

Investigating Bugs: A Testing Skills Study

Matt Heusser

A Long & Winding Road

Software Testing Pro

 www.teatimewithtesters.com October 2011|2

Tea-time with Testers.
Hiranandani, Powai,
Mumbai -400076

Maharashtra, India.

Email: teatimewithtesters@gmail.com
Pratik: (+91) 9819013139

Lalit: (+91) 9960556841

This ezine is edited, designed and published by
Tea-time with Testers.

No part of this magazine may be reproduced,
transmitted, distributed or copied without prior written

permission of original authors of respective articles.

Opinions expressed in this ezine do not necessarily

reflect those of editors of Tea-time with Testers ezine.

mailto:teatimewithtesters@gmail.com?subject=Editotial%20and%20Adevertising%20Enquiries

 www.teatimewithtesters.com October 2011|3

Edi tori al
Edi torial new

…continued on page 52 with Matt’s interview

One fine evening, I got an e-mail from

Tea-time with Testers Magazine.

I was flattered when Lalitkumar invited me to write
Guest Editorial for Tea-time with Testers. He

offered me an opportunity to write about my
journey as a tester -- how I got to be here, and

what's next.

When he made this offer, I realized that I had
never told a story like that in print. Oh, I have

written a lot about software testing. I have stories,
and had mentioned some of them on my podcast,

but the story of my career --that was just the
beginning to be told.

In the Beginning

In seventh grade, about age eleven, I had decided
my profession. After reading a great deal of

science fiction and fantasy, I had decided to be a
writer.

By eighth, I was going to be a computer

programmer.

In the beginning of ninth grade, I joined Civil Air
Patrol, a sort of "Boy Scout" program sponsored

directly by the United States Air Force. I liked the
program because we wore military uniforms and

did drill, but I never had that "wow airplane!"
experience that many of my friends did. With little

interest in becoming a pilot or an Air Force
Pararescueman, I kept reading books, including

books by Robert Heinlein and Douglas Hackworth.
(My close friend in High School, Jake McGuire,

loaned me both of those books that led to a direct
and serious inquiry into the Combat Infantry.)

I was really interested in the infantry; I enlisted in

the US Army Reserve at the Age of seventeen,
signed up for Army ROTC, and, at some point,

made it my goal in life to earn a commission in the
United States Army before my twenty-first
birthday.

Important Note: Fourteen Year old children rarely
make serious, well-considered decisions.

The Army thing didn't work out; at some point I

realized that, despite all the respect I have for the
Armed Forces, I had no interest in training for

combat with the hope of never having to use that
training. (Fourteen year olds may dream of

charging up a hill, shooting a machine gun, but
within a few years I realized that the other guy

would be shooting back. Or, as Douglas MacArthur
put it "the soldier, above all other people, prays for

peace, for he must suffer and bear the deepest
wounds and scars of war.")

For that matter, I wanted to have a family, to

actually, you know, see them and, if I might, to
sleep in on Saturdays.

The good news is that even then, without knowing

it, I was following Jerry Weinberg’s old advice: "If
you don't know what to do, make the decision that

keeps your options open."

I did want to be a military officer, and that
required a college degree, so I was in college,

studying for a Bachelor's Degree in Mathematics
with a Concentration in Computer Science.

In 1997, when I graduated, that was enough to
get me a job as a computer programmer at

Professional Computer Resources (PCR) in Grand
Rapids, Michigan.

Programming without a Safety Net

I spent a year and a half at PCR; it was a

wonderful time. At the time, the company had

perhaps thirty employees; the president, two

managers, two administrators, and twenty-three
programmers.

Matt Heusser

 www.teatimewithtesters.com October 2011|4

 topIndex P Quicklookfinal in INDEX

Investigating Bugs : A Testing Skills Study -17

Trading Money for Time - 26

Lean Test Case Design – 33

Testing Checklist for Mobile Applications - 40

Testing Intelligence: What do you pack when you go

for Bug Hunt ? – 43

Seven Consecutive Error = A Catastrophe – 47

 www.teatimewithtesters.com October 2011|5

Review: September issue of

Tea-Time with Testers.

I've just finished reading September

issue of Tea-Time for Testers, a free

and useful e-magazine for the testers
of the world. Here are a few comments

I have to offer the magazine and its
readers and potential readers.

- Selena Delesie's article is a gem.

I wish all testers would copy the article
and use it to lay out a learning plan for

themselves. She leaves us no excuses

of the sort "I don't have time for
learning" or "there's simply no learning

opportunities where I work." On flaw:
she writes, "See my website for some

books, websites and blogs I
recommend." I tried the link, but

couldn't find the list she mentions. I

wish the link went directly to the list of
recommendations that's hidden

somewhere in her site.

- Anurag Khode's article on testing
network connection speed is on a topic

that interests me. It's highly specific

and useful for that reason. I wish
Anurag had given a few general

conclusions that might help testers in
other situations.

As it stands, the article itself is one

model of setting up tests, but I suspect

few testers will take advantage of that

feature unless it's specifically pointed

out.

- On the other hand, I look forward to

Joel Montvelisky's articles precisely

because they address the issue of

applying intelligence. In this article, he

tackles the application of intelligence in

an area that many testers think doesn't

require thinking at all: automated

testing. He deserves a medal for

courage, because I fear that some

advocates of automated testing will

lambast him for suggesting that you

need to think once you've automated

some tests.

Anyway, those are a sampling of the

articles I enjoyed in the September

issue. As usual, I read Tea-time with

Testers from cover to cover (even

though it has no covers). As for the

issue as a whole, I always love the

colorful illustrations throughout the

issues.

- Gerald M. Weinberg

Teach-Testing Campaign

This campaign is more than credible, I

am a big fan of forward thinking

Agile/Context driven ideas but also

believe a grounding in more formal

thought process such as ISEB/ISTQB is

essential for testers and developers

alike. Even for testers who will never

use the old sequential models, that kind

of grounding is imperative to know as

even the newer, shorter, recently

heralded models draw heavily from

renowned best practice if you actually

analyse the processes. I speak to too

many young developers out of college

who neither see the point in testing or

testers. Our essential presence within

the software development process is

unknown to them (I`m in Canada),

that has to change.

- Martin Hore

Well researched & meaningful

insight

I have been reading Tea-time with
Testers for sometime now and I am

happy that they are continuously
striving to make this better day by day.

The articles are well researched and

have a meaningful insight.

From the September 2011 issue, I liked

Jerry's insight into errors which was
so thoughtful yet so simple to

understand. I am personally a big fan

of Jerry's writings and hence might be
biased in my opinion on the same :)

- Jerry / Matt / Selena / Ashok have

been reading their works pretty often.
But what really impressed me was

reading from two new people whose

writings I have not focused on before.

-Ola Hylten's writing on
communication. I read something by

Ola for the first time and I liked it.

Communication is something so regular
that we do in our day today life across

every action and people connect we do
but how many are able to perceive the

science behind it.

- The other one was by Olaf Lewitz. So

simple things and best represented for
first time mentors.

- Dr. Meeta Prakash

Connecting with great minds

Thank you for producing Tea-time

with Testers and distributing it freely

via the Internet. Your publication
keeps me connected with some of the

great minds of the software testing
world and I appreciate it.

- Ken Horovatin

 www.teatimewithtesters.com October 2011|6

I mage: www.bigfoto.com

Free software testing on USB for students to web developers

By Adrian Bridgwater on October 17, 2011

A bit of semi-random open source software searching is generally beneficial for the soul and spirit at

least once a month. My most recent expedition in this vein led me to find Mantra, an open source
browser-based security framework for penetration testing and security assessments.

Mantra then, or to use the original Tibetan script , is built/based on Mozilla's Firefox web browser

(so it's cross platform) and can be taken "anywhere" on any rewritable media including memory cards,

USB flash drives and portable hard disks.

According to its development team, "Mantra can be used for both offensive security and defensive

security related tasks, which makes it incredible."

Mantra is part of the Open Web Application Security Project -- OWASP.

OWASP itself describes Mantra as follows, "Mantra is a collection of free and open source tools

integrated into a web browser, which can become handy for students, penetration testers, web

http://www.bigfoto.com/
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page

 www.teatimewithtesters.com October 2011|7

application developers, security professionals etc. It is portable, ready-to-run, and compact and follows

the true spirit of free and open source software."

ANALYSIS -- As the Mantra team now strives to create an ecosystem for hackers based on browser
technology, they will need to be clear on their messages as to the reason and need for testing and why

bugs originate in the first place.

This may be the reason for calling the project Mantra and trying to bring a little perception of human

behaviour to the deeper themes associated with software testing i.e. as software systems now enter
ever more deeply complex constructs, humans have only limited ability to manage complexity -- this

means that, in complex systems at least, software bugs, defects and errors can never be eradicated
completely.

Until we reach coding Nirvana that is of course...

IT cos outsource freshers’ training

DIKSHA DUTTA & KIRTIKA SUNEJA

On Saturday, Oct 15, 201 for The Financial Express

………..……….............................

New Delhi: To resolve the problem of employability and reduce the ever-growing training costs of

freshers, industry majors like IBM and Cognizant have started training students right from their days at
engineering college.

This is to ensure an employable fresher with special skills when he is ready to join the $70 billion IT

industry. Though the training may or may not get them jobs in top companies, it definitely increases
chances of getting a job in the tech sector and also increases the placement rate of tier-II and tier-III

institutes like Punjab Technical University, Apeejay College of Engineering and Noida Institute of
Engineering.

The training starts from the fourth semester itself and the students are certified in the fourth semester.

These skills are as niche as software testing, which are not considered as very high-end jobs in the
industry as they make engineers eligible for a salary ranging from R12,000-20,000. By the time these
students graduate from college, they are ready to be on the job.

Sample this: Cognizant, the country’s third largest software exporter hired 600 students trained on
software testing from tier-II and tier-III institutes, claims QAI, a consulting and workforce development

organisation which trains students on such skills as and when demanded by different tech majors. QAI
has trained 4,000 engineers overall on software testing till now. At present, the country produces only
3,000 testers, but the nation will soon need 25,000-30,000 testers each year.

―Companies are in constant need for skilled engineers and they are also ready to give conditional offer
letters to students, depending on their need. We train the students as per the demand of tech majors,‖
said Mohandas Menon, vice-president, Education QAI.

Once trained, these students have a better chance to clear the interviews of companies like IBM and
Cognizant.

 www.teatimewithtesters.com October 2011|8

―More than 90% of the students trained by us get a job within the industry. This automatically increases
the conversion rate of campus placements in tier II and tier III institutes,‖ added Menon.

Himanshu Goyal, country manager, IBM Career Education corroborated, ―Today, the industry faces a
challenge in training employees on righteous skills like software testing. We are helping students

getting trained on such skills in collaboration with QAI. And if we have a requirement for such talent,
IBM would definitely consider these trained students for a job with IBM‖.

The co-designed programmes by QAI and IBM Career Education will be offered on campus across India

as a blended learning programme supported by world class courseware and internationally certified
faculty members.

Research firm Everest attributes this trend to the recession which led to the pruning of delivery layers

deployed by most service providers. Firms shifted as much as 20% of their offshore headcount to tier-II
and tier-III cities which helped them provide lower pricing without sacrificing margins.

For more updates on Software Testing, visit  Quality Testing - Latest Software Testing News!

http://www.qualitytesting.info/page/latest-software-testing-news

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com October 2011|10

Observing and Reasoning About Errors (Part 3)

Why is someone working late?

A programming team manager told me, "Josh is my best programmer.
The reason he starts work in the afternoon and stays late at night is so

he won't be disturbed by the less experienced programmers."

It turned out that Josh was so ashamed of the poor quality of his work
that he didn't want anyone to see how much trouble he was having.

Who knows what's right and wrong?

Another team leader told me, "Cynthia is angry because I showed her

what was wrong with her program, and how it should have been done in

the first place. I suppose you're going to tell me I have to learn to be

 www.teatimewithtesters.com October 2011|11

more tactful.‖ Cynthia showed me the program and what the team leader had said was wrong. It wasn't

wrong at all. Cynthia said, "What ticks me off is working under a boss who's not only technically

illiterate, but doesn't know how to listen. He approaches every problem with an open mouth."

Which process is eliminating problems?

A project manager told me, "We've abandoned technical reviews in this project. They were valuable at

first, and we found a lot of problems. Now, however, they don't find much trouble— not enough to

justify the expense." As it turned out, the reason there were no problems was that the programmers

were conducting secret reviews, to hide their errors from the manager, who berated anyone whose

product showed errors in the review. They had not abandoned technical reviews; they had abandoned

the practice of telling their manager about their technical reviews.

Feedback controllers use observations of behavior to decide upon actions to eliminate undesired

behaviors. They feed these actions back into the system and thus create a negative feedback loop to

stabilize the system, as shown in Figure 1-1.

Figure 1-1. The feedback controller uses observations to decide upon actions to stabilize the system's

behavior.

 www.teatimewithtesters.com October 2011|12

When the feedback controllers gets the meaning of the observation backwards, however, the designed
actions create a positive feedback loop, actually encouraging the undesired behavior, as shown in Figure

1-2.

Figure 1-2. Getting the meaning of an observation backward creates an intervention loop that promotes

what it should discourage and vice versa.

1.3.3. The Controller Fallacy

The example of eliminating technical reviews illustrates another common observational fallacy. Even if it
were true that reviews were no longer finding errors, would that be the reason to abandon them?

Technical reviews serve many functions in a software project, but one of their principal functions is to
provide feedback information to be used in controlling the project. In other words, they are part of the

controller's system.

It is the nature of feedback controllers to have an inverse relationship to the systems they attempt to
regulate.

• We spend money on a thermostat so we won't spend extra money on fuel for heating and cooling.

• We keep the fire department active so that fires will be inactive.
• We put constraints of the powers of government so that government won't put unnecessary

constraints on the governed.

 One result of this inverse relationship is this

The controller of a well-regulated system may not seem to be working hard.

 www.teatimewithtesters.com October 2011|13

But managers who don't understand this relationship often see lack of obvious controller activity as a

sign that something is wrong with the control process. This is the Controller Fallacy, which comes in two
forms:

If the controller isn't busy, it's not doing a good job.

If the controller is very busy, it must be a good controller.

Managers who believe the second form are the ones who "prove" how important they are by being too

busy to see their workers.

The first form applies to the reversed technical review observation. If the technical reviews are not
detecting a lot of mistakes, it could mean that the review system is broken. On the other hand, it could

also mean that the review system is working very well, and preventing faults by such actions as

• motivating people to work with more precision
• raising awareness of the importance of quality work

• teaching people how to find faults before coming to reviews
• detecting indicators of poor work, before that work actually produces faults

• teaching people to prevent faults by using good techniques they see in reviews

1.4. Helpful Hints and Suggestions

• Usually, there are more failures than faults, but sometimes, there are faults that produce no failures —

at least given the usage of the software up until the present time. And sometimes it takes more than
one fault to equal one failure. For instance, there may be two that are "halffaults," neither of which

would cause trouble except when used in conjunction with the other. In other cases, such as in

performance errors, it may take an accumulation of small faults to equal a single failure. This makes it

important to distinguish between functional failures and performance failures.

• Proliferation of acronyms is a sign of an organization's movement towards Pattern 2, where name
magic is so important that a new name confers power on its creator. Care in designing acronyms is a
sign of an organization's movement towards Pattern 3, where communication is so important

• You can almost count on the fact that first customers aren't like later ones. Managers often commit a

selection fallacy in planning their future as software vendors based on initial favorable customer
reactions to a software system. The first customers are first because they are the ones the requirements

fit for. Thus, they are very likely to be "like" the original designer/developers. Developers and customers
communicate well, and think alike. This is not so as the number of customers grows, and explicit

processes must be developed to replace this lost "natural" rapport.

• Selection fallacies are everywhere. You can protect yourself by wearing garlic flowers around your
neck, or else by asking, whenever someone presents you with statistics to prove something, "Which

cases are in your sample? Which cases are left out? What was the process by which you chose the cases
you chose?

 www.teatimewithtesters.com October 2011|14

1.5 Summary

1. One of the reasons organizations have trouble dealing with software errors is the many conceptual
errors they make concerning errors.

2. Some people make errors into a moral issue, losing track of the business justification for the way in

which they are handled.

3. Quality is not the same thing as absence of errors, but the presence of many errors can destroy any

other measures of quality in a product.

4. Organizations that don't handle error very well also don't talk very clearly about error. For instance,
they frequently fail to distinguish faults from failures, or use faults to blame people in the

organization.

5. Well functioning organizations can be recognized by the organized way they use faults and failures as
information to control their process. The System Trouble Incident (STI) and the System Fault

Analysis (SFA) are the fundamental sources of information about failures and faults.

6. Error-handling processes come in at least five varieties: detection, location, resolution, prevention,
and distribution.

7. In addit ion to conceptual errors, there are a number of common observational errors people make
about errors, including Selection Fallacies, getting observations backwards, and the Controller Fallacy

1.6. Practice

1. Here are some words I've heard used as synonyms for "fault" in software: lapse, slip, aberration,
variation, minor variation, mistake, oversight, miscalculation, blooper, blunder, boner, miscue, fumble,

botch, misconception, bug, error, failure. Add any words you've heard to the list, then put the list in
order according to how much responsibility they imply on the human beings who created the fault.

2. When an organization begins the systematic practice of matching every failure with a known fault, it

discovers that some failures have no corresponding fault. In Pattern 3 organizations, these failures are
attributed to "process faults"—something wrong with their software process that either generated

fictit ious failures or prevents the isolation of real ones. List some examples of process faults commonly
experienced in your own organization, such as careless filling out of STI records.

3. For a week, gather data about your organization in the following way: as you meet people in the

normal course of events, ask them what they're doing. If it has anything to do with errors of any kind,
make a note of how they label their activity—debugging, failure location, talking to a customer, or

whatever. At the end of the week, summarize your findings in a report on the process categories used
for error work in your organization's culture.

4. Describe a selection fallacy that you've experienced. Describe its consequences. How could a more

appropriate selection have been made?

 www.teatimewithtesters.com October 2011|15

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-

cycle. They include Exploring Requirements, Rethinking Systems Analysis and

Design, The Handbook of Walkthroughs, Design.

In 1993 he was the Winner of The J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 Software Test Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

Why Software gets in Trouble is Jerry’s

world famous book.

Many books have described How Software Is

Built. Indeed, that's the first title in Jerry’s

Quality Software Series. But why do we

need an entire book to explain Why Software

Gets In Trouble? Why not just say people make

mistakes? Why not? Because there are reasons

people make mistakes, and make them

repeatedly, and fail to discover and correct

them. That's what this book is about.

Its sample can be read online here.

To know more about Jerry’s writing on software

please click here .

TTWT Rating:

http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.smashwords.com/extreader/read/25884/1/why-software-gets-in-trouble
http://www.geraldmweinberg.com/Site/Software.html

 www.teatimewithtesters.com October 2011|16

Speaking Tester’s Mind

 www.teatimewithtesters.com October 2011|17

j ames

Ask any experienced tester how he does his work, and the answer is likely to be extremely vague

("Um, you know. I use my experience to... Um... black box the test case plan and such..."), or
extremely false ("Our testing consists of detailed formal test procedures that are derived from written

requirements"). Forget about bad testers, even good testers are notoriously bad at explaining what
they do. Doing testing, describing testing, and teaching testing are all different things. No wonder that

the IEEE testing standards are a joke (a very old joke, at this point), and based on talking with people
involved in the upcoming ISO standard, it will be no improvement.

If we truly wish to develop our craft toward greater professional competence and integrity, then
before we can worry how testing should be, we must be able to say how it is. We must study testers

at work. Let me illustrate.

Years ago, I was hired by a company that makes printers to help them develop a professional testing
culture. Instead of bringing in all my favorite testing practices, I started by observing the behavior of

the most respected testers in their organization. I divided my study plan into segments, the first of
which was bug investigation.

The organization identified one team of three testers (two testers and a test lead) that had a great

reputation for bug investigation. This team was responsible for testing paper handling features of the
printer. I wanted to see what made them so good. To get the most accurate picture of their practices,

I became a participant-observer in that team for one week and worked with them on their bug
reports.

C

O

V

E

R

S

T

O

R

Y

 www.teatimewithtesters.com October 2011|18

Stated Procedure for Investigating Bugs

I sat down with George, the test lead, and asked him how he
did bug investigation. He said, ―Don’t ask me to change

anything.‖

―Good news, George,‖ I replied. ―I’m not that kind of
consultant.‖ But after some feather smoothing, he did answer:

1) Notice if test automation finds a problem. The automation

system alerts the testers that something did not perform as
expected.

2) Reproduce the problem. The tester executes the test again
to recreate the symptoms of the problem.

3) Isolate the problem. The tester edits the test script, cutting

it down to the minimum required to exhibit the problem.

4) Pass the problem to the test lead for investigation and reporting. The tester delivers the edited test
script to the test lead. The test lead investigates the problem to determine, as best he can, its dynamics
and causes. The test lead then writes the bug report and submits it.

This description is typical of how testers claim to investigate and report bugs. It’s only unusual in that

the test lead performs the investigation and writes the actual bug report. However, there was another
way in which this description was unfortunately typical: it’s not true.

I knew it couldn’t be true, because it’s a process description that anyone in that company would claim to

use, yet only this team was respected for the quality of its work. There must be something more to their
process that I wasn’t being told.

Sure enough, during my observations and further conversations with the team, I found the actual
process used in the team to be much more sophisticated and collaborative than their stated process.

Their actual process ranks among the best I have seen at any company. (I first said that in the year

2000, and it remains true in the year 2011).

Observed Process of Investigating Bugs

What I observed in practice was an exploratory

investigation carried out by the whole team. When an
anomaly worth investigating was spotted by a

particular tester, the other two came over and they
engaged together in two parallel loops of inquiry:
investigating the bug and questioning the status and

merit of the investigation itself. There were two

possible outcomes, aborting the investigation or

reporting the bug. The actual bug report was written
by the test lead.

 www.teatimewithtesters.com October 2011|19

Part I: Identification

1. Notice a problem (during an automated test or any other situation).

It is a general practice in the industry to construct tests that have specific expected results. This
team took that idea further. Although they did establish certain specific expectations in advance, they

also looked at whatever happened, as a whole, and asked themselves if it made sense. This extended
even to the pattern of clicks and whirrs the printer made as it processed paper, and the timing of

messages on the control panel. I call this the Explainability Heuristic: any unexplained behavior may
be a potential bug, therefore we attempt to explain whatever happens.

2. Recall what you were doing just prior to the occurrence of the problem.

3. Examine symptoms of the problem without disturbing system state.

Prior to starting a full investigation of a problem that may be difficult to reproduce, the testers capture
as much volatile information as they can about it. This includes reviewing their actions that may have

triggered the problem and examining the problem symptoms while disturbing the state of the printer
as little as possible.

During identification, the tester’s transition from a defocused behavior of observing whatever might be

important to the focused task of investigating specific states and behaviors.

Part IIa: Reality Check Loop

The tester must decide whether to pursue the investigation or move back into open testing. So, prior

to launching a bug investigation, and repeatedly during the investigation, these questions are asked.

1. Could this be tester error?

2. Could this be correct behavior?

3. Is this problem, or some variant of it, already known?

4. Is there someone else who can help us?

5. Is this worth investigating right now?

6. Do we know enough right now to report it?

The test lead is usually consulted on these questions before the investigation begins. But testers apply

their own judgment if the test lead is not available. Contrary to George’s first description of how his
team worked, the testers on his team used initiative and routine ly made their own decisions about
what to do next.

In the event that an investigation is suspended because of the difficulty of reproducing it, it may still

be reported as an intermittent problem. Whether or not it’s reported, the testers will preserve their
notes and be on the lookout for the problem as they continue testing. Some investigations go on like

that for months.

 www.teatimewithtesters.com October 2011|20

Part IIb: Investigation Loop

Once it’s determined that the anomaly is worth looking into, the investigation begins in earnest. As I

observed them, bug investigations were not a linear execution of predefined steps. Instead, they
proceeded as an exploratory process of gathering data, explaining data, and confirming explanations.

The exploration was focused on reproducing the problem and answering certain key questions about it.
When they were answered well enough, or when the amount of time and energy spent on the problem

exceeded its importance (that’s what the reality check loop is all about) the investigation ended and
the bug was reported. Sometimes investigations continued after making an init ial report. This was
done so that the developers could begin to work on the bug in parallel with testers’ efforts to give

them better information.

The investigation process is marked by a series of focusing questions that are repeatedly asked and
progressively answered:

1. How can the problem be reproduced?

The testers not only reproduce the problem, they try to find if there are other ways to make it happen.

They progressively isolate the problem by discerning and eliminating steps that are not required to
trigger it. They look for the most straightforward and general method of making it happen. They also
seek to eliminate special conditions or tools that are not generally known or available, so that anyone

who reads the bug report, at any later time, will have the ability to reproduce the problem.

2. What are the symptoms of the problem?

Apart from identifying and clarifying its obvious symptoms,
the testers are alert for symptoms that may not be

immediately obvious. They also look for other problems that
may be triggered or exacerbated by this problem.

3. How severe could the problem be?

The testers try to analyze the severity of the problem in
terms of how it would affect a user in the field or create a

support issue for the company. They look for instances of the

problem that may be more severe than the one originally

discovered. They look for ways to reproduce the problem
that are most plausible to occur in the field.

The testers also consider what this kind of problem may

indicate about other the potential problems not yet
discovered. This helps them assure that their test process is

oriented toward areas of greatest technical risk.

4. What might be causing the problem?

The most interesting element I observed in the team’s process of bug investigation is their application

of technical insight about printer mechanisms (both hardware and firmware) to guide their
investigation of the problems. In the course of investigation, the testers did not merely manipulate

variables and factors arbitrarily. They investigated systematically based on their understanding the

most likely variables involved. They also consulted with developers to refine their understanding of

printer firmware dynamics.

Although there is no set formula for investigating problems, I observed that the testers relied upon
their knowledge of printer mechanisms and their experience of past problems to organize their

 www.teatimewithtesters.com October 2011|21

investigation strategy. So, maybe that’s the formula: learn about how the printer works and pay

attention to patterns of failure over t ime.

Part III: Reporting

Although I participated in bug investigation, I did not personally observe the process of writing a bug

report in this team. The testers reported that they sometimes wrote a draft of the bug report
themselves, but that all reports were edited and completed by the test lead.

Supporting Factors that Make the Process Work

Bug Investigation Philosophy

Apart from the process they follow, I found that there was a tacit philosophy of bug investigation in the
team that seems to permeate and support their work. Here are some of the principles of that

philosophy:

 We expect testers to learn the purposes and operational details of each test.

 We expect testers, over time, to gain a comprehensive expectation of the behavior of the product,
and to follow-up on any anomalous behavior they detect at any time.

 Each bug is investigated by all members of the team.

 Bug investigation is primarily our job, not the developers. If we do our job well, then developers
will be able to do their jobs better, and they will respect us for helping them.

 Testers should develop and use resources and tools that help in bug investigation.

 Ask for help. Someone else may know the answer or have an important clue. Seek advice from

outside the team.

 We expect testers to use initiative in investigation and consult with the test lead as they go.

Individual Initiative and Team Collaboration

During the period I observed, the testers in the team treated each bug investigation as a group

process. I had seen this before, and rarely since. They also consulted with testers outside their team,
and with developers. Their attitude seemed to be that someone in the next cube may have information

that will save them a lot of time and trouble.

The testers also showed personal init iative. They did not seem
worried about crossing some forbidden line or running afoul
of some corporate rule during the course their investigation.

They appeared to take ownership of the problems they
were investigating. The test lead told me that he

encouraged initiative in his testers, and that he expected
the testers, over time, to learn how all the tests worked and

how the printers worked. In separate interviews, the testers
confirmed that sentiment, and stated that they felt that the

resulting working conditions in their team were better than in

most other teams they had served on at that company.

 www.teatimewithtesters.com October 2011|22

Observed Skills

I saw each of the following skills exhibited to some extent in each of the testers in the team. And in my

opinion, the method of the investigation used in the team requires competence in these skills.

 Skepticism. Skepticism might be called the fear of certainty. It can be seen as central to the

challenge of thinking scientifically; thinking like a tester. Good testers avoid sweeping claims about
the product, because any claim may be refuted with the execution of the next test.

 Performing an open investigation. An open investigation is a self-managed investigation with general

goals and few explicit constraints. An open investigation involves coordinating with clients, consulting
with colleagues, collecting information, making conjectures, refuting or confirming conjectures,

identifying issues, discerning and performing tasks, and reporting results. An open investigation in
conjunction with testing is commonly called ―exploratory testing.‖

 Understanding external and internal product functionality. Bug investigation requires a sufficient

understanding of both external and internal workings of the technology. This knowledge is gained
over time and over the course of many investigations, and through studying documentation,

exploratory testing, or by observing other testers at work.

 Consulting with developers or other testers. Vital information needed to investigate problems is

scattered among many minds. Good testers develop an understanding of the network of people who
may be able to offer help, and know to approach them and efficiently elicit the information they

need. In the case of developers, testers need the ability to discuss and question software
architecture.

 Test factoring. When anomalous behavior is observed in the product, the ability to isolate the factors

that may be causing that behavior is at the heart of the investigation process. This includes insight
about what factors may be causally related, the ability to form hypotheses about them and to relate

those hypotheses to observable behavior.

 Experiment design. Testers must be able to reason about factors and find methods of controll ing,

isolating, and observing those factors so as to corroborate or refute hypotheses about the product.

 Noticing problems. A tester can know how the product should function and yet still not notice a

malfunction. Being alert for problems, even in the middle of investigating other problems, and even

in the absence of an explicit and complete specification, is a skill by itself. This requires a good
knowledge of applicable oracles, including tool-based oracles.

 Assessing problem severity. This requires understanding the relationship between the technology, the

hypothetical user, the project situation, other known problems, and the risk associated with problems
that may lie hidden behind the one being investigated. This skill also requires the ability to imagine

and articulate problem severity in terms of plausible scenarios.

 Identifying and using technical documentation. Bug investigation often requires spot learning about

the product. With printing technology, that can mean poring through any of thousands of pages of
technical documents. Testers need to know where and how to find relevant information.

 Recording and maintaining information about problems. The testers must deliver information about a

problem in an organized and coherent form in order for the test lead to confirm it and write the

report. This includes the ability to make and maintain notes.

 Identifying and using tools. Tools that may aid testing are scattered all about. Enterprising testers

should be constantly on the lookout for tools that might aid in the execution of tests or diagnosis of
problems. Testers must have the ability and initiative to teach themselves how to use such tools.

 www.teatimewithtesters.com October 2011|23

 Identifying similar known problems. In order to know if a similar problem is already known, the

testers must know who to check with and how to search the bug tracking system. This also requires
enough technical insight to determine when two apparently dissimilar symptoms are in fact related.

 Managing simultaneous investigations. Rarely do we have the luxury of working on one thing at a

time. That goes double when it comes to investigating intermittent problems. Such investigations can
go on for weeks, so testers must have the ability to maintain their notes and report status over the

long term. They must be able to switch among investigations and not let them be forgotten.

 Escalation. Since these investigations are largely self-managed, it’s important to know when and how

to alert management to issues and decisions that rightly belong at a higher level of responsibil ity.

Case Study: The Frozen Control Panel

This is an example of an actual investigation in the team that took place while I watched. It appears to
be typical of other investigations I had been told about or personally observed. The important aspect of

this case is not the conclusion— we could not reproduce this problem— but rather the initiative,
teamwork, and resourcefulness of the testers. This investigation is documented in as much detail as

we could remember in order to provide a feel for richness and flow of an exploratory testing process.

1. While Clay was running one of the paper handling tests, he encountered a printer lockup. Clay

called Ken and James over to observe and assist.

2. Clay had been running an automated test script that included many steps. After executing it once
he started it again. This time, it began executing, then stopped, apparently waiting for a response

from the printer. At that point Clay noticed that the printer was frozen.

3. Clay asked Ken if he knew about the problem and whether he thought the problem was worth
investigating.

4. Without resetting the printer, Ken examined the surrounding symptoms of the problem:

 Check control panel display (display showed ―Tray 5 Empty‖ continuously).

 Check ready and data light status (both were lit and steady).

 Open and close a tray (display did not react; engine lifted the tray).

 Open and close a door (display did not react; engine performed paper path check).

 Try control panel buttons (display did not react to any buttons).

5. Ken and Clay examined the test output in the terminal window and discovered that the test harness

tool had stopped during its initialization, before any script code had been executed.

6. After a brief conference, Ken and Clay decided that the problem was worth investigating and

conjectured that it may be due to an interaction between the timing of control panel display
messages and messages sent to the printer.

7. Ken performed a cold reset of the printer.

8. Clay restarted the test tool. The problem did not recur.

9. Clay edited the test script down to the last few operations. He executed the modified script several
times. The problem did not recur.

 www.teatimewithtesters.com October 2011|24

10. To test the hypothesis that the problem was related to the timing of alternating ―READY‖ and ―TRAY

5 EMPTY‖ displays on the control panel, Ken and Clay coordinated with each other to start
executing the test tool at various different timings with respect to the state of the control panel

display. No problem occurred.

11. We went to see a firmware developer on the control panel team, and asked him what might
account for these symptoms. He seemed eager to help. He suggested that the problem might be a

deadlock condition with the engine, or it might be a hang of the control panel code itself. He also
suggested that we review recent changes to the firmware codebase, and that we attempt to
reproduce the problem without using the test tool. During the course of this conversation, the

developer drew some basic architectural diagrams to help explain what could be going on. We
questioned him about the dynamics of his diagram.

12. The developer also conjectured that the problem could have been leftover data from a previous

test.

13. Then we went to see a fellow who once supported the test tool. With his help, we scrolled through
the source code enough to determine that all the messages displayed by the tool before it halted

were issued prior to contacting the printer. Thus, it was possible that whatever happened could
have been triggered by the first communication with the printer during tool initialization. However,

we were unable to locate the tool routine that actually communicated with the printer.

14. Because the control panel locked up with the data light on, we knew that it was unlikely to have

been in that state at the end of the previous successful test case, since that case had reported
success, and left no data in the printer.

15. We looked for a way to eavesdrop on the exact communication between test tool and the printer,

but found there was no easy way to do that.

16. We called upon another tester, Steve, for help, and together we wrote a shell script, then a Perl
script, that endlessly looped while executing the test tool with an empty script file. At first we

thought of introducing a random delay, but Clay argued that a fixed delay might better cover the
timing relationships with the printer, due to the slight difference between the fixed time of the test

and the presumably fixed response time of the printer.

17. We ran the script for about an hour. The printer never locked up.

18. While watching the control panel react to our script, Clay saw a brief flicker of an unexpected

message on the display. We spent some time looking for a recurrence of that event, but did not see
one.

19. We then went to visit a control panel tester to get his ideas on whether a problem like ours had

been seen before, and how important a problem it could be. He advised us that such a problem
would be quite important, but that he knew of no such problem currently outstanding.

20. Clay independently searched the bug tracking system for control panel problems, and found
nothing similar, either.

21. After several hours of all this, we were out of easy ideas. So, we called off our investigation until

the test lead returned to advise us.

 www.teatimewithtesters.com October 2011|25

The Study of Skill is Difficult

It’s quite difficult to study the anatomy of a practice, and the skills that practice requires. You can’t know

at first exactly what to watch, and what to ignore. Anthropologists learn to watch behavior for long
periods of time, and to relentlessly consider the possibility of researcher bias. And just the act of studying

a set of skills makes people nervous and possibly changes their behavior. I had to agree not to release
any information about the progress of my study until I cleared it with the people I was studying.

Still, even a modest one-week study like this one can have profound positive effects on the team. When I
gave this report to the team for approval, the team was a bit stunned at how much my description

differed from their self-description. One of the testers asked me if he could staple it to his résumé.
Perhaps there is even more depth to the skills of bug investigation than I have identified so far, but this

is the sort of thing we must begin to do in our field. Observe testers at work and go beneath the grossly
general descriptions. See what testers really do. Then maybe we can truly begin to build a deep and

nuanced vis ion of professional software testing.

James Marcus Bach is a software tester,

author, trainer and consultant. He is a

proponent of Exploratory testing and the

Context-Driven School of software testing,

and is credited with developing Session-

based testing.

His book "Lessons Learned in Software

Testing" has been cited over 130 times

according to Google Scholar, and several of

his articles have been cited dozens of times

including his work on heuristics for testing

and on the Capability Maturity Model. He

wrote numerous articles for IEEE Computer.

Since 1999, he works as independent

consultant out of Eastsound, Washington.

He is an advisor to the Lifeboat Foundation

as a computing expert.

Follow James on Twitter @jamesmarcusbach

or know more about his work on

satisfice.com

http://satisfice.com/
http://twitter.com/TtimewidTesters

 www.teatimewithtesters.com October 2011|26

Michael

How you spend your time is more important than how you spend your money.

Money mistakes can be corrected, but time is gone forever.

 -David Norris.

In any endeavor I participate in, I have choices. In many of life’s transactions, I can spend money to
have something done, or I can spend the time to do that same thing. For some things, it’s worth it to

invest the time to make up or offset the amount of money to be spent. At other times, there is a level of
involvement and a required expertise that makes not spending the money a barrier to achieving my
goals. There is a tradeoff; money for time, or time for money. The problems arise when we don’t give

both of each of these areas proper consideration. In the world of software development, containing costs
is important, but so is delivering a good quality product at the right time. Containing costs when a

project is on time is a good thing, but losing time and not delivering a product when scheduled can cost
both time and money, often in the lost revenue from dissatisfied customers. At the furthest extreme, the

resulting loss of time could result in legal action for not being able to deliver on commitments.

This article examines the tradeoffs between money and time, and demonstrates examples where time

investment has meant financial gain, and where lack of understanding of time has negated or even

negatively affected a company’s finances.

 www.teatimewithtesters.com October 2011|27

A New Project Gets Underway

It’s time for another software project to begin. Each time I go through this process, I have a similar set

of experiences.

Each time I need to:

• Address physical infrastructure needs
• Determine where to set up machines

• Gather and install software applications to support the testing needs
• Consider the scope and types of testing that will be required

Physical infrastructure needs include buying and setting up server and client system and networking
equipment. It may also involve internal or external hosting considerations, plus the adequate securing of

these resources. When we consider physical machines, potential lab space for the devices and the need
for adequate cooling must be considered. Our software application under development also has

infrastructure requirements. SDK’s and IDE’s are needed for software development. We must configure
and maintain file services, database services, web services, etc. We also have to consider deployment of

the application(s) for testing and for general use. The specific testing areas (and the software testing
tools that we utilize) must also be considered. Unit testing. Functional testing. Load testing. Performance

testing. Para-functional and human factors/user experience testing. The number of areas to manage and
maintain is dizzying!

I have witnessed various companies and their management teams wrestle with the goal to improve the

testing and development process. These goals may be to speed up delivery, or add testing coverage for
initiatives that haven't adequately been tested. Many management teams also provided fanfare and

cheering about the time savings due to some new enhancement. It might be a new tool to automate all
of the regression testing. It could be a new server to run a battery of virtual environments. A robust

versioning and back-up system to keep all versions of files updated, tagged, secure and available would
streamline the application lifecycle.

These are admirable goals, and when implemented, the net result can be more productive testing. Work

can be completed more quickly.

All of these initiatives cost us something. To set up any of these enhancements, our teams have to
spend something to bring them to fruition. With organizations squeezing budgets and economizing

where possible, some businesses are reluctant to spend. During economically challenging times, many
organizations opt to soldier on, using tools already in place (if any exist) and machines that are already

at work in their current state. Money is not spent, so our costs are lower. What this ―cost saving‖ doesn’t
address is the time trade-off made to perform these tasks. The Cost of Testing is not exclusively about

money, very often we must include time in that cost analysis as well.

Where Are We Spending Our Money?

As our development project ramps up, the resources available will dictate the

total time needed to complete it. The number of people on a project certainly

adds to the total price tag of a project, as well as the total amount of time a

project may take. With a testing team, two testers working together will very
likely complete more testing than one tester will. The combined test coverage

is often much greater than the sum of individual tester’s standalone efforts.

 www.teatimewithtesters.com October 2011|28

Having more powerful computers will certainly shave the time it takes to build applications. Likewise,

having more machines makes it possible to deploy more test environments.

Support for multiple Operating Systems provides additional challenges. Microsoft Windows, MacOS, and

HP-UX are examples of Operating Systems that have an up-front licensing cost for each installation.

Linux and Free-BSD are examples of open source Operating Systems that are available for free. Beyond
just the cost of the Operating Systems is the time needed to give each system thorough testing. Each

supported platform adds a time multiplier as to how long it will take. There are also variations in
Database software, web server software, Office Productivity applications, and other components that

may be required to evaluate the functionality of the application under test. In addit ion there are
variations in the way the software is written and deployed (pre-compiled code such as C++ vs. dynamic

application code like Java). Each variation requires another environment be set up and tested.

Testing these multiple OS’s requires choices be made. We can purchase and maintain individual
hardware machines. We can also utilize virtualization technology to reduce the need for multiple physical
computers. The host server will require many orders of magnitude more capacity and performance than

the individual computers we would have virtualization replace. If a project requires six systems of equal
capability, virtualizing those machines will require sufficient resources on a single server to be able to

house and run those six environments. That host server will require enough disk space, RAM and system
resources for the six virtualized environments to operate and respond as though they were standalone

machines.

Testing tools range from free, open source options all the way up to very expensive proprietary
commercial systems. The application under test often determines which tools, if any, will need to be

used. There are many free and open source test tools for testing web applications. By contrast, most of
the tools that test a compiled application from a "black box" perspective are commercial products

(though there are also a number of open source options available that allow us to create tests and
automate many tasks).

As I have seen over the years, not spending for these items or areas can provided a short-term cost

savings. We made do with the servers and machines we had on hand. We also managed to get by with a
limit on software licenses (within reason and within the bounds of what is legal; I do not advocate piracy

to cut costs at any time). I have set up test beds and test labs using free OS software, using a variety of
Linux variations. I have also used both commercial and free virtualization software, where the host was

running Linux, and the guest machines likewise represented a variety of free operating system options.
These test environments also have been set up to use as many free or inexpensive variations of open

source tools for testing purposes. There is no question that using these techniques has saved money.

What's The Tradeoff? The Trade-Off Is Time

There is an adage that says ―You can have a system that is cheap, fast, or of good quality. Pick two.‖
Price, t ime and quality rarely move up and down together. If one area gets incremented, others are

decremented. When we spend less to perform a task, the time to accomplish the task often increases.
The quality of the resulting output may also decrease. In my experience, companies want to bring costs

down, while keeping the quality level as high as possible. To make both goals succeed (lowering costs
and improving quality), in most cases we will have to allow time to increase.

Let’s use a build server as an example. If we chain a number of computers together to perform builds

the overall t ime to complete the build process will diminish. What could shaving 25% of the time off

completing a build do for your development and testing teams? Think of the amount of time that could
be applied to testing and fix ing issues discovered, rather than waiting for the build to finish. The quicker

the turnaround from development to testing, the quicker issues can be discovered, addressed and fixed.

 www.teatimewithtesters.com October 2011|29

Quicker builds allows for better integration of new code. Quicker builds allows for a system that is up

and running and more frequently available. With the effort to set up the scripts and tests needed, the
quality of the build process can be improved. The productivity gains were produced by spending money

to add server horsepower. Paying for the human brainpower to create scripts and processes makes for

fewer errors in the build process.

To contrast, let’s consider what would happen if a new initiat ive of ours requires a server, but our budget

doesn’t allow for it. We could share the workload on the existing build servers. We could pull one of the
machines out of the build process and make it a standalone server. What happens? Cost savings are

immediate; we didn’t have to purchase a new server. The quality of the builds may be un-affected, but
the time to complete the builds has increased. If the system performs daily builds, the time we have lost

because of the server change will be multiplied by the number of days for as long as the projects are
active. The benefits of quicker turnaround for development and testing will not be achieved.

I have used test environments with open source operating system software and open source testing
tools. On the surface, the environments appear to be totally free or have a very low physical cost to

implement. In my experience, deploying, maintaining and administering these operating systems and
applications requires a significant time commitment on the part of the development, test and IT teams.

Open source software (and the communities that help with bug-fixes, documentation and
implementation of new features) is on par with the development of many commercial applications. The

ease of installation and maintenance of the installed software has likewise improved dramatically. Still, a
high level of knowledge and skill is required to keep multiple open-source applications and tools running

smoothly. That knowledge development and maintenance requires time.

Several groups I have been a part of, especially at the beginning, had no formal tools in place. Most of
the testing steps are performed manually. Many tasks are best suited to active manual testing, but when

all our testing is manual, the time required to complete it can be significant. Mult iply our manual testing
efforts by the number of projects. The time commitment to do all of the needed testing rises

exponentially. Few organizations have the luxury of long periods of time to make sure all testing is
performed. What tends to happen is that testing time gets cut (or at best held to the required scheduled

time). The total amount of tests get cut, which can lead to a lower quality product. When we apply a risk
based test approach, we aim to maximizing the potential of covering areas we consider most critical.

Even with this method, consider how long it would take to cover all areas in the time limit. Where will
the cuts be made? Should we eliminate human factors testing? Will considerations for user experience

go untested or receive a lower priority? Will features that are desired but can’t be fit into the timeline be
moved to later releases? If so, how long will it be until we will be subject to the hands of Kronos once

again?

To be continued in next issue …

Michael Larsen is a lone tester in San Francisco, California.

He has spent seventeen years in testing and test organizations,

ranging from network routers and web caching devices to distributed

databases dealing with the legal and entertainment industries.

Michael is a Brown Belt in the Miagi-do School of Software Testing, an

instructor with the Association for Software Testing, and the co-

founder and facilitator of Weekend Testing Americas.

Michael blogs at www.mkl-testhead.blogspot.com and can be found on

twitter at @mkltesthead.

http://www.qualitytesting.info/forum/topics/how-do-we-reduce-cost-of

 www.teatimewithtesters.com October 2011|30

20% OFF for

our readers

813DA

http://www.crcpress.com/
http://www.crcpress.com/product/isbn/9781439861554;jsessionid=Dw8VCCXBj0xqt-1IbafpKQ**

 www.teatimewithtesters.com October 2011|31

  

 www.teatimewithtesters.com October 2011|32

In the School of Testing

 www.teatimewithtesters.com October 2011|33

sDarren

I used to dislike writ ing test cases a lot! I found it pain staking how much work was involved just to

document what was in my head. I used to think this could be time better spent doing other things
because I did waste a lot of time writ ing these, too much time, time that could have been spent testing!

So like everything I thought could be done better I started trying to think of ideas on how this could be
improved. Obviously it starts out with a question ―What is the actual problem here?‖ The problem being

my dislike for writing test cases & my desire to test instead! So looking back now it was obvious that I
felt burdened by writing test cases on functionality which I already had available to test. I probably felt

that for every test case I’d written I could probably have found some defects on
that testable functionality.

Dilemma solved!

At the start of each new release I’d always have a bit of spare time which I could use to get other

projects done. This time could have been spent writing my test cases right? If I had some
requirements I could start writ ing down test conditions. So that was it, I’d solved my dilemma of having
to write test cases while all I wanted to do was test, I’d just write them before the functionality was

written.

Requirements review

So the release went out & the requirements for the next release came in. This was my chance to see if

this made me feel any better. So out came the requirements & on went the thinking cap. I began

jotting down my test ideas & looking at what types of testing would be required for this project. I also
began noticing shortcomings in the requirements & things I knew just wouldn’t work. I also began to

generate ideas! Why do we do this? Or would it not be more user-friendly to do it this way? On and on
it went, I was having loads of fun.

 www.teatimewithtesters.com October 2011|34

So I looked over what I’d noted down after reviewing these requirements & noticed that half of it

mapped out as an overview of how I’d test this functionality & the other half was good feedback for the
BA’s & managers to consider. I’d found that on one hand I could now easily write up my test plan’s &

work out how much time I needed to write up test cases. On the other I’d came away with a lot more

useful feedback than I’d ever had before, some which might just make this project that little bit more

successful if all went to plan. I was very pleased & most of all I was having great fun.

Introducing test cases early

Next stop was the test cases I’d hated writing before, this time around though it proved to be very

enjoyable. A few days later I’d written up all my test cases & while I knew they’d probably have to
change a bit I was quite happy in that not only was it more enjoyable, as they were being written I’d

been spotting lots more gaps & potential issues with the requirements. The BAs really appreciated the
feedback & I was happy that I was more involved with them to.

So the release came and went, I’d begun my first steps into proactive testing without realizing that I

was being proactive. I’d noticed a big downturn in defects but I’d also spent a lot of time chasing
developers to run these test cases I’d written. This seemed like a better way of working, making good

use of a quite period & contributing heavily to the team.

Lean in all aspects

So your probably wondering when the lean part comes in right? We’ll begin touching on it now I

promise

But how many test cases?

Previously our entire team appeared to have their own ways of creating
test cases with no set standard. Some people opted for a test case for

every one to three test conditions, resulting in hundreds of test
cases. Others would bunch more conditions into test cases but for each

step in the process that changed they’d always have to write a new test
case. I didn’t think this was very efficient, or fair at the same time for
those people who’d have to re-run them if they ever became part of the

regression test suite. I remember once two testers responsible for an
important new feature got asked to write some test cases for it & came

back with over eight hundred! Crazy & looking into these each had one
or two conditions at most for each test case. How many test cases

you’ve written means nothing, James Christie wrote an excellent article
on this ―But How Many Test Cases‖. Could you ever imagine asking

someone to run those eight hundred test cases with a straight
face? Crazy talk!

So that was the first challenge getting the rest of the team on board with how I’d thought these should

be written. I’d arranged a meeting & asked that everyone submit how they thought a test case should
look. We discussed the pros & cons of each template & grouped our favourite couple, then discussed

these some more. Thankfully they all seemed bought into my suggested format.

Mind mapping

So what was the format? We’ll it’s evolved slightly since then so we’ll just discuss what it looks like at

present. Firstly I think it’s important to discuss how they are designed.

http://clarotesting.wordpress.com/
http://clarotesting.wordpress.com/2010/07/21/but-how-many-test-cases/

 www.teatimewithtesters.com October 2011|35

So like I’d said before I generally try to take a proactive approach by generating these up front.

If you’ve paid any attention to requirements at the start of a project you’ll know they can vary greatly
from someone’s vision to very detailed documentation. So you’ll know the extent of your test cases will

be limited by the available requirements, something which we’ve been lucky with at my company

allowing us to provide very good test cases up front for developers to run prior to committing code.

Once I’ve gave feedback on the requirements & they’d become more stable I’d crack open my favourite

mind map tool, in this case Xmind. Mind maps are excellent, previously I’d been writ ing all my test
cases in our test management tool & not seeing as much interlink between the different area’s of the
feature as my thoughts were constrained to my current test case. I’d also have to jump in and out of

test cases whenever I’d thought of new conditions for a test case I wasn’t currently creating or
editing. With a mind map as you build it up you just see all the links in the feature so you’re fully aware

of its integration points & influences.

With Xmind you can add extensive notes to each node on the mind map, this is what I used to write up

my entire test conditions for that part of the feature, to later by dump into the test management tool.

If I think of a new test condition for some other part of the feature I simply select and edit the notes of
that node on the mind map. What took a little time before now takes seconds. Likewise as everything

is visibly in front of me my mind begins to naturally consider more aspects of the feature in turn
generating better test conditions that I might previously not have thought of when using a test

management tool to write these.

http://www.xmind.net/
http://bettertesting.co.uk/content/uploads/leantc/mindmapmain.jpg

 www.teatimewithtesters.com October 2011|36

Monkey Madness!

For me my map shows my path through the application/feature, or steps as you’d call them in a test
case. When it comes a time to put my conditions into a test management tool the map becomes the

test case folder hierarchy, making it easier to navigate test cases when running them in the future. If
my tool needed me to add in steps for some reason (mine doesn’t & I don’t) I’d simply copy the folder

structure onto my steps in a brief format e.g. Make Order > Add Billing Details > Confirm. Let’s keep
the fluff to a minimum that’s why I myself don’t use steps, people are intelligent & in my app can see

that the folder structure mimics the steps they would have to take.

As you’ll imagine with the nodes being paths or areas through the application or feature we can cover a
broader feature area than before. We’re not training monkeys by telling them ―for this condition you’ll

need to select X, then after a second Y will appear‖ but to do that you need another step oh crap lets

write another test case for this! No we don’t need to hold people hands; we can let people think for

themselves. As long as the test conditions make sense people will understand that they might need to
deviate from the beaten path to test something.

Adding in types of testing

For the conditions I generate these on nodes on my mind map. I split them up into the types of testing
I would do. When I say a testing type it would be something like Usability, Extensibility, and Security

and so on. I generally dump a generic template of all testing types into each node at the start as a note
so I can at least attempt to consider if any conditions need to exist for that testing type. From splitting

these test conditions into different types of testing, you’ll find that you think more, as such generating
much better test cases for that functional area, since you’re paying much more attention to what you’ll

need to test. I also add in a rules section for everything that the requirements expect, I guess you could
call these our acceptance conditions.

http://bettertesting.co.uk/content/uploads/leantc/mindmapconditions.png

 www.teatimewithtesters.com October 2011|37

Increased requirements review

My final section at the end of my notes is for questions I might have about the requirements. The good

thing about Xmind here is that if I know something on my mind map has some unanswered questions
noted, I can highlight it in a different colour such as red. Then I can easily see that I need to resolve a

few questions for that area at some point. You’ll find when writing test cases up front even if you’ve
done a review & feedback of the requirements you’ll still find lots of other things you hadn’t cons idered

that will need some discussion with a stakeholder at some point. These could be gaps, risks or
suggested improvements; you’ll see it’s very handy to be able to collate everything you’ve done in one
place with a mind map.

Generating the test cases

So you might be thinking these are all very condit ional based, your correct! That’s all I want. I’ll take

these once I’m happy with them from the mind map & put them directly into my test management tool
as-is. Like I said my steps will be my folder hierarchy or dependant on your tool a very brief copy of the

mind maps path to the node to replicate the steps the user would make. If I need some setup tasks
done before running these test cases I’ll put a link to them at the start of my conditions.

Requirements change they always do & often are not strictly followed, that’s why I tend to leave all my

test conditions in my mind map right up until the last minute. It’s easier to change & add conditions in

the map, it’s less easier to do so once they’ve reached your test management tool. With the addition of

a better testing mindset using the mind map you’ll be more aware of the impact of a requirements
change, as such you’ll be able to write better conditions around this.

http://bettertesting.co.uk/content/uploads/leantc/mindmapconditionstestlink.png

 www.teatimewithtesters.com October 2011|38

I’d considered doing a demonstration of all this using a simple application but I think I’ve covered almost

everything & hopefully made sense. If anyone would like me to do a demonstration from requirements,
to maps, through to the end test cases I’d be happy to, just leave a comment or drop me an email & I’ll

do this as a later follow up this article.

Summary

So I hope from the description & the screenshots I’ve provided you’ll be able to see the benefit of

keeping your test cases as lean as possible. For a quick recap here’s the why:

 Mind mapping

o Increases creativity

o Reduces test case creation time

o Increases visibility of the bigger picture

o Very flexible to changing requirements

o Can highlight areas of concern (or be marked for a follow up to any questions).

 Grouping conditions into types of testing

o Generate much better test conditions

o Provides more coverage

o Using templates of testing types makes you at least consider that type of testing,
when writing conditions.

o When re-run these often result in new conditions being added & defects found due to
the increased awareness

 Lean test cases

o Easy to dump from the map into a test management tool

o If available the folder hierarchy can become your steps

o Blend in easily with exploratory testing. Prevents a script monkey mentality.

o Much lower cost to generate and maintain, whilst yielding better results.

That’s it for this article! I hope you enjoyed it as much as I did writ ing it, thanks for reading.

Darren McMillan has been working in the testing field for over four

years now. He has a genuine passion for all things testing and actively

seeks to solve the problems others tend to accept. He strongly believes

that opportunities are there to be taken and actively promotes self

learning to others. When he is not testing or writing about his

experiences, he enjoys nothing more than some quite family time.

A proud father to a beautiful daughter he hopes that from leading by

example he will encourage her to follow her own dreams. Contact Darren

on Twitter @darren_mcmillan.

http://www.qualitytesting.info/forum/topics/do-you-know-about-mind-maps-can-mindmaps-be-an-alternative-for-sc

 www.teatimewithtesters.com October 2011|39

are you one of those

#smart testers who

know d taste of #real

testing magazine…?

 then you must be telling your friends about ..

 Tea-time with Testers Don’t you ?

 Tea-time with Testers !
first choice of every #smart tester !

http://www.teatimewithtesters.com/

 www.teatimewithtesters.com October 2011|40

Testing Checklist for Mobile Applications

For any tester who is new to Mobile apps testing, it

often becomes tough to ensure that he/she has

tested the application in all aspects.

Most of the times testers tend to miss important

aspects of any application or say its features based

on different criteria. Also, even though one is

experienced enough to test particular mobile app in

maximum possible aspects, it is tough to say that

he/she will be able to test another app with same

cleverness.

Here is the checklist that I have prepared based on

my experience which will help you to ensure that

your application under test is tested thoroughly.

 Biography

Anurag Khode is a Passionate

Mobile Application test engineer

working for Mobile Apps Quality

since more than 4 years.

He is the writer of the famous blog

Mobile Application Testing and

founder of dedicated mobile

software testing community Mobile

QA Zone.

His work in Mobile Application testing has been well

appreciated by Software testing professionals and UTI

(Unified Testing Initiative, nonprofit organization working

for Quality Standards for Mobile Application with members

as Nokia, Oracle, Orange, AT & T, LG Samsung, and

Motorola). Having started with this column he is also a

Core Team Member of Tea-time with Testers.

Contact Anurag at anurag.khode@hotmail.com

http://www.mobileappstesting.com/
http://www.mobileqazone.com/
http://www.mobileqazone.com/

 www.teatimewithtesters.com October 2011|41

 www.teatimewithtesters.com October 2011|42

Feel free to drop me a note if it helped you or you need more information/help around it.

Have a great day and wish you all a very Happy Diwali !

 www.teatimewithtesters.com October 2011|43

What do you pack when you go for a Bug Hunt?

Bug Hunting is becoming a common practice form many testing organizations world wide; yet some test

managers wrongly feel they go hunting when their testers informally play with the application in order to

find ―border-case defects‖.

Bug Hunts are Informal Testing exercises; this should not be

mistaken with playing with the system without a purpose or

objective. In order to achieve something (and not waste your

time!!) during these activit ies you need to follow a specific

methodology, perform planning and preparation actions, and

monitor and control the process throughout its execution.

Even if there is no written book (at least that I am aware) on Bug

Hunts, I follow a process that I caught some years ago during

one of the STAR conferences.

 www.teatimewithtesters.com October 2011|44

I plan Hunts based on Pair-Testing and Soap Opera Scenarios, combined as a tournament between

teams.

Pair Testing is when you take 2 engineers and they work as a team

on 1 computer (or environment). The idea comes from pair

programming with all its known advantages such as knowledge

sharing, brain storming, and positive pressure from working with a

partner. I’ve had very good results pairing engineers from different

teams; especially when taking development engineers and paring

them with test engineers, leveraging the advantages and points of

view from both sides of the process.

Soap Opera Scenarios are relatively short end-to-end scenarios that take the system from beginning

to end of a complex operation on a fast (and sometimes exaggerated) chain of events. Working under

extreme conditions we are able to find issues that we missed during our controlled scripts and scenarios.

The Tournament activity is where the human factor comes into play. You

want people to be motivated, and what can be a better motivation for an

engineer than a prize..? I keep track of many statistics like the number of

original bugs detected per day, the most serious bug detected, the worst

system crash, etc; and give a prize to the pair who exceed on each category

(we usually give away t-shirts and on one extreme case we even gave an

iPod!) .

In any case it is not the prize but the spirit that makes the difference.

There are some rules of thumb I give QA organizations before they start planning their Bug Hunts:

1. Make sure you’ve reached a minimal application maturity level; if it is still too easy to detect critical

bugs or the system keeps crashing all the time you may be ahead of your time.

2. Work on testing environments with real life data. Your tests need to be far from sterile in order to

simulate a real working environment.

3. Create a balanced activity schedule. I work based on 2-day bug hunts, where each day starts with 4

hours of Exploratory Testing around a specific application area (each team or two working on a different

part of the application); and during the second half of the day we run our Soap Opera scenarios, where

each team receives a user profile and a list of high level tasks.

4. Manage the activity using a tracking system . Any bug tracking system will help you keep track of the

issues detected by the teams; if possible use a dashboard to make sure all team members are updated

on the position of the rest of their peers.

5. Have a bug referee, she will decide whether the findings are real bugs and also stop duplications from

been reported and counted.

6. Create anticipation by having internal teasers and ―publicity campaigns‖ ahead of the activity.

http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Pair_programming

 www.teatimewithtesters.com October 2011|45

7. During the hunt generate an informal atmosphere by playing music, giving each team bells to signal

whenever they find and report a new bug, bringing pizzas and sodas, and using other out -of-the-

ordinary things that will create the feeling of a special occasion.

Bug Hunts are as much about the right atmosphere and state-of-mind as they are about the

methodology and scenarios you run. Make sure you and your team have fun and it will surely generate

the outputs you expect it to produce or more.

Joel Montvelisky is a tester and test manager with over 14 years of experience

in the field.

He's worked in companies ranging from small Internet Start-Ups and all the

way to large multinational corporations, including Mercury Interactive

(currently HP Software) where he managed the QA for TestDirector/Quality

Center, QTP, WinRunner, and additional products in the Testing Area.

Today Joel is the Solution and Methodology Architect at PractiTest, a new

Lightweight Enterprise Test Management Platform.

He also imparts short training and consulting sessions, and is one of the chief

editors of ThinkTesting - a Hebrew Testing Magazine.

Joel publishes a blog under - http://qablog.practitest.com and regularly

tweets as joelmonte

http://www.practitest.com/
http://qablog.practitest.com/
http://twitter.com/#!/joelmonte
http://twitter.com/#!/joelmonte
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 www.teatimewithtesters.com October 2011|46

Click HERE to read our Article Submission FAQs !

http://www.teatimewithtesters.com/#!write-for-us

 www.teatimewithtesters.com October 2011|47

Seven consecutive errors = A Catastrophe

"A typical accident takes seven consecutive errors" quoted Malcolm Gladwell in his book "The Outliers".
As always Malcolm's books are a fascinating read.

In the chapter on "The theory of plane crashes", he analyses the airplane disasters and states that it is

a series of small errors that results in a catastrophe. "Plane crashes are much more likely to be a result
of an accumulation of minor difficult ies and seemingly trivial malfunctions" says Gladwell.

The other example he quotes is the famous accident - "Three Mile Island" (nuclear station disaster in

1979). It came near meltdown, the result of seven consecutive errors –

(1) blockage in a giant water filter causes
(2) moisture to leak into plant's air system

(3) inadvertently trips two valves
(4) shuts down flow of cold water into generator

(5) backup system's cooling valves are closed - a human mistake
(6) indicator in the control room showing that they are closed is blocked by a repair tag

(7) another backup system, a relief valve was not working.

 www.teatimewithtesters.com October 2011|48

 Biography

T Ashok is the Founder & CEO of

STAG Software Private Limited.

Passionate about excellence, his

mission is to invent technologies to

deliver ―clean software‖.

He can be reached at ash@stagsoftware.com .

This notion is reflected in the book "Ubiquity" by Mark Buchanan too. He states that systems have a

natural tendency to organize themselves into what is called the "critical state" in what Buchanan states
as the "knife-edge of stability". When the system reaches the "critical state", all it takes is a small

nudge to create a catastrophe.

Now as a person interested in breaking software and uncovering defects, I am curious to understand
how I can test better. How do you ensure that potential crit ical failures lurking in systems that have

matured can still be uncovered?

Let us look at what we do- We stimulate the system with inputs (correct & erroneous) so that we can
irritate latent faults so that they may propagate resulting in failure. When the system is ―young‖, the

test cases we design are focused on uncovering a specific singular faults i.e. a set of inputs that can
irritate singular faults and yield possibly crit ical failures. This is possible because the ―young system‖ is

not yet resilient and therefore even a singular fault bumps it up! We then think that our test cases (i.e.
combinations of inputs) are powerful/effective. But these test cases do not yield defects later as the
system becomes resilient to singular faults.

As the system matures we need to sharpen the test cases to irritate a set of potential faults that are

tied to create a domino effect to yield critical failures. Creating test cases to uncover singular faults in a
mature system is no more useful. It is necessary that test cases be at a higher level of system

validation (i.e. have long flows) and have the power to irritate a set of faults.

So can we resort to uncovering critical failures only by testing by creating test cases at higher levels
that have the power to uncover multiple types of faults? Not necessarily. We can apply this thought

process at the earlier of design/code too. Using the notion of sequence of errors and understanding
what can happen.

If your drive in India you know what I mean ... the potential accident due to a dog chasing a cow, which

is charging into the guy driving the motorbike, who is talking on the cell phone, driving on the wrong
side of road, encounters a "speed bump" , and screech *@^%... You avoid him if you are a defensive

driver.

Alas we do not always apply the same defensive logic to other disciplines like software engineering
commonly enough...!

Have a safe day!

Twitter @ash_thiru

mailto:ash@stagsoftware.com
http://www.stagsoftware.com/

 www.teatimewithtesters.com October 2011|49

Quality Testing

Quality Testing is a leading social network and resource center for Software

Testing Community in the world, since April 2008. QT provides a simple web

platform which addresses all the necessities of today’s Software Quality

beginners, professionals, experts and a diversified portal powered by Forums,

Blogs, Groups, Job Search, Videos, Events, News, and Photos.

Quality Testing also provides daily Polls and sample tests for certification

exams, to make tester to think, practice and get appropriate aid.

Mobile QA Zone

Mobile QA Zone is a first professional Network exclusively for

Mobile and Tablets apps testing.

Looking at the scope and future of mobile apps, Mobiles,

Smartphones and even Tablets , Mobile QA Zone has been

emerging as a Next generation software testing community for

all QA Professionals. The community focuses on testing of

mobile apps on Android, iPhone, RIM (Blackberry), BREW,

Symbian and other mobile platforms.

On Mobile QA Zone you can share your knowledge via blog

posts, Forums, Groups, Videos, Notes and so on.

http://www.qualitytesting.info/
http://www.mobileqazone.com

 www.teatimewithtesters.com October 2011|50

Continued from page 3 ….

We were programmers. The sysadmin was a

programmer, the guy who built the computers was
a programmer ... the company president wrote the

main code for the initial product offering.

This wasn't a programming company; it was a
company of programmers.

And, without any testers, analysts, user interface

people, graphic designers, configuration managers,
or anything even remotely like that on staff, we

were programming without a safety net.

Keep in mind, I was twenty years old and straight
out of school.

Stuff went wrong. It was kind of a humbling time.

I did, however, quickly come to a realization of my

ignorance -- that we needed some sort of safety
net; that the company was not going to provide it,

so I had better build it myself. I decided to do
something about it, going back to school. At first I
was taking interesting classes at night while

vaguely working on MBA pre-requisites, but I
eventually decided to pursue a master's degree in

Computer Information Systems, a sort of mix
between Computer Science and Business, at Grand

Valley State University.

To Graduate School And Beyond

We could debate school all day long. The long and
short of it was that yes, I could have learned those

things on my own, but the program pushed me to
study specific things on a deadline. It provided me

with enough exposure to key topics to know where
to go to learn more, and, most important, it

developed in me the habit of working in my own
time on professional development, especially

writ ing.

In the summer of 2003, I attended the O'Reilly
Open Source Convention, and presented a

lightning talk on Test Driven Development (TDD).
That same summer I published by first article

(outside of the school paper), entitled How To
Survive The Coming Bust. The following spring, I

attended STAREast, at the time the world's largest
software test event, where I presented a track talk

on Test Driven Development, and wrote an article
for publication from my hotel room.

It was at one of those early STARs, that I first met
Cem Kaner, and later James Bach. I remember

how, at the Open Source Convention, the cool kids
all had a "posse", a small group of followers.
Except for the ones selling training services, I got

the impression, that unless you'd written some
impressive (well-known) (public) (open source)

software; they didn't really want to talk to you.

Then I met Dr. Kaner. He recognized my name
because I had posted on some internet forums. We

talked for perhaps twenty minutes. I felt like I was
abusing his time, and asked if I was keeping him

from anything. "Yes, you are keeping me from my
dinner. Would you like to join me?"

It felt like ... home.

Within a year or so of that meeting, I had a

business card that said "Software Developer", but I
was self-identifying as a tester.

Oh yeah. I was also writing.

And Then Life Got Busy (The Next Half-Dozen

Years)

It's been truly an amazing past few years of my
life. I've been back to STAR Conference four times,

presented at the STPConference four times, been
out to present at Google, contributed a chapter to

Beautiful Testing, the forward to The Clean Coder,
and, most recently, served as lead editor for the

anthology on How To Reduce the Cost of Software
Testing. I've also been blogging since 2006,
current at Creative Chaos, the STPCommunity

Blog, and IT Knowledge Exchange. Oh, and I've
written a fair number of other places, too. Plus

there's the podcast; in my spare time I also served
as lead organizer and first master of ceremonies

for the Great Lakes Software Excellence
Conference, facilitates liaison for the Conference

for the Association for Software Testing in 2010,
and, based on that, was elected to serve on the

AST Board of directors for a 2011-2013 term.

And, yes, I had the day job the whole time, finally
going independent in May of 2011. On my current

assignment, I'm doing a full-time load as a

consulting software tester forty hours a week,

keeping my existing writ ing and volunteer
commitments, and, yes, finding time to write for

Tea-time with Testers.

http://web.archive.org/web/20061017101336/http:/www.angrycoder.com/article.aspx?cid=6&y=2003&m=7&d=31
http://web.archive.org/web/20061017101336/http:/www.angrycoder.com/article.aspx?cid=6&y=2003&m=7&d=31
http://www.youtube.com/watch?v=PHtEkkKXSiY
http://www.amazon.com/gp/product/0596159811/ref=as_li_ss_tl?ie=UTF8&tag=heusseronlead-20&linkCode=as2&camp=217145&creative=399369&creativeASIN=0596159811
http://www.amazon.com/gp/product/0137081073/ref=as_li_ss_tl?ie=UTF8&tag=heusseronlead-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=0137081073
http://www.amazon.com/gp/product/1439861552/ref=as_li_ss_tl?ie=UTF8&tag=heusseronlead-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1439861552
http://www.amazon.com/gp/product/1439861552/ref=as_li_ss_tl?ie=UTF8&tag=heusseronlead-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1439861552
http://xndev.blogspot.com/
http://www.softwaretestpro.com/blog
http://www.softwaretestpro.com/blog
http://itknowledgeexchange.techtarget.com/unchartered-waters/
http://www.xndev.com/articles/articles.htm
http://www.softwaretestpro.com/List/Podcasts
http://www.glsec.org/
http://www.glsec.org/

 www.teatimewithtesters.com October 2011|51

 Sincerely Yours,

The point of all this wasn't to bore you with my
resume -- it was to reveal a few interesting truths

about how I got where I am, that, I hope, might
be helpful. If I may, I would like to provide a small

piece of advice.

Tomorrow

So there you have it. It's been a wonderful, long
and winding road, with a few surprises, a few

challenges and opportunities. I've tried to hit the
highlights, especially my early career; in the way

that I thought might be most helpful to you.

It might be a stretch, a bit of exaggeration,

perhaps, to say I'm in love with Software Testing -
- but it's not a stretch by much.

You might just say I'm hooked.

But What about You?

First, I'd like to remind you that I am a screw-up.

As a cadet in Civil Air Patrol, I consistently failed.
My attitude was poor; there was always some

other cadet who could run faster, or had a better
uniform, stood up more straight, or told the brass

what they wanted to hear. The one thing I had
was perseverance. The fast guy, the polished guy,

the driller and the slick one all went on to other
things, but I stuck around and kept testing and

advancing. Toward the end, I even managed to
have a few responsible assignments, but even

then I managed to fail a bit.

Remember, I was a failure in ROTC too; I never
did earn that commission.

As a college student, my grades were mediocre.

I thought that many of my professors didn't like
me; at least, they always seemed to be mad at

me. Years later, after Beautiful Testing came out,
one of my old professors explained they were
disappointed -- they thought I had potential and I

was wasting it.

I woke up one day, and I was a college graduate.
And my momma and daddy weren't going to

provide for my living anymore.

It was time to grow up.

I do not credit myself for this decision, but instead
a still small voice encouraging me to do better, to

rise above my own sloth and take responsibility for
my life.

I credit the Holy Spirit of the Bible for taking the
mess of a boy that came to Jesus Christ in 1995

and turning him into a man, and I'd be happy to
talk about it some time. But, as they say ... that is

another story. Shortly after that morning, well,
things got better.

Somewhere along the line (probably during

graduate school) I become both an idea guy and a
finisher. That is to say, I have a few ideas

("lightning talks! podcasts! Let's run a conference!
Let's write a book!") and I actually do the work. By

that I mean actually doing software testing and
helping others do it, while writing about it.

It turns out that perseverance trumps flash --
although having ideas helps.

My second piece of advice builds onto the first:

don't let your mistakes define you. Instead, learn
what not to do. Stop doing it. Then start over

doing it right. It is not too late. Three strikes and
you are not out.

Third, if you feel a little confused about your

career options, don't fret too much. That's normal.
Think about Matt the teen-ager; I was totally

misguided on my future. I started out wanting to
write fiction, played army for half a decade,

programmer for years after that, and finally found
software testing, my home. (But ask me again in

another decade or so.)

My fourth piece of advice lines up with this:
Experiment with a lot of things. Flow toward the

things you actually enjoy that provide an outcome
you are happy with.

We gave up on Big Design Up Front for software

years ago. It probably won't work for your career
either. It's good to come up with a theory about

how your career should go. Actually testing it and
adapting?

That's better!

I hope you enjoyed this issue of Tea-time with
Testers, and I hope it helps you on your journey.

Matt Heusser

 www.teatimewithtesters.com October 2011|52

interview

Matthew Heusser, a techie from

Allegan, Michigan, travelled through a

long and winding road to create his

own identity. Today he is one of the

leading personalities in software

testing industry.

But what has he got to say over

questions asked by TTWT?

Find it out in this interview.

 Tea-time with Matthew Heusser !

 www.teatimewithtesters.com October 2011|53

Our readers now already know about your

career as a Tester. Still, if asked to tell about

your "love with testing" in few lines, what

would your answer be?

How many jobs in the world can you say “this is

never going to work because...”, give some

evidence, and collect both a pay check and a pat

on the back? (Laughs)

One of the things I like the most about testing

is how it presents new intellectual challenges

every morning. Here we have this impossible

problem: To know the state of the software,

when the combination of inputs and outputs is

infinite, yet we need to come to the conclusion

in finite time.

Then you approve, get a new build, wake up the

next morning and do it all over again - with

totally different features and a new risk

profile. How could you not enjoy this?

You are one of the established speakers in the industry. How important do you find conferences and

other knowledge sharing initiatives to an individual and the community?

If you‟ve spent most of your career at one company, you may not realize how screwed up you are, and

make the same mistakes over and over again.

Note: I say that with confidence because we are all screwed up in different ways.

The next problem you‟ll have is that you do know how screwed up your company is. This is a real

bummer. You can go to conferences to find out how screwed up everyone else is -- it‟ll make you feel

better.

Eventually you realize that picking a job or picking a place to work, or picking what battles to fight, is

all a matter of tradeoffs and values. Then you need people to bounce ideas off of.

So, while you don‟t particularly need to go to conferences, I do suggest some sort of meetup with

other people in testing and software outside of your field. The conferences just give you a week

away to really think about the problems without the busy business of production.

You have rich experience of working in various

fields. Did you ever find testing as a monotonous

job? What keeps you motivated to test better?

Usually I find that testing is one of those things

where, if it isn‟t fun, you‟re doing it wrong.

However, sometimes, I have to admit, I get

tester fatigue. Usually it‟s something like this:

an install is failing, or I don‟t see the change, so

I have to uninstall and re-install and check, and

then it doesn‟t work. Is it hitting the right

database? Better check the config file. Re-run.

etc. Generally these are most painful to me when

I can‟t figure out what is wrong or the problem

involves a long feedback cycle. You know, you set

up a test, walk away, get a cup of coffee, and ...

it‟s still wrong. So you set it up again ...

The fix for this is usually either to tighten the

feedback loop, take a break, work on something

else, or handoff the work. Once my brain is

fried, I make mistakes, and the process just gets

worse.

 www.teatimewithtesters.com October 2011|54

What difference does it make working in an

organization and working as a freelancer? Why

would someone go independent?

Now there‟s a long question !

Basically, I find the freelance life better in

every way but one - predictability of income. If

you need predictability of income, well, maybe a

day job is for you.

If, on the other hand, you have a spouse that

works outside the home, or you have about a

year‟s worth of savings saved up, or you have

some other form of generating revenue that can

provide enough if you need it, I recommend

going independent. Personally I built a modest

writing/speaking business to be big enough, and

put enough in the bank, to survive a reasonable

down period. Considering that I had a day job,

this took a fair bit of personal sacrifice. If the

sacrifice isn‟t worth it to you, well, then, it isn‟t

worth it to you!

Thinking on it some more, of course there are

other variables. Unless you live in a major

metropolitan area, you may have to travel to get

freelance assignments, and that may be more

(or less) acceptable to you and your family. For

many people that is a deal-breaker - especially

folks who want to actually do the testing work,

instead of training or consulting. (With training

and consulting, you can raise your rates a bit

and be home a little more.)

Also note that unless they can grab a major,

multi-year contract, independents are always in

sales mode. If you don‟t like telling people „No‟,

and you don‟t like rejection, well, maybe being in

sales mode all the time isn‟t the best bet for

you professionally.

'How to reduce the cost of Software Testing':

How do you feel about it now ? Any special

experience, memories, mentions ?

The process of developing the book was amazing!

I got to meet, and really get to know, some

serious thinkers and doers through the creation

of that book. In October 2010, about the time

we were finishing the second drafts, a group of

us did a panel on that very subject at STPCon in

Las Vegas, Nevada, USA. It came together very

well, I think in part because at that point we

really knew each other well.

Of course I have some regrets. Most of the

contributors are not professional authors, and

while I might qualify as a professional author,

I‟m a far sight from a professional editor.

Perhaps I‟m too tough on myself. For what it

claims to do, I was very pleased.

 www.teatimewithtesters.com October 2011|55

What do you think is the responsibility of the

leaders/mentors in the field of software

testing today ?

I suppose it depends on what you mean by

leaders and mentors. Personally, I think a

large number of people just want to do what

they are told - they want to follow. And, to

some extent, that‟s okay -- as long as they are

following the right people!

If a great number of testers are sort of

sheep, then I want the leaders and mentors

to be the sheep dogs; to protect the people

who aren‟t yet able to protect themselves.

Along the way, we provide those people with

the tools to help themselves.

So basically I‟m suggesting you be a sheepdog

who runs and ammo factory and basic training

program or something. It‟s late, and I‟m

pretty tired. :-)

What message would you like to send to our

testing community?

Go get good at testing. Actually add real value

on projects, and a lot of the fear and

uncertainty and second-class-ness you feel, or

that other people like to inject upon you, will

sort of go away.

At the same time, get good at explaining

testing - how you do it and why you do it.

There are plenty of bad ideas and mythology

in the world of software testing. We need to

let experience and reason win out over legend

and dogma. The way to do that is for each of

us to get very good at understanding what is

really happening on projects, and also in

explaining it to others.

Those are communication skills - things like

writing and speaker. We don‟t talk about that

very much in the testing world; we should.

Your opinion about Tea-time with Testers. Any suggestions?

I appreciate what you folks do for the community and I was pleased to be invited to contribute.

I am amazed at the value you manage to provide the community for so little cost.

You should charge! And Thank you !

Thanks Matt ! It was great fun talking with you.

And thank you!

 www.teatimewithtesters.com October 2011|56

Tool Watch

 www.teatimewithtesters.com October 2011|57

practitest

Overview of Service Test

Service Test is Hewlett Packard’s tool for automated testing of Web Services and other UI-less systems.
It uses a visual designer as a canvas for creating steps in a test.

You create tests by dragging activities from the Toolbox onto the canvas and defining their parameters.

Service Test 11.0 has been totally redesigned over the previous version. In the previous versions of

Service Test 9.x and below was based on the LoadRunner VUGen engine, the current version of Service
Test has been totally redesigned from the ground up based on the Visual Test Designer Interface.

Also, currently HP is shipping Service Test as part of its Unified Functional Testing package along with

QuickTest Professional (QTP), so that users can use QTP for testing GUI application and Service Test for
testing Web Services and non-GUI applications.

Service Test GUI Interface

The Service Test interface lets you design a test by dragging activities into a canvas.

PART 1

 www.teatimewithtesters.com October 2011|58

Service Test Main Window

This screen is the Service Test’s main window for creating and populating tests. It contains the toolbox
palette, canvas palette, property sheet, output and error tab.

Tests Pane

The Tests pane enables you to view all the test components in a tree hierarchy.

 www.teatimewithtesters.com October 2011|59

Toolbox Palette

The Toolbox palette enables you to view all of the available activities. It contains all of the activities and
flow control objects that you need in order to create a test.

Canvas Palette

The Canvas palette enables you to drag and drop items from Toolbox. It provides a visual representation
of the test flow. You populate the canvas by dragging in activities from the Toolbox palette.

 www.teatimewithtesters.com October 2011|60

Property Sheet

The Property Sheet displays a series of tabs showing the properties, schemas, and events for the step

selected in the canvas. It provides several views that allow you to set and create step properties and
define handler events. It also provides action buttons that allow you to data drive properties and load
files.

 Output Tab

The Output tab enables you to view the output messages that were generated while compiling and
running the test.

 www.teatimewithtesters.com October 2011|61

Error Tab

The Error tab enables you to view a list of the errors generated during the test run, and their level of
severity: Message, Warning, or Error.

To be continued in next issue…

Karthik Subramanian is the Senior Technical

Solutions Consultant at Hewlett Packard (HP).

Prior to that he was with Mercury Interactive;

serving as the internal Product Expert on

Automation tools.

He holds numerous industry certifications

including: Mercury QTP CPC, WR CPS, ISTQB,

Sun SCJP and Microsoft MCP. He has also

presented at numerous conferences including:

HP Meet the Expert Sessions, HP Software

Universe and Mercury Software World.

He also holds a masters degree from University

of California, Davis and is a graduate of the

Indian Institute of Technology (I.I.T).

 www.teatimewithtesters.com October 2011|62

Puzzle

Claim your Smart Tester of The Month Award. Send us an answer for

the Puzzle and Crossword bellow b4 10th Nov 2011 & grab your Title.

Send -> teatimewithtesters@gmail.com with Subject:Testing Puzzle

Gear up guys.......

 It’s Time To Tease your Testing Bone

!

mailto:teatimewithtesters@gmail.com

 www.teatimewithtesters.com October 2011|63

Puzzle “Play Around It ”

 "Find a website (please ask the owner before if its not a problem),

where entering a large number of char "/" instead basic url is causing

relevant issue to the website(slowing down, malfunction, security etc)

Example:

Using http://www.google.co.uk//i

mghp?hl=en&tab=wi causes the site to load the images more slowly (this

is unproven, used for the purpose of giving an example)

 Biography

Blindu Eusebiu (a.k.a. Sebi) is a tester for

more than 5 years. He is currently hosting

European Weekend Testing.

He considers himself a context-driven follower

and he is a fan of exploratory testing.

He tweets as @testalways.

You can find some interactive testing puzzles

on his website www.testalways.com

http://www.google.co.uk/imghp?hl=en&tab=wi
http://www.google.co.uk/imghp?hl=en&tab=wi
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/
http://www.testalways.com/

 www.teatimewithtesters.com October 2011|64

Horizontal:

1. Most popular Agile coach and practitioner in the world,

first name (4)

4. Short form of Quality Assurance (2)

6. To identify and correct mistakes in a computer program

(5)

9. The short form of Capability Maturity Model (3)

10. It is the fastest test harness software to lean (3)

11. The first name - It is a software V&V (Testing) company

based in Bangalore, India (3)

12. Test Data selection technique, in short form (2)

14. Chief Financial Officer of world's largest marketplace

for Software Testing Services, first name (3)

15. A document describing the conduct and results of the

testing carried out for a system or system component, the

first word (4)

16. CEO and Founder of PushToTest, the first name (5)

19. The first name - Producing tests for the behaviour of an

implementation to be sure it provides the portability,

interoperability, and/or compatibility a standard defines (11)

Vertical:

2. Testers tries to break the system by randomly trying

the system's functionality, the first name (5)

3. A tool to use web application to help you keep tabs on the

time you spend on different projects (5)

5. Testing to verify a product meets customer specified

requirements (10)

7. A test automation tool for ajax applications, in short

form (5)

8. Checks for memory leaks or other problems that may

occur with prolonged execution, the firsrt name (9)

13. It will allow for an abstraction of Test Cases

specification and Test Case automation execution (6)

17. It is a tool to provides issue tracking and project

tracking for software development teams to improve code

quality and the speed of development (4)

18. Short form of Multinational Company (3)

http://www.qualitytesting.info/

 www.teatimewithtesters.com October 2011|65

Answers for Last Month’s Crossword:

V

We appreciate that you

“LIKE” US !

Answers for Testing Puzzle:

1. http://iamtheproudownerofthelongestlongestlongestdomainnameinthisworld.com/

2. http://thelongestlistofthelongeststuffatthelongestdomainnameatlonglast.com/

https://www.facebook.com/TtimewidTesters

 www.teatimewithtesters.com October 2011|66

 www.teatimewithtesters.com October 2011|67

o

I recently started reading your

magazine, and let me say it’s

amazing. I am planning to write few

articles in future.

I really appreciate for the team

effort that you guys contributing

towards the magazine. Keep it up !

- Jamuna Reddy

Mind blowing stuff. Thanks for creating such a

lovely book.
-Sudhir Jagannath

Great Magazine ! Looking forward to learn a lot !

 – Suchibrata Acharya

I love your publication and just can’t wait to read it
each month.

 - Rob Irving

Really interested to get your magazine and I will
compliment to my level best.

 - Mohan raj Rajendran

This is the coolest magazine I have ever read on

software testing. Everything about it is just brilliant

and nicely put together. Great Job.

-Meenakshi Pandit

Thanks very much for sharing the best

magazine with me! Looking forward~~~

-Joanna

I am highly impressed with the content

and your style guys. You people are doing

great job.

Cheers !

– Shobhana Narang

Tea-time with Testers! It is a lovely publication

that regularly runs many good articles. I tend to

forward links to my team when there are ideas

that could benefit them.

- Peter Walen

http://www.softwaretestpro.com/Person/8355/Peter-Walen/

 www.teatimewithtesters.com October 2011|68

If you have any questions related to the

field of Software Testing, do let us know.
We shall try our best to come up with

the resolutions.

- Editor

 www.teatimewithtesters.com October 2011|69

 www.teatimewithtesters.com October 2011|70

our family

Founder & Editor:

 Lalitkumar Bhamare (Mumbai, India)

Pratikkumar Patel (Mumbai, India)

Lalitkumar Pratikkumar

Core Team:

Kavitha Deepak (Bristol, United Kingdom)

Debjani Roy (Didcot, United Kingdom)

Anurag Khode (Nagpur, India)

Anurag Kavitha Debjani

Editorial| Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Cover Page Image- Etsy

Sagar

Mascot Design & Online Collaboration:

Juhi Verma (Mumbai, India)

Romil Gupta (Pune, India)

 Juhi Romil

 Tech -Team:

Subhodip Biswas (Mumbai, India)

Chris Philip (Mumbai, India)

Gautam Das (Mumbai, India)

Subhodip Chris Gautam

 www.teatimewithtesters.com October 2011|71

To get FREE copy ,

 Subscribe to our group at

 Join our community on

 Follow us on

http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

