakeholders [9].

• You have a desire to learn new things

• You are humble towards your peers, knowing that things can be different and that anyone can

make mistakes, even you as a tester.

• You work with the right things in a fast pace with the right quality

• If something takes a long time, you make sure you are on the right track by asking for feedback

• If you are unsure of priority of things, you ask stakeholders and co-workers

• If you think that something have wrong priority you communicate this

• You resolve conflicts directly or bring in a manager if help is needed

• You spend a bit of time, based on common sense and context, during regular work hours to get

better. On your spare time you are free to do what you want

• If you determine that something is meaningless to do, better investigate if it is or if you have

misunderstood the intent. You are not allowed to work on meaningless tasks that provide no

value.

• You praise in public and crit icize in private

• You question given routines and methods

• You are interested in testing and view it as a valid profession and not just something to do

―when no other tasks are available‖

• Never wait, there is always something to do, whether it is helping a team member or another

team finishing a task, working on something that you have postponed for a long time that would

feel good to finish or working on something that give value in the long run.

• No tester is perfect or the greatest. Instead it is by adding his or her specific perception or

experience to the team that is valuable [10].

Manager, Test Lead or Team Lead expectations

• You train the team in taking on many roles

• You train the team in being backup test lead or team lead

• You gather information and communicate what is important

• You are a tester foremost, not just planner, leader or manager. The same expectations for a

tester, applies to you.

• You are active in daily testing tasks if possible. You should identify yourself as a part of the

team and should also stay close to the team to be part of the ―flow‖

 www.teatimewithtesters.com November 2012|29

Team expectations

• The mindset should be Quality Assistance [11] and dealer in information

• As a team you work on your test team motto or mottos (see [6] and [12]). Examples could be

―Replace fear of the unknown with curiosity‖ [13], ―I'll help with anything, but it's you who

needs to do the work‖ [14] or ―We are the best, and most humble, test team in the world!‖

• The success of the team is more important than that of the individual's. We help each other to

succeed

• You should empower and trust your team members. This will yield a higher sense of security

and confidence. Trust in each team member's competence

• Everyone in a test team tests, this is our core function. If you do not want to test, then you

should not be in a test team or test organisation.

• Market the test team to the organization. Hard to do good work if no one cares what you do or

that they are even unaware of your existence.

• The team need to be ―fearless‖ and have the courage to stand up to their opinions, bugs etc.

Need to know when to back down.

• Keep an open mind. Do not follow one strict set of rules, unless absolutely necessary due to

external reasons. There is no such thing as ―We are perfect‖. In the team you should feel that

you can show weakness, it‘s by making mistakes we learn.

• In many test organisations there are many skeletons in the closet, which need to be cleaned out

[11]. The team needs to help clean these out and communicate why that is so.

• Look for diversity of team members. There are many layers in testing, from UI to shell to

scripts. Try to get people with many areas of expertise and different backgrounds. [15]

• Previous test experience is not always necessary; other experience may be just as important,

fresh eyes etc.

• Be part of recruiting more testers to the team and make the final decision if someone is suitable

for your team.

• The team needs to feel they have the freedom to choose their own methods and processes,

since they are the test experts

• Visualize what you as a team are working on so that it is easier to dodge tasks from the outside

that are non-test-related and mostly distractions

• A clear view on ―why do we test‖. Compare this with Autonomy, Mastery and Purpose (Dan

Pink) as motivational factors. We need to have a purpose with our work in order to be motivated

and thrive.

• As a team you should work close together, trying different constellations

• Cultivate social interaction within the team. A team with high social cohesion might ―je ll‖ and be

more productive. A key indicator is whether the team members enjoy spending time together

Conclusion

The aspects above are some things that we have identified, most likely there are several more. Some

might only be relevant to us, but there might also be a few that resonate well with your own context. We

are humble in knowing that things can be different for testers, their teams and organisations. In our
quest for becoming a better, even the best, we keep the above expectations as a foundation for our

mindset as a test team and the organisation around it.

 www.teatimewithtesters.com November 2012|30

References

[1] http://thetesteye.com/blog/2011/05/testers-greatest-nemesis/

[2] http://thetesteye.com/blog/2010/11/turning-the-tide-of-bad-testing/

[3] http://lets-test.com/wp-content/uploads/2012/05/LetsTest2012-BenKelly-TheTestingDead.pdf

[4] http://thetesteye.com/blog/2012/03/don%C2%B4t-hustle-my-flag/

[5]http://lets-test.com/wp-content/uploads/2012/05/Soyouthinkyoucantest-Letstest-20120509-
Print-version.pdf

[6] http://www.exampler.com/testing-com/writings/purpose-of-testing.htm

[7] Peopleware by Timothy Lister and Tom DeMarco

[8] http://www.testingreflections.com/node/view/8657

[9] http://www.satisfice.com/blog/archives/652

[10] http://thetesteye.com/blog/2011/02/there-are-no-testers-that-are-the-best/

[11] http://www.kaner.com/pdfs/TheOngoingRevolution.pdf

[12] http://www.exampler.com/testing-com/writings/another-motto.htm

[13] http://blog.softwaretestingclub.com/2010/09/the-software-testing-motto/

[14] http://testers-headache.blogspot.com/2009/10/whats-your-testing-motto.html

[15] www.kaner.com/pdfs/JobsRev6.pdf

Martin Jansson, owner and

consultant at Testverkstaden

Sverige AB, started his career as

tester 1996.

He has tried many professions in

product development, but his

heart and soul belongs in testing.

Martin is one of the founders of

www.thetesteye.com which has

grown into one of the greatest

Swedish blogs on software

testing.

Martin is a frequent runner of the testlabs at various test

conferences. The last years Martin has assisted clients in

evolving their organizations from a traditional one into an

agile, where he focuses on what aspects of testing that

works in an agile environment.

You can reach him on Twitter @martin_jansson or on

martin.jansson@testverkstaden.se

Greger Nolmark, Senior Test

Consultant at Adecco IT-

Konsult, started working with

test in 1999. During the years

he has had several different

positions in the areas of test

and support.

His primary focus has been on

testing always keeping an eye

on the end user perception.

During recent years he has nurtured an interest in how

new and different test techniques can help teams and

testers to test better and to show there are more to

testing than being certified.

You can reach him on greger.nolmark@adecco.se or

Twitter @GregerNolmark.

http://thetesteye.com/blog/2011/05/testers-greatest-nemesis/
http://thetesteye.com/blog/2010/11/turning-the-tide-of-bad-testing/
http://lets-test.com/wp-content/uploads/2012/05/LetsTest2012-BenKelly-TheTestingDead.pdf
http://thetesteye.com/blog/2012/03/don%C2%B4t-hustle-my-flag/
http://lets-test.com/wp-content/uploads/2012/05/Soyouthinkyoucantest-Letstest-20120509-Print-version.pdf
http://lets-test.com/wp-content/uploads/2012/05/Soyouthinkyoucantest-Letstest-20120509-Print-version.pdf
http://www.exampler.com/testing-com/writings/purpose-of-testing.htm
http://www.testingreflections.com/node/view/8657
http://www.satisfice.com/blog/archives/652
http://thetesteye.com/blog/2011/02/there-are-no-testers-that-are-the-best/
http://www.kaner.com/pdfs/TheOngoingRevolution.pdf
http://www.exampler.com/testing-com/writings/another-motto.htm
http://blog.softwaretestingclub.com/2010/09/the-software-testing-motto/
http://testers-headache.blogspot.com/2009/10/whats-your-testing-motto.html
http://www.kaner.com/pdfs/JobsRev6.pdf

 www.teatimewithtesters.com November 2012|31

are you one of those

#smart testers who

know d taste of #real

testing magazine…?

 then you must be telling your friends about ..

 Tea-time with Testers Don’t you ?

 Tea-time with Testers !
first choice of every #smart tester !

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com November 2012|32

 To Protect and Serve

If you‘d need to choose a motto for the testing profession and all the testers worldwide, regardless of
the company they work in or applications they test, what would it be?

For me, the choice would be - To Protect and Serve

And not because we are ―testing policemen‖ patrolling the ―functional streets‖ of our AUTs

(Applications Under Test, for the non-testers among us) looking for ―criminal bugs‖ and placing them
in ―bug-tracking-jail‖ like petty thieves – although the mental picture is kind of funny .But because

our responsibility as part of our team and organization is to serve our internal and external
customers (e.g. the external end-users; and also the internal developers, product managers,
executives, etc) and to protect them from making the wrong decisions about the product we are
developing and the process used to develop it.

 www.teatimewithtesters.com November 2012|33

Protecting Who and From What Exactly…?

Boiling it to the minimum, I believe that as testers we are here to:

(1) Make sure that our teams are developing the right product – with the right features, answering
the real needs of our users, without any unwanted issues, etc.

And at the same time:

(2) That our teams are developing the product right - following the process we decided to follow,
without wasting unnecessary time, working in a socially and economically efficient way, etc.

We are here to provide visibility into the product and the process, to reduce the time to market

uncertainty and to answer the $25,000 question or whether we are ready to release or not – in the
past I‘ve called this QA Intelligence.

And if all this wasn‘t enough, in many organizations we are also been asked to lead the task of
performing Risk Analysis and Management throughout the end-to-end development lifecycle.

Risk Analysis?

Simply put, as a tester you should make sure that if there are any risks that may affect the project
from been completed on scope, on time and on budget, then these risks need to be identified,
tracked, if possible avoided, and if not then they should be handled correctly.

I will write more about risk management in the context of QA & testing in a future post. But for now
I want to add it as another one of the tasks we are doing in order to protect and serve our
customers.

Bottom Line… Are We Policemen?

It is true there used to be a stigma of seeing the tester as the
bug-policeman some 10 to 15 years ago, and I believe there are some

development teams where this might still be the case (let‘s call these
guys cave-men-developers, since they seem to be still leaving in the
stone-age of software development).

But Reality seems to evolve, and so in today‘s development practices,
and as we become better professional testers and QA specialist, more

and more of the actual tests and bug detection activit ies are carried on
by developers and others members of our organizations.

 www.teatimewithtesters.com November 2012|34

And we as testers are taking on a different responsibility of guiding and steering the process in the

right direction. In many of the cases we are serving as (Military) Intelligence Officers to our
Organizations, helping to make the most complex and challenging strategic and tactical decisions.

What do you think?

What motto would you choose for us testers, and why???

Joel Montvelisky is a tester and test manager with over 14 years of experience

in the field.

He's worked in companies ranging from small Internet Start-Ups and all the

way to large multinational corporations, including Mercury Interactive

(currently HP Software) where he managed the QA for TestDirector/Quality

Center, QTP, WinRunner, and additional products in the Testing Area.

Today Joel is the Solution and Methodology Architect at PractiTest, a new

Lightweight Enterprise Test Management Platform.

He also imparts short training and consulting sessions, and is one of the chief

editors of ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under - http://qablog.practitest.com and regularly

tweets as joelmonte

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com November 2012|35

Click HERE to read our Article Submission FAQs !

http://www.teatimewithtesters.com/#!write-for-us

 www.teatimewithtesters.com November 2012|36

 How do you solve a problem?

Every moment in life is an interesting one, as we encounter new problems that we are challenged to

solve. Some of these are ones that we have encountered before and therefore we know the solution,

while some are indeed new, and we have to a figure out the solution. Now, how do you solve any

problem?

Well the easy answer is "Based on experience". You have encountered the problem before, solved it and

therefore have to apply the same or a modified solution to the current problem. Sounds familiar?

A common question that we encounter - "Do you have the relevant experience in this

domain/technology to test this software?" The premise is if I have tested similar systems, I should be

able to do a decent job with the current system.

The other answer - "Based on sound logic/technique". I have not solved it before, but I know the

algorithm, the technique, the logic to solve it. A great answer, but people are skeptical, unless you are

"certified" in the application of it. Techniques are the result of scientific thinking, the application of logic.

 www.teatimewithtesters.com November 2012|37

Now what do these imply? In the former case, you need to have experience that takes time and is

expensive while the latter is cheaper as it can be taught. Are the any other ways? Yes, in some cases,

we are taught certain principles, that we apply. Principles are not exact techniques (formula), but are

conditions that we use to make choices to solve a problem. For example, a simple principle to that if

you are walking eastward and the shadow is behind you implies that it is still morning, while the

shadow in the front implies evening. So if a question (I.e. a problem) was posed to you to figure out the

time of the day given the shadow position and the direction of walking, applying the principle of shadow

gives you the answer.

In some cases, we may not have an exact formula or a clear set of conditions, but a set of directions to

choose from based on some information. These are "Guidelines", that identifies defines different

situations and suggests what to do in each case. For example a guideline may enable you choose a test

technique based on the type if fault you wish to uncover. In the case of complex logic, use code

coverage techniques, in case of complex behavioral condition s, use decision table.

Let us attempt to create picture of this…

Problem solving based on experience is based on the "skill of an individual" while the one based on the

logical/scientific thinking depends on the "strength of the process". Skill-based problem solving can be

seen as an 'art/craft while a logical approach can be deemed one based on science & engineering i.e.

scientific principles + process of usage of these principles.

The figure alongside depicts the problem

solving approach as being dependent on

these two aspects - "People Skill" and

"Process Strength".

In the context of scientific approach to

problem solving, the approach can be

further be divided into three approaches:

(1) A formula-like approach, algorithm

in nature titled "Technique" based

(2) Decision enabler that outlines key

points to make-choices/choose-

path titled "Principle"

(3) A broad brush approach that is suggestive of situations and what may be done in these situations is

titled "Guideline".

 www.teatimewithtesters.com November 2012|38

T Ashok is the Founder & CEO of STAG

Software Private Limited.
Passionate about excellence, his

mission is to invent technologies to

deliver ―clean software‖.

He can be reached at ash@stagsoftware.com

The ideal approach would be one that is based on "Technique", so that one can this to an individual so

that this can be predictably applied rather than solely on one's experience. Note that acquiring the

experience does take time, and this cannot be shortened drastically.

The crux of HBT (Hypothesis Based Testing) is based on a set of thinking disciplines that has set of

tools based on the three problem solving approaches of Technique, Principle and Guideline.

The fun part of being an engineer is encountering problems and devising solutions. So the next time

you solve a problem, identify what the approach was: Did you discover/apply a 'Technique', 'Principle,

'Guideline'. This will greatly help to build and refine your problem solving toolbox. And it is a wonderful

feeling to have a great toolbox. A big Swiss Knife to solve all problems.

Well, what is the approach to solve problems that I encounter with my spouse? None of the above!

"Accept whatever she says" and the problem is solved!!

Well until next time, have fun. CIAO.

mailto:ash@stagsoftware.com
http://www.stagsoftware.com/

 www.teatimewithtesters.com November 2012|39

Quality Testing

Quality Testing is a leading social network and resource center for Software

Testing Community in the world, since April 2008. QT provides a simple web

platform which addresses all the necessities of today‘s Software Quality

beginners, professionals, experts and a diversified portal powered by Forums,

Blogs, Groups, Job Search, Videos, Events, News, and Photos.

Quality Testing also provides daily Polls and sample tests for certification

exams, to make tester to think, practice and get appropriate aid.

Mobile QA Zone

Mobile QA Zone is a first professional Network exclusively for

Mobile and Tablets apps testing.

Looking at the scope and future of mobile apps, Mobiles,

Smartphones and even Tablets , Mobile QA Zone has been

emerging as a Next generation software testing community for

all QA Professionals. The community focuses on testing of

mobile apps on Android, iPhone, RIM (Blackberry), BREW,

Symbian and other mobile platforms.

On Mobile QA Zone you can share your knowledge via blog

posts, Forums, Groups, Videos, Notes and so on.

http://www.qualitytesting.info/
http://www.mobileqazone.com

 www.teatimewithtesters.com November 2012|40

Puzzle

Claim your Smart Tester of The Month

Award. Send us an answer for the Puzzle and

Crossword bellow b4 20th Dec. 2012 & grab

your Title.

Send -> teatimewithtesters@gmail.com with

Subject: Testing Puzzle

mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com November 2012|41

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for more than 5 years. He is

currently hosting European Weekend Testing.

He considers himself a context-driven follower and he is a fan of exploratory

testing.

He tweets as @testalways.

You can find some interactive testing puzzles on his website

www.testalways.com

“Find the next number in the series”

26

72

53

77

71

15

69

46

18

55

83

98

?

http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/

 www.teatimewithtesters.com November 2012|42

Horizontal:

1. A device, computer program, or system that accepts the

same inputs and produces the same outputs as a given system.

It is called ____ (8)

5. Tool for testing performance and scalability of web

services (5)

7. It provides an efficient means for generation,

organization, and execution reporting of test cases among

projects and by multiple testers and versions, in short (3)

8. The sudden and complete failure of a component (5)

9. It is a certification for Software Test Engineers (4)

11. It is a visual technology to automate and test graphical

user interfaces using images (6)

Vertical:

1. It is a Unix automation and testing tool (6)

2. Testing the ease with which users can learn and use a

product, in short form (2)

3. After the designing and coding phase in Software

development life cycle, the application comes for testing then

at the time the application is stated as ____, in short form

(3)

4. Confirms that the program recovers from expected or

unexpected events without loss of data or functionality . It is

called ____ testing (8)

6. Open Source Load Testing solution that is free and cross-

platform (6)

7. A Simple Test Driver Generator for Ada Programs (2)

10. Running a system at high load for a prolonged period of

time, in short form (2)

http://www.qualitytesting.info/

 www.teatimewithtesters.com November 2012|43

Answers for last month’s Crossword:

V

We appreciate that you

“LIKE” US !

Answer for last Testing Puzzle:

29 Oct 2012 - Monday

11 April 1342 - Wednesday

18 August 4234 - Monday

5 January 1000 - Sunday

14 December 5674 - Friday

7 April 0002 - Monday

31 May 1743 - Friday

20 September 1976 – Monday

29102012=1

11041342=3

18084234=1

05011000=7

14125674=5

07040002=1

31051743=5

20091976=1

https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com November 2012|44

 www.teatimewithtesters.com November 2012|45

o

I have recently started reading TTWT magazine and was really amazed by

the content and the way it is presented.

Generally technical magazines are very formal in their presentation which

leads to lack of interest after reading it for sometime but TTWT has taken

care of this and ensured that the readers are glued to the magazine by

presenting the content in a very creative manner. I am not an avid reader

but when I read TTWT I just don‘t feel like stopping until I have completed

the entire magazine.

It is really building my knowledge base, improving my analytical and

problem-solving skills and keeping me updated about the testing field.

Thanks to the entire family of TTWT magazine for bringing such a

wonderful magazine to the testing community.

I wish you all the best for future!!

Suman Chakraborty

Pune

 www.teatimewithtesters.com November 2012|46

 www.teatimewithtesters.com November 2012|47

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Anurag Khode (Nagpur, India)

Dr.Meeta Prakash (Bangalore, India)

Anurag Dr. Meeta Prakash

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Image Credits- weiphoto.com

Sagar

Testing Puzzle & Online Collaboration:

Eusebiu Blindu (Brno , Czech Republic)

Shweta Daiv (Mumbai, India)

 Eusebiu Shweta

 Tech -Team:

Chris Philip (Mumbai, India)

Romil Gupta (Pune, India)

Kiran kumar (Mumbai, India)

 Kiran Kumar Chris Romil

Contribution and Guidance:

Jerry Weinberg (U.S.A.)

T Ashok (India)

Joel Montvelisky (Israel) Jerry T Ashok Joel

 www.teatimewithtesters.com November 2012|48

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

