

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|2

Anthology of T-Talks

By T Ashok

http://www.teatimewithtesters.com/
http://www.testomaton.com/site/

 Teatimewithtesters.com November 2014|3

Get ready for your gift… this festival season!

IN THROUGH THE SIDE DOOR
A video talk by Michael Larsen

http://www.teatimewithtesters.com/
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://stepinsummit.stepinforum.org/conference-program
http://stepinsummit.stepinforum.org/registration-info
http://www.tvfortesters.com

 Teatimewithtesters.com November 2014|4

Created and Published by:

Tea-time with Testers.
B2-101, Atlanta, Wakad Road
Pune-411057
Maharashtra, India.

Editorial and Advertising Enquiries:

Email: editor@teatimewithtesters.com

Pratik: (+91) 9819013139
Lalit: (+91) 8275562299

This ezine is edited, designed and published by Tea-time
with Testers. No part of this magazine may be
reproduced, transmitted, distributed or copied without
prior written permission of original authors of respective
articles.

Opinions expressed or claims made by advertisers in this
ezine do not necessarily reflect those of the editors of

Tea-time with Testers.

http://www.teatimewithtesters.com/
mailto:editor@teatimewithtesters.com

 Teatimewithtesters.com November 2014|5

Editorial n

e

 When delays are for Good…

First of all, I want to thank all of those who wrote us letters enquiring about coming issue. It gives us

immense pleasure to learn that even after almost 4 years, our readers are as passionate about us as

they were in our initial days.

With the launch of first issue of Software Tools Magazine, we had decided to give small break to our

readers so that they can digest next issue of Tea-time with Testers with ease. But I was wrong! Dozens

of emails eagerly enquiring about next issue of TTwT has made us realize the real appetite of our

readers and I promise that we will continue to feed you with same passion in future.

There are bunch of other things we are working on to give you a new year treat and I am sure that

our readers will appreciate those special efforts.

On that note my friends, allow me to take your leave for now. To keep my promise about your New

Year gift, I must rush!

Until then….

- Lalitkumar Bhamare

editor@teatimewithtesters.com

@Lalitbhamare / @TtimewidTesters

http://www.teatimewithtesters.com/
file:///F:/Tea-time%20with%20%20Testers/Magazine/Mag%20versions/March%202012%20Issue/editor@teatimewithtesters.com
http://twitter.com/Lalitbhamare
http://twitter.com/TtimewidTesters
http://in.linkedin.com/pub/lalitkumar-bhamare/11/7a9/b20
http://twitter.com/Lalitbhamare
http://www.facebook.com/fndlalit

 Teatimewithtesters.com November 2014|6

http://www.teatimewithtesters.com/
http://www.qaistc.com

 Teatimewithtesters.com November 2014|7

topIndex P Quicklookfinal i

INDEX

How We Discover – 26

Help Your Website Achieve Peak Performance– 20

3 Drivers that Fuel Software Success – 22

 Crowdsourcing Your Testing - 33

Optimize Software Testing by Orthogonal Way –

36

 Planning for Effective Data Warehouse Testing

– 42

 Tell a story, do not just report - 51

Over a Cup of Tea with Markus Gartner

http://www.teatimewithtesters.com/
http://smartbear.com/
http://www.qasymphony.com/
http://www.teatimewithtesters.com/#!software-tools-magazine/cjyx
http://hubs.ly/y0htRL0
http://hubs.ly/y0htRL0

 Teatimewithtesters.com November 2014|8

I

NEWS

QASymphony Announces Integration with Rally Software

ATLANTA, GA – November 18, 2014 —QASymphony, leading provider of Agile testing solutions, today
announced a partnership with Rally Software (NYSE: RALY), a leading global provider of enterprise-class
software and services solutions to drive business agility. QASymphony’s qTest test case management tool

now fully integrates with Rally’s Agile Platform for Application Lifecycle Management (ALM).

This enhanced qTest integration to Rally® ALM allows customers to leverage the power of exploratory,

manual, and automated testing all in one easy to use platform. Additionally, customers are granted
seamless traceability out of one tool and in to the other. qTest is a scalable QA software testing
management platform optimized for enterprise Agile development teams. Available as a SaaS application

or installed on-premise, qTest allows teams to manage requirements, design test cases, plan test
execution, track defects, and generate status and quality-metrics reports.

"We are thrilled to work with Rally to provide a best-in-class testing solution with the most intuitive
integration possible for Rally’s customers,” said David Keil, CEO, QASymphony. “Following a successful
joint customer implementation, we are proud to now introduce this integration to the Rally user base as a

whole, and we’ll continue to solicit customer feedback and input to ensure that our customers create better
software. QASymphony is the testing platform of choice for enterprise customers and our partnership with

Rally is a strong component of our solution."

http://www.teatimewithtesters.com/
http://www.qasymphony.com/
http://www.rallydev.com/

 Teatimewithtesters.com November 2014|9

“Rally is committed to helping our customers produce higher-quality software that best meets end user
expectations by successfully leveraging Agile to meet business challenges,” said Ryan Martens, Rally
founder and CTO. “Our partnership with QASymphony is designed to bridge the gap between developers

and testers so that developers can spend less time with documentation and more time testing and
advancing their products and services to market quickly.”

Rally customers span the Fortune 500, government, financial, healthcare, media and entertainment,
technology, and telecommunications industries. A list of Rally customers can be found

here: https://www.rallydev.com/all-rally-customers.

About Rally

Rally Software provides leading software and services solutions that drive agility. Companies work with us
to accelerate innovation, improve performance, and respond to evolving customer needs. Rally’s SaaS
platform transforms the way organizations manage the software development lifecycle by aligning

software development and strategic business objectives, facilitating collaboration, and increasing
transparency. Rally’s consulting and training services apply Agile and Lean approaches to help
organizations innovate, lead, adapt, and deliver. http://www.rallydev.com.

Rally, Rally Software and the Rally logo are trademarks or registered trademarks of Rally Software
Development Corp. in the United States and other countries. All other trademarks are properties of their

respective owners.

About QASymphony

QASymphony’s test management and agile testing solutions help teams create better software. With
QASymphony’s tools businesses can accelerate testing to keep up with the pace of today’s development
to ensure that productivity gains from agile development are matched with the oversight, visibility and

control required to build quality software. Empowering quality software at companies such as Adobe,
Barclays, BetterCloud, ExactTarget (Salesforce Marketing Cloud) and Vonage, QASymphony enables teams
to communicate and collaborate faster, bringing visibility and control back to the development and testing

lifecycle. The company is headquartered in Atlanta, GA.

Website: www.qasymphony.com
Facebook: www.facebook.com/qasymphony
Twitter: www.twitter.com/qasymphony

Press Contact:

Victor Cruz

Principal, MediaPR

vcruz@mediapr.net

http://www.teatimewithtesters.com/
https://www.rallydev.com/all-rally-customers
http://www.rallydev.com/
http://www.qasymphony.com/
http://www.facebook.com/qasymphony
http://www.twitter.com/qasymphony
mailto:vcruz@mediapr.net

 Teatimewithtesters.com November 2014|10

 Quality Testing reaches 15000+ registered members

Mumbai, India – 30 November 2014 - Quality Testing (http://www.qualitytesting.info), a leading online-
social network for software testers has crossed a big milestone of reaching 15,000+ registered members.

With 15,010 registered users, Quality Testing has now become one of the few large online communities
for software test professionals. With such a huge user-base, Quality Testing has also become largest

testing community of Asia.

Quality Testing’s motive is to benefit the testing community by providing an open platform for knowledge

sharing and networking between testing professionals worldwide. It has attracted many enthusiastic test
professionals from 200+ countries with major registrations done from India, USA, UK and Canada.

More than 4350 professionals visit Quality Testing every day. This community is currently accessible to
members as well as non-members. Quality Testing considers its user base and forums as its valuable
assets.

Quality Testing also has a news portal "Latest Software Testing News” and runs a jobs board "Quality Jobs
Portal" in association with Tea-time with Testers. That’s not just it. You will find content services, hundreds

of technical videos, discussions, featured interviews, details of software testing events from across the
world, a weekly news-letter, blogs, and specially created groups on various subject areas in software

testing in this terrific community.

Speaking on the occasion, Mr. Kiran Kumar (Founder of Quality Testing) said, "We are happy that we have

reached another milestone. This is largest non-commercial and non-profit social network for software
testing professionals across the world. Reaching this milestone has made us more responsible and we are
committed towards making Quality Testing a most definitive platform for social networking between testing

professionals. We would like to thank everyone who has registered on QT and making use of our forum.
It wasn’t not possible without them.”

Tea-time with Testers is strategic partner of Quality Testing and we congratulate them for this candid
achievement.

Contact: contact@qualitytesting.info

http://www.teatimewithtesters.com/
http://www.qualitytesting.info/
http://www.latestsoftwaretestingnews.com/
http://www.qualityjobsportal.com/
http://www.qualityjobsportal.com/
mailto:contact@qualitytesting.info
http://www.latestsoftwaretestingnews.com

 Teatimewithtesters.com November 2014|11

Photo credits: Amir Eltahan

http://www.teatimewithtesters.com/
mailto:sales@teatimewithtesters.com?subject=Regarding Smiling Customer programme

BERNICE INTERVIEW

Markus’s stand for quality, his work in Agile and ATDD circles is known by all. He is a software craftsman who
specializes in testing, development, project management, people and general systems thinking. He is a black-
belt tester and instructor in the Miagi-Do school of software testing, and a co-founder of the European chapter
of Weekend Testing.

I got to meet Markus at CAST 2014 Conference and meeting him in person was a great experience. From his
testing career to his stand about testing, we discussed about many different things. And I am glad that we talked.

Read on to find out what all we talked about, in this exclusive interview.

- Lalitkumar Bhamare

 Teatimewithtesters.com November 2014|13

Please tell us about your testing journey.

In 2006 fresh from university, when I was looking for a job, I
applied for a position as a release manager. In the first few
minutes in the job interview, I was told that they no longer
had the position I originally applied for open, and that I was
interviewing as a QA Engineer. I thought “ok”, and got the job.

Having had actually no exposure to software testing during
my time at the university, I needed to learn what it takes to
be a good tester. Eventually I found out that I had been a
tester all my life already.

One and a half years later I found myself in the role of a test
group leader. I had four colleagues in my group, and we were
faced with the situation that we had to maintain an
automated testing code base – that we originally
implemented – that was hard to maintain with 12 people –
and we had to deal with just us five.

So, I figured we need to do something different, and that’s
how I discovered Agile methodologies. Inspired by those
materials, we jumped in, and replaced what had “grown” for
a year by a new approach while the project with the customer
was still going on. 18 weeks later we had a faster test
automation suite that was able to answer the crucial
questions from project managers and developers.

A couple of years later I moved on as a trainer, coach, and
consultant for agile software development. That’s what I am
still sticking with, but my heart still lies with the testers.

Do you have any regrets being a tester by chance?
Would you have loved to be a tester by choice?

Well, it was my choice to go for the software tester job I was
interviewed for. I could have moved on, and maybe pursue a
Ph.D. program – as I originally wanted to do. But then, that
job was way too much fun to move on.

It was a chance that opened that day, and I made the choice
to see what it takes to become a great tester. I didn’t pursue
that career during my time at the university, and I probably
wouldn’t have pursued it. Programming was way more fun
back then. On the other hand, in test automation I found I can
combine both, my programming skills, and my attitude to be
nitpicky. That’s what made me stay, and that’s why I don’t
regret it.

You are well known in industry for your
contribution towards ATDD/TDD/BDD. Please
tell us more about your work. How did it
start? What made you get involved more in it?

When we faced the problem to replace that test
automation solution based on shell scripts, I was
worried about how testers on agile projects could keep
up the pace with development. So, I not only dived
deeper into agile testing, but also agile software
development, and context-driven testing. As I said we
eventually replaced the old solution within 18 weeks
by applying lots of lessons I could learn from the early
books on ATDD and TDD.

I remember that I kept on coming home from work
with all those questions in mind. When I came back the
next day, I had read a bit more about the approaches
that others took, and was inspired enough to
immediately try it out.

I think my knowledge was mostly driven by the need to
learn more, and try it out close to immediately. I
experimented a lot with all the stuff once we had freed
our back. For example, I remember one year between
Christmas and New Year’s. I read Growing Object-
Oriented Software Guided by Tests back then. We had
recently gone through a larger project, and didn’t have
unit tests for our test automation code in place. I knew
that was a risk for the long-term support of that
project. So, I dived in, and used lots of mocking to bring
out test automation code base under test. That was a
lot of fun, and I learned tremendously in those 5-7
working days about mocking and unit tests.

Do you think Test Driven Development or
Behavior Driven Development are the best
ways to develop software?

I believe they are among the best that we currently
know. Rumor has it that "something like TDD" was
already used by folks like Jerry Weinberg, Bernie
Dimsdale, and John von Neumann.

What? Really, here's a passage from an interview
between Michael Bolton and Jerry from 2008
(http://www.developsense.com/blog/2011/01/jerry-
weinberg-interview-from-2008/)

… CONTINUED ON PAGE 47

http://www.teatimewithtesters.com/
http://www.developsense.com/blog/2011/01/jerry-weinberg-interview-from-2008/
http://www.developsense.com/blog/2011/01/jerry-weinberg-interview-from-2008/

 Teatimewithtesters.com November 2014|14

The Three Great Obstacles to Innovation

Technical stars are innovators—that's how they got to be stars—but their skills as individual innovators
often obstruct their climb to a leadership plateau. When they're not aware of their own innovative
processes, they may lose their powers when they assume leadership responsibilities. If they don't

understand the sources of innovation, their own attempts to innovate may destroy the creative
environment for others

 In the following chapters, we'll explore the major obstacles to innovation and how they can be
overcome, both in yourself and in others.

Even in her childhood she extracted from life double enjoyment that comes usually only to the creative

mind. "Now I am doing this. Now I am doing that," she told herself while she was doing it. Looking on
while she participated. —Edna Ferber, So Big

Enough of theory. What are you actually doing that either makes you creative or blocks your brain? Can
a new model of leadership really work for you, or is it only as useful as the latest diet fad? The theory of

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|15

dieting is simple enough: All you have to do is achieve a balance between input and output. According to
the balance theory, I shouldn't have this bulge around the middle, but look at me.

Theories are like that. I can give you all sorts of techniques for developing your problem-solving or
leadership abilities, yet find that you're making no progress. In this chapter, I'd like to explore the most

common obstacles to progress toward problem-solving leadership, starting with the question of why I
sometimes put on pounds without knowing why.

ARE YOU AWARE OF WHAT YOU HAD FOR DESSERT?

Keeping trim is important to my business, because people pay more attention to what you do than what
you say. As a consultant who's supposed to help streamline organizations, I make a poor model if I'm a

not exactly streamlined myself. At one such organization, Dani and I were looking for the source of their
diminished productivity. After we spent the day observing and interviewing, Shirley, the manager of the
systems analysis sections, invited us home for dinner.

Shirley and her husband, Harrison, lived with their three sons in a busy but attractive neighborhood, which
seemed well matched to Shirley's temperament. When I raided Shirley's refrigerator for a pre-dinner

snack, I was surprised to find evidence that she was struggling to control her weight. There were low-cal
foods inside, calorie charts on the door, and a box of appetite suppressants on top. As she prepared
supper, we discussed our common problem.

 "I must have a metabolic problem," I said.

 "Me, too. I used to have trouble with snacks, but I've controlled that, yet I still can't lose weight."

 "Maybe it's eating out. You know, Dani and Harrison have already promised the kids we'll go out to

Swenson's after dinner. I'd rather stay home because I can't resist their ice cream."

 "Well, I can resist," Shirley boasted. "I'll just have a cup of coffee."

 "Maybe if I eat a full supper," I said, "I won't have any appetite for dessert." But there wasn't much
conviction in my voice.

 I ate a full supper, but at Swenson's I wasn't able to resist ordering a dish of raspberry sherbet. Dani
had a small marshmallow sundae, Harrison had a large banana split, the two oldest boys had special

children's sundaes, and the youngest had a chocolate chip cone. Only Shirley resisted, righteously and
vocally ordering a cup of coffee. I noticed, though, that Shirley took cream in her coffee. And sugar.

Then when Buddy's cone arrived, Shirley seemed quite concerned that it was going to fall or drip. "I'll just
trim off the extra," she announced, and proceeded to reduce Buddy's scoop to half its original size.
Somehow, the excess went into her mouth.

In the meantime, Harrison offered her a "taste" of his banana split. "Just a taste," she said, but he insisted
that she taste each of the three delicious flavors, plus each of the three syrups, some of the whipped

cream, a bit of the banana, and both cherries. Before long, the dish was resting halfway between them,
and she was using her coffee spoon to continue her "tasting."

She also sampled the other two children's sundaes, nobly eating the parts they didn't like. To wash all this
down, she ordered a refill on coffee, then another, both with cream and sugar. Somehow, there seemed
to be a food magnet in her mouth, irresistibly attracting all loose food on the table. I found myself

compelled to offer her some raspberry sherbet, but she was busy finishing one of the decorative cookies.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|16

Later that evening, with the kids tucked into bed, we four adults sat around having a nice chat. Around

eleven, Shirley asked if anyone was hungry. None of us were, but she slipped into the kitchen anyway.
When she returned with a plate of cheese, fruit, and nuts, she announced to nobody in particular, "Well,

you guys all had ice cream, and I didn't have any."

"But you did," I observed, regretting it immediately.

 Shirley regarded me with a puzzled look. "No. Don't you remember? I didn't order any ice cream. Just
coffee." True, she hadn't ordered any ice cream, but didn't she realize that she'd eaten at least twice as

much as anyone else at the table?

SELF-BLINDNESS: THE NUMBER ONE OBSTACLE

 For many people, work is like Shirley's eating. They waste time pursuing dead ends, dragging out phone
calls, or getting involved in useless arguments, yet never realize why they don't accomplish anything.
Writers, for example, throw away many false starts, or sit staring at a page for hours without typing a

single word. Many programmers, stuck in some fallacious argument, search for a single error long past
the point where they should seek help.

 I know that other people do those things (Dani and I watch them all the time), but I'm sure that I don't
do them—not very often, anyway. Wouldn't I remember if I did?

 In fact, I wouldn't remember, any more than Shirley could remember what she had for dessert. Like
everyone else, I'm quite unable to see myself in action, particularly when I'm exhibiting my least
productive behaviors.

Whenever I watch someone like Shirley not watching herself, my consciousness is raised, for a few days
anyway. I snack less and lose weight. But soon I stop watching again, and my spare tire starts to in ate.

What I need is consultant, someone to watch me eat and report to me what I can't see for myself. The
same is true for all of us. The only way we can see ourselves is through other people.

This inability to see ourselves as others see us is the number one obstacle to self-improvement. The great
majority of would-be problem-solving leaders are stuck on this one obstacle. To surmount it, they must
recruit others to help them. Probably the best way to get someone to watch you is by making a pact to

watch that person in return. Even a mutual observing relationship is a rather delicate one, so it may take
some time to develop a relationship that works well.

 Whatever you do, keep it mutual. Don't ever volunteer your observations about people as I did with
Shirley, no matter how helpful you think it would be for them. Shirley was nice enough not to punch me,
but I was lucky.

 Even when people ask for your observations, they won't always like what you have to say. I once asked
Dani to watch my eating patterns. As an anthropologist, she's an expert observer—so good, in fact, that

it almost broke up our marriage. It's just not much fun to be watched all the time, so whatever you do,
don't pick your spouse as your watching partner.

To be continued in next issue…

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|17

Biography

Gerald Marvin (Jerry) Weinberg is an American computer scientist, author and teacher of the psychology and

anthropology of computer software development.

For more than 50 years, he has worked on transforming software organizations.

He is author or co-author of many articles and books, including The Psychology

of Computer Programming. His books cover all phases of the software life-cycle.

They include Exploring Requirements, Rethinking Systems Analysis and Design, The

Handbook of Walkthroughs, Design.

In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information

Sciences, the 2000 Winner of The Stevens Award for Contributions to Software

Engineering, and the 2010 SoftwareTest Professionals first annual Luminary Award.

To know more about Gerald and his work, please visit his Official Website here .

Gerald can be reached at hardpretzel@earthlink.net or on twitter @JerryWeinberg

TTWT Rating:

Becoming a Technical Leader is a

personalized guide to developing the qualities

that make a successful leader. It identifies which

leadership skills are most effective in a technical

environment and why technical people have

characteristic trouble in making the transition to

a leadership role. For anyone who is a leader,

hopes to be one, or would like to avoid being

one.

This is an excellent book for anyone who is a

leader, who wants to be a leader, or who thinks

only people with 'leader' or 'manager' in their

title are leaders.

Its sample can be read online.

Know more about Jerry’s writing on software on

his website.

http://www.teatimewithtesters.com/
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.geraldmweinberg.com/Site/Home.html
mailto:hardpretzel@earthlink.net
http://twitter.com/#!/JerryWeinberg
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.geraldmweinberg.com/Site/Software.html
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I
http://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I

 Teatimewithtesters.com November 2014|18

The Bundle of Bliss

Buy Jerry Weinberg’s all testing related books in one bundle and at unbelievable price!

The Tester's Library consists of eight five-star books that every software tester should read and re-read.

As bound books, this collection would cost over $200. Even as e-books, their price would exceed $80, but in

this bundle, their cost is only $49.99.

The 8 books are as follows:

- Perfect Software

- Are Your Lights On?

- Handbook of Technical Reviews (4th ed.)

- An Introduction to General Systems Thinking

- What Did You Say? The Art of Giving and Receiving Feedback

- More Secrets of Consulting

-Becoming a Technical Leader

- The Aremac Project
Know more about this bundle

http://www.teatimewithtesters.com/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/
https://leanpub.com/b/thetesterslibrary/

 Teatimewithtesters.com November 2014|19

SmartBear Software not only provides testing tools to help

development and testing teams accomplish their software quality goals,

it is also a hub of information and news for the software testing

industry. From workflow methodologies to discussions on industry

practices and tech conference coverage, SmartBear has become a

source for testers seeking quick access to a wide variety of content.

SmartBear’s goal in creating this column in Tea-Time with Testers is to

empower software testers around the globe by helping them become

more informed about the current state of the software testing industry.

About this column…

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|20

This Holiday Season Help Your Website Achieve Peak

Performance – Part 2
- by Nikhil Kaul

In part one of this series, I touched upon the enormous opportunity holiday season presents for any

internet retailer. While this all sounds like great news for e-retailers, the holiday season comes with its

own set of challenges. Even though customer spend and traffic continues to increase on year-over-year

basis, not all retailers have been able to use this to their advantage during the holiday season because

they were not well prepared. Toysrus.com for instance experienced a 14 hours of downtime during the

2013 holiday season. In other words, many of the visitors who were trying to shop at Toysrus.com during

those 14 hours, ended up making purchases at one or more of its competitors. Remember, unless you are

selling something that is truly one of a kind, your competition is only about 3 clicks away – and I don’t

know about you, but personally, I’m *far* more likely to invest 3 clicks to go to a different store if I am

dissatisfied, if it’s taking too long, or if it’s closed than I am to drive across town to see if the competitor

is will provide service more to my liking.

In the case of Toysrus, their moderate page load time of 4.089 sec in comparison to Target’s 2.55 sec and

BestBuy’s 3.494 sec, certainly didn’t help matters for them. Toysrus.com definitely ended up losing some

of its impatient customers to competitors even when the website was up and running.

On the first look, a one and a half second delay in page load may not appear to make a big difference, but

think about it. How many pages do you visit while you’re shopping for the perfect gift? How many half

seconds is that compared to how many half seconds it takes you to get to competing e-retailers whose

responsiveness isn’t undermining your holiday spirit while you’re gift hunting?

To fully grasp how much

difference this half second can

make, let’s take a look at some

trends in how consumer behavior

is changing while making

purchases online. Research

conclusively shows that consumer

attention continues to dwindle to

new lows every year. Average

Session Length and Page Views

per Session, both metrics which

demonstrate consumer attention,

have hit new bottoms for each of

the past three years. These

dwindling attention spans means if

e-retailers don’t pay special

attention towards site

performance, they will, not might, but *will*, end up losing customers to competitors.

http://www.teatimewithtesters.com/
http://www.websitepulse.com/blog/web-performance-and-availability-during-holiday-season-2013-infographic

 Teatimewithtesters.com November 2014|21

Throughout the remainder of this

series of blogs, we’re going to

explore specifically how the much

difference a half second can make,

how easy it is for the traffic

increase of the holiday season to

slow your site down by that half

second, and specific things you

can do to keep your holiday

revenues from falling victim to that

dreaded half second (or worse,

downtime!).

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|22

 3 Drivers that Fuel Software Success

When it comes to Software Quality, focus on the end user

There are many different ways to determine how “good” a piece of software is. A developer might feel that

efficient code that’s maintainable and extensible is the most important thing. A product manager might

be looking for a rich feature set that delivers more than the competition. A tester might be aiming for a

bug-free release. Problem is, all of them may be wrong: you can still end up with a product that is too

complex, too hard to use and too hard to learn.

If you really want to know how good your software is then you should be asking your end users. The real

measure of quality is revealed in your usage statistics. What are your adoption rates and how often are

people using your product? If people use it a lot, then they like it, and if they don’t…well, there’s a reason

for that too.

The 3 drivers of software success

You need a solid foundation built on three drivers in order to deliver good software and each one must be

measured and judged from an end user perspective.

1. Usefulness

Does it have the features and functionality that people really want? It must do what the end user expects

it to do. It’s not about having more features than the competition; it’s about having the features your end

users want and delivering them to a high standard.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|23

2. Usability

How easy is it for a person to use? It must be fast and efficient, easy to learn and understand, and capable

of recovering graciously from any problem. The learning curve should never be too steep, and there’s no

patience for long complex user guides.

3. Appeal

What’s the reason that the end user should install your software and load it up again and again? The best

software is something that people will immediately see the value in, and after using it they’ll want to use

it again every day, not once or twice a year. Would the user tell their friends and colleagues to try it out?

Understanding the end user

For any software tester the first thought should be to understand the end user. You can focus on the first

two pillars and always ask how useful and usable is this software? You’ll obviously explore the reliability,

the flexibility, and the extensibility of the software using the full range of tools at your disposal, but try to

do this with the same mindset as your intended audience.

Practically speaking, this means learning the end user’s context. Don’t just rely on documentation; you

need to immerse yourself in their domain and gain an insight into the specifications they require and the

desires they have.

The simplest route to this data is to talk directly to them. Modern projects frequently involve a lot of

discussion with the end user and agile development dictates that a feedback loop should be established

early and feedback should be collected often.

When the product manager organizes feedback groups and meetings to discuss the expectations and job

requirements, make yourself a part of that conversation. The earlier everyone gets involved, the better

informed they will be, and the better the job they will do. If you don’t get involved until later then make

a point of being proactive in catching up. Identify representative end users and interview them.

Going beyond bugs

The old metrics are outdated. Reports on defect counts and defect density simply don’t provide a clear

picture of software goodness. Just because a piece of software is completely bug-free that doesn’t mean

that it’s good. Testers need to look past defects and consider things like how easy it is to learn to use and

how well it gets the job done.

For end users, defects are obviously a problem, but you can’t eradicate every defect before release,

especially when you’re rolling out new features frequently into a live product. If we accept this then we

can take a different view. What’s more important is how the software handles a problem. Can it recover?

Can it provide clear instructions for the user? Is it obvious to them what happened and what they should

do next? The help and support should be built-in.

Make the end user central

It’s time to change the way that we evaluate software goodness. Instead of collecting a disparate group

of metrics and snapshots that deliver insights on specific elements of the development, we should make

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|24

the end user central and narrow our focus. Even an efficient, feature-rich, defect-free product can be hard

to use.

Any start-up or seasoned software team would be wise to consider the three pillars that will drive usage

before any requirements are drawn up or a line of code is written, and to continue in that vein for the full

life cycle of the product.

Let the end user lead the way. Take the time to understand what they want in a product, so you can make

it useful. Observe how they interact with the software, so you can make it usable. Never take your eye off

the adoption and usage statistics, because they are the only measure of the product’s appeal that really

matter.

Vu Lam is founder of QASymphony, a leading provider of test management

platforms for agile development teams, He was previously with First

Consulting Group and was an early pioneer in Vietnam’s offshore IT services

industry since 1995. He holds an MS degree in electrical engineering from

Purdue University.

You may reach him at vulam@qasymphony.com

facebook.com/TtimewidTesters

http://www.teatimewithtesters.com/
http://www.qasymphony.com/?utm_source=PR_Vchannels&utm_medium=article&utm_campaign=3+pillars+software+goodness
mailto:vulam@qasymphony.com
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters

 Teatimewithtesters.com November 2014|25

Speaking Tester’s Mind

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|26

dean

discove ry

Abstract

In Exploring Science: The Cognition and Development of Discovery Process [3], David Khlar et al.
conducted experiments to analyse the process of scientific discovery. Twenty-six software testers

repeated Khlar’s experiments using robots to explore how we discover and how it relates to the process
of software testing. Participants worked in groups to perform 1 of 6 experiments. All experiments
required participants to discover the function of a button on the robot. Experiments differed in the type

of instructions provided, and the size of the group. The groups recorded their experiments and
outcomes, then drew conclusions about how discovery takes place, the variables that affect discovery,
and how that discovery relates to software testing. The results of the study are similar to the findings

in Khlar’s book; the difference being how these results relate to software testing.

Introduction and Motivation

This paper investigates the way software testers discover. In software testing, one must seek and

discover bugs, requirements, and other various information to make better informed decisions on how
to test, analyse risk, and evaluate the product. James Bach writes, "Testing is questioning a product in
order to evaluate it." [1] Cem Kaner defines testing as an "investigation done to provide stakeholders,

information about quality of a product or a service."[2] In both definitions, we can see that testers need
to discover.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|27

Then the question we pose is -- what does it to take to discover? In this paper, we break this down and
consider whether prior knowledge or any biases have an effect. If so, why? How about the amount of
information, amount of direction, or size of the team? Is it better to take a step back or to drive and

delve into the problem head first?

This paper uses an experiment performed by Klahr and Dunbar asking participants to determine how a

device works and relate this to testing. With the use of ‘Big Trak’1 and ‘Big Trak Jr.2’ robots [4] and
unknown functionality, we conduct a series of experiments to investigate how we discover.

Related and Prior Work

Klahr & Dunbar (1988) has already done work with respect to observing discoveries and scientific
thinking using a programmable robot, ‘Big Trak’ [4]. Participants were asked to determine the
functionality of a certain button. In this paper, they present a model of Scientific Discovery as Dual

Search (SDDS) in which there are two primary spaces of scientific discovery: hypothesis and
experiments. The hypothesis space is determined by an experimenter’s prior knowledge and former
experimental results, which in turn guide the experiments.

Experiments Description

The experiments involved two types of rover toys called ‘Big Trak’s’, a large programmable rover and a
small programmable rover Big Trak Jr. The rovers move forward, backward, to the right and the left and
have additional commanding capability via a keypad. The rovers can be programmed to perform multiple

instructions in a session. On each rover, one of the action keys is blacked-out. For each test, the users
are to discover the behavior of the blacked-out key. The blacked-out key on all of the large rovers has
the same functionality. In addition, the blacked-out key on all of the small rovers has the same

functionality. Participants are divided into 10 teams of either two or three members and provided
instructions to facilitate discovery of the function of the blacked-out key. The experiments are labeled A,
B, C, and D. Each team is assigned two rovers and given different instructions.

Experiment A

In Experiment A the teams are given the following information about the blacked-out key:

1. The key is known as the repeat key

2. It requires a numeric parameter

3. It can only be used once in a program

4. It has no effect on instructions following its location in the program

The teams are requested to write a single hypothesis on how the repeat button might work and then to
prove or disprove their hypothesis.

1 http://www.bigtrakxtr.co.uk/bigtrak

2 http://www.bigtrakxtr.co.uk/bigtrakjr

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|28

Experiment B

In Experiment B the teams are given similar instruction to Experiment A about the blacked-out key as

follows:

1. The key is known as the repeat key

2. It requires a numeric parameter

3. It can only be used once in a program

4. It has no effect on instructions following its location in the program

Additionally, the teams are given the following three questions to consider and instructed to create

multiple hypotheses before conducting any tests:

1. How do you think the repeat button might work?

2. The experiment has been previously performed with a variety of hypotheses. What do you
think those hypotheses have been?

3. What do you think the designers might have considered in developing the toy?

The teams for this experiment had been asked to develop multiple hypotheses and then to prove or
disprove them.

Experiment C

In Experiment C no information about the blacked-out button is provided. The teams were directed to

run programs to discover the use of the blacked-out button.

Experiment D

In Experiment D the teams are informed that blacked-out button is a repeat button and given a possible
hypothesis that one way in which the repeat button might work is that it repeats the entire program the
requested number of times. The teams are instructed to create three possible programs prior to running

them and to then run them to prove or disprove the given possible hypothesis.

Procedure

There were six teams. Each team ran two experiments. All teams were assigned to run Experiment D
and run one of Experiment A, Experiment B, or Experiment C. Teams ran experiments concurrently.
Three teams ran Experiment D prior to running their other experiment. All the other teams performed

Experiment D as the second experiment.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|29

Sequences

The experiments were conducted in sequential order.

Experiment A then Experiment D Team 1

Experiment B then Experiment D Team 2

Experiment C then Experiment D Team 3

Experiment D then Experiment A Team 4

Experiment D then Experiment B Team 5

Experiment D then Experiment C Team 6

Observations and Inferences

The following observations occurred as a result of the experiments:

1. Teams of two versus teams of three. Some teams of two found it difficult and distracting to have
one person reporting and one person recording. Teams of three did not encounter this problem

as the third person was able to be the liaison between the person programming and the person
recording.

2. Some prior knowledge (even if partially flawed) is more useful in helping one come to the correct
conclusion than no information.

3. Most teams either started with tests that were too simple, too complex or too long to be conclusive
before moving to more optimally sized tests of appropriate complexity.

4. Results from a previous test tends to bias the tester towards future results of subsequent tests.
For example, a team tested and discovered how Big Trak worked and then later experimented
with Big Trak Jr. Some teams assumed that the results would be different based on the fact the

rover was different and some teams assumed that the results would be the same based on the
similarities of the two rovers, but all teams made an assumption one way or another.

5. Failure to accurately track test design and program input led to wasted time as testers questioned
if they made a mistake or if they completed a valid test and observation. Some way to verify that
the test steps were done correctly and that the program was entered correctly would have saved

time.

6. There seemed to be two different types of testers; those that planned and then tested and those

that just jumped right in and started exploring. In the end though, both approaches seemed to

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|30

be effective. In such the initial approach did not seem to affect whether the team came to the
correct conclusion.

7. Testing outside of the “rules” presented in the test script often leads to quicker results. Following
the “rules” presented in the test script sometimes boxed the testers in and prevented them or

delayed them in learning how the button actually worked.

8. There was a degree of randomness to how quickly a team came to the correct result. The starting

test sometimes stumbled onto or very close to the data needed to draw the correct conclusion.
Conversely, other starting tests led some testers down false paths and wasted time. This seemed
to happen more by luck than design.

9. Some of the testers were more interested or equally interested in just playing with the machine

as opposed to following the script. This attitude/approach led to increased knowledge and

understanding about the machine, but encompassed gathering information that was not
necessarily about the specific functionality under test. This may have delayed completion of the
needed tests, but would likely pay off later when other functionality needed to be tested or when/if

the machine needed to be tested as a whole.

Discovery Heuristics

A number of heuristics sourced from Exploring Science [3] were examined:

1. Plausibility of Hypotheses determines extent of confirmatory bias

2. There are common aspects of an experiment that can be considered

a) Observability: How easy/hard it was to observe the experiment. For example, using

short programs made it easier to observe
b) Distinction: How distinct were the commands in the experiment?
c) Focusing: The selection of one dimension of the experiment

3. People have different strategies for discovering information

4. We don’t have to have the full hypothesis to start

5. Designing our experiments upfront inhibits discovery but increases confirmation

6. Tracking results and experiments is beneficial

7. Prior Knowledge impacts how much time is spent hypothesising vs experimenting

Class Discovery

In addition other heuristics were discovered:

1. Developing a hypothesis prior to the start of testing seemed useful

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|31

2. Working with a small team (two or three testers) allowed teams to share ideas
3. Prior knowledge on the product seemed to lead to faster discovery
4. Listening to everyone on the team seemed to lead to faster discovery

5. Note taking of the experiments run was useful to review progress
6. Being able to simplify the test when necessary was a heuristic used by many teams

7. Running a simple test supplemented allowed rapid feedback and was useful when the test
failed.

Further Work

The work pages provided to the participants had an inconsistent design, and failed to emphasize
important information in all of the cases. In particular, most participants missed the instructions in

Experiment D to design first and test after. Participants also experienced confusion with Experiment B
as a result of the page style differing from the other experiments’ instructions.

A larger sample size is necessary to accurately measure the impact of the amount of information provided
to participants on their ability to discover the function of the mystery button. Additionally, with a larger
sample size, it would be possible to directly compare the tasks rather than compare them via Experiment

D.

When the testing groups are co-located and communicating about the tests performed, it is possible for

the results to be overheard. This eavesdropping can cause a bias for the tests other groups may soon
design. In the future, participants in the experiments should be located in a way such that they do not
overhear or view other groups communication about the testing performed.

Some participants noted that knowing the button is called X2, and being able to see the label, further
biased them. While it helped in creating a hypothesis, it hindered discovery of the function of the button

when testing an alternate version of the robot.

Conclusion

The experiments conducted helped software testers to understand how we can discover information. The
test teams discovered information by having a hypothesis, then designing and running tests surrounding
that hypothesis. Importantly, they evaluated the information from these tests and use it to help them

confirm, modify, or dismiss the existing hypothesis. The data from these tests was fed back into our
hypothesis, design and test creation suggesting that exploration is an essential part of the discovery
process. They observed how prior knowledge of programming and experience in testing benefited their

approach to conducting experiments but also that it has the potential to bias their thinking.

They realised the value in deliberate test design. For example, tests that were easy and quick to conduct

proved useful in the early stages but insufficient in distinguishing between hypotheses. Many teams
realised that complex and long tests proved difficult to observe and simplified the experiments using less
steps and more distinct commands.

Interestingly, the software testers observed the benefit collaboration had on the creation of multiple
hypotheses. Khlar did not explore this variant in his experiments but it seemed to have a significant

impact on our ability to come up with multiple hypothesis which lead to faster discovery. Future
investigations on collaboration in discovery is recommended.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|32

In software testing, the tester’s role is to discover information about the product they are testing. This
information is predominantly in the form of defects in the software they are testing. The hypothesis they
often deliberate on is “Where is the potential risk?” It’s helpful to remind them as they test the value

and danger in prior knowledge; the benefit of collaboration, the importance of deliberation in test design,
and if they truly wish to discover, the autonomy to allow themselves to feedback information from their

tests into future hypotheses and tests.

References

[1] Bach, J. (2006). Some Useful Definitions.

Available: http://www.satisfice.com/blog/archives/43. Last accessed 2nd Sep 2014.

[2] Kaner, C. (2006) Developing Skills as an Exploratory Tester. (Tutorial) Quality Assurance Institute

Worldwide Annual Software Testing Conference, Orlando, FL.

[3] Klahr, D. (2000). Exploring science: the cognition and development of discovery processes.

Cambridge, Mass.: MIT Press.

[4] Klahr, D., & Dunbar, K. (1988). Dual Space Search during Scientific Reasoning. Cognitive Science,

12, 1-48.

Signatories

Anja Langby Joshua Robson

Jonathan Li On Wing Lars Sjodahl

Chris Whitmore Patrice Hamilton

Dwayne Green Robin Price

Felecia Taylor Roxane Jackson

Griffin Jones Sandeep Patil

James Christie Santosh Kolure

Jason Coutu Sherry Heinze

Anne-Marie Charrett Siavash Solati

Jon Hovland Steve Bruce

Jonathan Clarkin Tim Rodoni

http://www.teatimewithtesters.com/
http://www.satisfice.com/blog/archives/43

 Teatimewithtesters.com November 2014|33

crowdsource

crowdsourcing

Puzzled with the question? No need to panic.

Software testing is ever changing and ever evolving. Traditional testing models pave the way for many

modern methods and processes. Traditional test cycles and outsourcing are not sufficient to ensure that

you’re delivering a high quality product adaptable enough to fit all possible customer needs. Crowdsourcing

is fast spreading and is an emerging trend in the industry

There are several crowd sourced testing initiatives that had doomed incurring huge investment losses in

terms of money, time and energy. Fundamentally there are three factors that influences the decision on

going for a crowd sourced test practices. They are cost, Quality and time. As a development organization

you should have strategy to optimize all these factors. Based on your product test strategy, thresholds of

these factors will vary. If you would like to make your crowdsourcing a complete success story, please pay

attention to what I am going to say.

Important steps to remember

Decide your scope

Important point to note is that you cannot handover everything to the crowd. I do not qualify this

crowdsourcing model as an expert sourcing, however it should augment the in house tests that you do

within your test labs where expert testers ensure the quality of the products under the supervised tests.

There should be clear demarcation on the set of the activities that will fit into a crowd.

Define your target audience

Based on the targeted end users, you need to define the testing community which is capable of delivering.

A new generation gaming application most likely will be used by Gen-Y crowd. So it might make sense to

get into this population for your user experience feedback.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|34

Explain what you want

You need to clearly articulate your requirement. If you want to determine design inconsistencies and

usability problem areas, make it clear to your targeted testing community. You need to help your group

to understand what you are looking for failure of which might lead you to unwanted and less useful

outcomes. It would be a good idea to make it more creative and funny.

Describing the process and timeline

 Process should detail out how this entire cycle works. This should have the chain of events starting from

the project kick off till the closure. There needs to be a start and end time to the whole process. This will

help to ensure the time to market need of the product. There is a danger of overloading of defect which

might become unmanageable. Unless managed properly it can become chaotic and unaccountable. There

needs to be a plan to handle the sudden influx of bugs. An internal development community which is active

and capable of responding with a sense of urgency is an essential support system here. You cannot make

the test too deep and long running as testers might be noncommittal .Need to manage the cycle properly

to bring out the most productive outcome.

Ensure the communication with the crowd

 It is important to note that communication involves listening as well. Less engagement and hence Lack

of accountability -Unless the group is engaged, you may not get the desired output. Workers can run away

any time. Encourage the sharing of information. Their reactions will give several insights into the product

quality. Essence here is how many of those communications are really understood, interpreted and acted

upon. Pay attention rather to what users do than what they say.

Timeline of the tests

 It is advisable to keep the tests short. Longer time might test the patience of the crowd and many may

retire from the scene.

My take on the future of the testing using crowd sourcing is that it would never replace the in house

testing. But more and more cloud applications will be the potential beneficiaries of this. For an Ecommerce

site it is possible to multiply their sales by improving the user experience. Several companies had moved

a part of their mobile app testing to the crowdsourcing. This is a new area with a lot of potential yet to be

untapped. It is an exciting concept that is worth exploring.

Biju currently holds the position of Quality Manager in a major enterprise

software company. He has extensive experience in Software Testing &

Software program management and is skilled in implementation of Lean,

Agile, Design Thinking methodologies besides possessing sound

knowledge in Enterprising applications.

He has successfully managed multi-cultural and multi-geography Quality

Engineering teams which has proven expertise in performance, security

and automation testing topics. He holds a Bachelor Engineering degree

from NIT Calicut and Post Graduate Management degree from Cochin

University.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|35

In the schoo l of testing

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|36

Parimala

orthogonal

Abstract

Software Testing is perhaps the most critical part of Software Development Life Cycle (SDLC) with roughly

30-50% cost associated with it. In current scenario, the main challenge is to deliver high quality, defect
free software application with very competitive time and budget window. To achieve the same, it is difficult
to test an application with all the possible test conditions (at times, it is not possible and occasionally, it

is not required too). Is there any way to optimize the number of test cases without compromising with the
quality of deliverables and test coverage remains the key question? The optimized set of test cases should
be capable to uncover the unknown defects in a software application effectively with minimal risk? Towards

achieving it, one of the answer is Orthogonal Array based Test design. This article explores the importance
of Orthogonal Array based test design towards test optimization and its merits.

Introduction

It is a known fact that during SDLC, number of software defects found is inversely proportional to the
time. It means that in the initial state of the product development, number of defects found are more.

With time, the system becomes more stable. The cost of fixing the bugs/defects increases exponentially
with time. It means that if you find a defect at the later stage in SDLC, it cost more. It is essential, to find
defects in the initial state of the life cycle and fix them as soon as possible.

Following software development best practices, utilizing the right tools and processes, one can deliver a
high quality software product to our stake holders (It is a fact that any software products may have some

residual defects at a given time). As we discussed before that prolong testing is not always possible, the
key task to achieve a good coherence between optimum testing and cost/quality associated with it. In

other words, you can test an application with confidence using optimum number of test cases which helps
in delivering a high quality software product with optimized time and budget?

As a development & testing engineer, one will agree that once the software product is delivered to the
client with proper testing and quality checks, we expect a stable application in production environment
without any serious defects and praising words from the customer in the next email. Contrary to that, if a

big list of the defects reported by end users in the application code. It forces team to analyze that when
were these defects introduced in the code? As a software testing professional, a question always chases
us “How did they slipped during testing phase?”

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|37

Let us assume that the application contains defects in production environment. The source of these defects
could be any of the following

• By chance, the end user executed the portion of the software, which was never given to testing team to
test.

• Test engineer is a fresher and was governed by the instructions from development team towards testing
the functionality of the code. Code was not tested with boundary values/ negative test conditions which

the end user has tested.

• The most common error is the mismatch in development/QA and production environment. Many times

the client environment was not kept in consideration while testing the application at offshore or in QA
environment.

• The defects reported by team were not monitored/ tracked properly. In other words when the defects
were reported to development team and few were not fixed and a new built of the application to test still
contain few old reported bugs. It is a common practice that developer says that he/she has closed the

status of the bug (means fixed the problem), we go with the developers word and do not test the
application for the same error. Also maintaining the XL Sheet for defect management is difficult to
maintain. Using Test Management and Defect Management tools has always an advantage. If you have

budget constraints, recommendations are to use open source test and defect management tools like
TestLink and Mantis.

Testing, being a challenging job needs domain skills and focused dedication to test all the paths and logic

of the code. The key judgment is to decide when to stop testing in a given phase? Is there any proven
mechanism or technique to get a set of optimized test cases, ensuring the best test coverage of the
application? Orthogonal array based test design is one answer. Based upon the data across different

projects on using OATS, recommendations says that OATS will help in optimizing best test data/ Test case
combinations from a large pool of possible combinations.

Orthogonal Array Testing system is extensible used in manufacturing domain. This robust testing
methodology was developed by Prof. Genichi Taguchi. As software field is also recognized as engineering
discipline, a successful usage is also experienced in the Software Testing area. The OATS (Orthogonal

Array Testing System) technique supports the system test efforts by enabling minimum test cases to be
determined efficiently which can homogeneously penetrate the application towards assuring the maximum
test coverage. The details about OA and its usage can be read in details in the book, “Quality Engineering

Using Robust Design” by Madhan S. Phadke.

The main philosophy of this technique is that test cases depending on interaction between test parameter

will be able to penetrate an application deeply and homogeneously. Hence, you will be able to find out
more serious errors in the application. Let us discuss the usage of OATS and how effectively it works.

Let us consider an application under test. As shown in Fig 1, OA based test design is applicable where a
system receives multiple input parameters/values and a pre-defined business logic. The output depends
on the input values and business logic.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|38

 Fig.1: The applicability of OA based test design

Let’s discuss a simple scenario to Login your HR Website. You have textbox for providing user id and

password. Depending on input values and business logic, a success or rejection will be decided.

Login Password Output

Valid Invalid Login Failure

Invalid Valid Login Failure

Valid Valid Login Success

No Value Value Login Failure

Valid No Value Login Failure

No Value No Value Login Failure

In above example, there are two inputs provided to the system.

1. Login

2. Password

In orthogonal Array terminology, the input parameters are known as FACTORS. In above example, there
are two Factors (a) Login and (b) Password.

As per the discussed problem statement, Login can take three values: (1) Valid Login, (2) Invalid Value
and (3) No Value. Similar way the Password field (Factor) has three values: Valid, Invalid or No Value.
Number of values a Factor can have is known as LEVELS”. The above example has two Factors (Login

and Password) and each factor is of three Levels. If one needs to test the above page with all
permutations and combinations, Nine test cases (Multiplication of all the level values: i.e. 3*3 = 9) will
be required to test the application with 100% coverage.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|39

Let us discuss another example of a banking application “Fund Transfer” module. This module enables

to transfer funds from one account to another account.

Fig 2: Fund Transfer Screen. The success/failure of a transaction depends on five input values: (1) From A/C
Type, (2) To A/C type, (3) Transaction Amount, (4) Balance Amount and (5) Date of Transfer as governed by
business rules.

In above example, the output of the transaction is governed by below business rules:

1. Fund Transfer will succeed only for Savings and Checking account. Not for Fixed Deposits

2. Fund Transfer will succeed only if Transaction amt <= Balance available - for current/present date.

3. Fund Transfer for past date is not allowed. Transfer on today or for any future dates are allowed

4. Transaction limit per day is $20,000

To ensure the complete test case coverage, one need to consider all the negative test case values,
boundary value analysis and other input values which ensure the completeness in test coverage.

Let us assume that if the field / factor “From A/C Type” is tested with Saving, Checking and Fixed Deposit
values. It ensures the complete testing for this field (No of levels= 3).

The same is with “To A/C Type” field (No of levels= 3)…

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|40

For Transaction Amount field , let us assume if we test it with $100, $1000, $15000 and $20000 values,
it is complete (these values will be decided by the user, you can incorporate any other values like –ive
amount, any other value like 30, 000 etc.) (No of levels= 4).

For Balance Amount field: Less Than Transaction Amount, Equal to Transaction Amount & Greater than

Transaction Amount (No of levels= 3).

Date of Transfer field: if tested with Past Date, Today’s Date and Future Date, we are good to go (No of

levels= 3).

As depicted in Fig 2, the above example has five factors and they have respected levels. One needs to

run 324 (3*3*4*3*3) permutation and combination of input values for complete test coverage. Let us
analyze this problem in practical point of view. Do we really need that many test cases? Do we have
time and resource to accommodate these many test cases to design and execute?

Let us see, how Orthogonal Array based test design helps in optimizing these numbers with maximum
test coverage as required by you.

Fig 3: The OA based Test design output.

Fig 3 shows the output from OA based test design tool. Compare the number of test cases. Here 15 test

cases ensure two way 100% coverage. This boost a confidence and helps you in deciding when to stop
testing?

Once you receive the output from OA based test design tool, analyze them and modify the numbers by
adding those critical test cases which you feel essential to run. You can also omit out few test cases, if
you feel them irrelevant to your case.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|41

Now if you analyses the above case closely, we just need fifteen Test cases, other were somewhat
duplication. In a practical scenarios where you have a large number of test cases (in thousands) to define
a regression test suite. Once a Simple OA concept coupled with the domain knowledge is used, the result

shows significant optimization in number of test cases. That saves your efforts and cost without
compromising the quality of testing.

Fig. 3 shows the output of the OA tool for the discussed problem. The output shows tremendous reduction
in testing efforts towards testing this application. It is clear from the result that if application is tested

with test cases (generated by OA along with the most essential test cases), it has covered the application
with two way combinations by 100 %. Depending on the type of application, you can decide on the depth
of testing (number of coverage: 3 way, 4 way etc.) and use the output. In cases, when you know few

critical scenarios which are not reported by OA tool, you can add them to your test cases and make your
testing more robust and reliable with a better coverage. If you see carefully all the test cases generated
by the tool, it covers all those possible conditions which was practically possible. Testing the OA strength

in this way has boost your confidence to utilize its power in future projects.

Can we depend completely on OA based output to release a product? Definitely Not! The

recommendations will be use OA along with domain knowledge and other techniques like Dependency
Structure Matrix, boundary value analysis etc. Analyze OA based test cases and ensure that it covers
the complete functionality you wanted to test. Add those test cases, which are very critical to you and

not covered by OA output. You can couple your OA results with suggested recommendation and come
up with a reliable number of test cases which can test your application in a best way. The case studies
in the real life projects have shown nearly 40-70 % effort savings when OA technique was considered as

one of the major factor during Test case generation.

Summary:

In the present IT scenario by keeping the strict deadlines, budget constraints and many other factors in
mind, an exhaustive testing is not viable. The effort to include all possible combinations and variations

to test input parameters is generally an impracticable activity for multifaceted applications. In such a
case, we mostly try to use our presumptions based on the experience to ignore certain number of test
combinations. Assumptions like this may work and sometimes it may result in a poor quality product. At

time, when testing efforts includes testing a large number of unattainable combinations, the Orthogonal
Array based test design is very useful in coming up with best optimized set/ combinations of Test cases.
It guaranties minimum one time testing the pair wise combinations of all the factors. It also drills some

of the complex combinations of all the test variables.

Acknowledgement: Author is acknowledged to Mr. Dhiraj Sinha and colleagues for their support in

developing OA based test case optimization tool and coming up this article. Thanks are also due to
Anvitha S and Subaya Codanda for useful discussion/ support during development of the OA tool.

Dr. Sanjay Gupta has received Doctorate from Indian Institute of Technology,

Mumbai, India. He has nearly fifteen years of IT experience with different roles as

Senior Training Executive, Java/Test Consultant, Test Manager. In his current role,

he is working as Software Dev Sr. Advisor-Strategic Test Consulting and

Innovation at Dell Services, Bangalore. Sanjay is a Sun Certified Java programmer

as well as Sun Certified Trainer. He has published nearly thirty research papers in

international journals and presented research papers in more than fifteen international

and national conferences. His current areas of research, study, and knowledge

dissemination are Java, Swings, J2EE technology, Insurance domain and testing

tools like Rational Purify, Pure Coverage, Robot and Mathematica.

His contributions towards Science and Technology has recognized him a place in Marquis Who’s Who in Science and

Engineering. He can be reached at sanjay_gupta4@dell.com

http://www.teatimewithtesters.com/
mailto:sanjay_gupta4@dell.com

 Teatimewithtesters.com November 2014|42

wayne

Better data warehouse testing has gained in need; qualified testers are in demand. Today there is an
increase in business mergers, data center migrations, compliance regulations along with management's
greater focus on data and data driven decision making. Among data warehouse testing focus areas are

the ETL (extraction, transformation, load) process, business intelligence infrastructures, and applications
that rely on data warehouses.

Organizational decisions greatly depend on the enterprise records in data warehouses and that data
must be of the utmost quality. Complex business rules and transformation logic, built using ETL logic,
demand diligent and thorough testing.

Planning for the DWH testing process

A good understanding of data modeling and source to target data mappings help equip the QA analyst
with information to develop an appropriate testing strategy. Hence, it’s important that during the
project’s requirements analysis phase, the QA team works to understand technical implementation of

the DWH.

Different stages of the DWH implementation (source data profiling, DWH design, ETL development, data

loading and transformations, etc.), require the testing team’s participation and expertise. Unlike some
traditional testing, test execution should not start at the end of the DWH implementation. In short, test
execution itself has multiple phases and should be staggered throughout the life cycle of the DWH

implementation (see Figure 1 below).

A key element contributing to the success of the DWH solution is the ability of the test team to plan,

design and execute a set of effective tests that help identify multiple issues related to data inconsistency,

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|43

data quality, data security, failures in the extract, transform and load (ETL) process, performance related
issues, accuracy of business flows and fitness for use from an end user perspective.

Overall, the primary focus of testing should be on the end-to-end ETL process. This includes, validating
the loading of all required rows, correct execution of all transformations and successful completion of

the data cleansing operation. The team should also thoroughly test stored procedures and processes like
those of Netezza that produce aggregate and summary tables.

The challenges of planning DWH tests: Listed here are just a few of many reasons to thoroughly test the
DWH and use a QA process that is specific to data and ETL testing:

• Source data is often huge in volume and loaded from a variety of data repositories

• The quality of source data cannot be assumed and should be profiled and cleaned

• Inconsistent and redundancy may exist in source data

• Many source data records may be rejected; ETL / stored procedure logs will contain messages
that must be acted upon

• Source field values may be missing where they should always be present

• Source data history, business rules and audits of source data may not be available

• Enterprise-wide data knowledge and business rules may not be available to verify data

• Since data ETL’s are executed in multiple phases before loading into the DWH, extraction,
transformation and loading components must be thoroughly tested to ensure that the variety of data
behaves as expected, within each phase

• Heterogeneous sources of DWH data (e.g., mainframe, spreadsheets, Unix files) will be updated
asynchronously through time then incrementally loaded.

• Transaction-level traceability is difficult to attain in a DWH

• The DWH will be a strategic enterprise resource and heavily relied upon.

Testing phases to be considered for the DWH QA Strategy

Figure 1 shows a representative DWH implementation from identification of source data (upper left) to
report and portal reporting (upper right). In between, several typical phases of the end to end DWH
development process are depicted such as source extract to staging, dimension data to the operational

data store (ODS), fact data to the DWH and report and portal functions extracting data for display and
reporting. The graphic illustrates that all data movement programs and resulting data loads should be
verified throughout the end-to-end QA process.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|44

Figure 1: Proposed lifecycle DWH testing process (graphic courtesy Raj Kamal, Microsoft Corp.)

Planning for QA staffing: Since a DWH primary handles data, a major portion of the test effort is spent
on planning, designing and executing tests that are data oriented. Planning and designing most of the
test cases requires the test team to have experience in SQL and performance testing.

Following are several tester skills that are in demand for DWH testing. QA staff for the DWH should be
considered based on these abilities:

• Understanding fundamental concepts of databases and data warehousing

• High levels of skill with SQL queries – also, data profiling

• Experiences in the development of DWH test strategies, test plans and test cases – what they are

and how to develop them, specifically for data warehouses and decision support systems

• Skills to create effective DWH test cases and scenarios based on business and user requirements

for the DWH

• Skills and interest to participate in reviews of the data models, data mapping documents, ETL

design and ETL coding; also, to provide feedback to designers and developers

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|45

Best practice DWH testing is needed as organizations seek to develop, migrate, or consolidate their
data warehouses. It’s vital that data and systems are tested systematically for errors, bugs, and
inconsistencies before production.

One of the greatest risks to the success of any company implementing a business intelligence system

is rushing the data warehouse into service before testing effectively with an experienced QA ETL testing
team. Whether you are expanding your data warehouse or building one from the ground up, it is
important to develop a well-planned and executed DWH testing process.

Wayne Yaddow is a computer testing professional. He worked with IBM as a

Z/OS mainframe operating system developer and tester for fifteen years. After

IBM, he continued his career as a QA consultant, working primarily in the financial

industry in NYC with firms such as Standard and Poor’s, Credit Suisse, Citigroup,

and JPMorgan Chase. Wayne focused on business intelligence, data warehouse,

data migration and data integration testing projects. As a contributing author to

Better Software, TDWI Business Intelligence Journal and a participant with The

Software Testing Professional Conference (STP), he has gained a reputation as a

well-informed database and data warehouse quality assurance analyst. Most

recently, Wayne teamed with Doug Vucevic to write the book, “Testing the Data

Warehouse”, 2012, Trafford Press.

Sharing is caring! Don’t be selfish 

Share this issue with your friends and colleagues!

http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|46

interv iew part 2

iii

Michael: [...] I remember once that Joshua Kerievsky asked
you about why and how you tested in the old days—and I
remember you telling Josh that you were compelled to test
because the equipment was so unreliable. Computers don’t
break down as they used to, so what’s the motivation for unit
testing and test-first programming today?

Jerry: We didn’t call those things by those names back then,
but if you look at my first book (Computer Programming
Fundamentals, Leeds & Weinberg, first edition 1961 —MB)
and many others since, you’ll see that was always the way we
thought was the only logical way to do things. I learned it from
Bernie Dimsdale, who learned it from von Neumann.

When I started in computing, I had nobody to teach me
programming, so I read the manuals and taught myself. I
thought I was pretty good, then I ran into Bernie (in 1957),
who showed me how the really smart people did things. My
ego was a bit shocked at first, but then I figured out that if von
Neumann did things this way, I should.

Taking a closer look into practices from domain-driven design

like creating a ubiquitous language, specification workshops,

and so on, you will find pendants in much older literature.

Eventually I have become convinced there are few really new

practices out there - and many new combinations of practices

that already work for decades in our young profession(s).

That said, TDD and BDD have their places in my personal

development skill repertoire. There are more skills that I need

to apply, like Exploratory Testing, Refactoring, incremental

and iterative design, responsive design, etc. The key is to

know-how first, and know-when second.

What challenges do you think project

teams/organisations can face if these methods are

followed blindly?

Well, a fool with a tool is still a fool. That also applies

to blindly following practices. When you apply unit

tests on a too fine level, you will have troubles while

refactoring your code later in certain directions.

If you apply scripted scenario testing with test
automation frameworks that lend their language from
BDD, you will run into the problem that the
maintenance of your scripted scenarios becomes a
pain - especially when these rather long scenarios fail,
and you want to reproduce why. (I have seen scenarios
of up to 200 steps in the field.)

On the other hand, I have seen implementations of
TDD, BDD, ATDD, Specification by Example,
Exploratory Testing that really helped the teams to
move forward. I think the key there is to create the
feedback channels to improve the practices, and make
them work for us, rather than blindly following
something that someone somewhere at some point in
time found worthwhile to try out (without
understanding the contextual factors behind it).

Does implementation of these methods

eliminate the need of testing or 'tester' as a

role? Does that mean a programmer writing

automated tests or tester writing automated

test is sufficient? Does that essentially mean

there is no need of manual and exploratory

testing (or sapient testing to be precise)?

I believe that testing is a skill, just like programming.

There are people that elegantly can apply either skill.

Sometimes we call the one testers, sometimes we call

others programmers, and sometimes we call them

architects or developers.

Like with any skill, it helps if you know at least a bit

about the skills that you need to work with. If you work

in a bakery, besides the skill to put the dough in the

oven, you also can benefit from knowing about the skill

to knead it. The best kneader in a bakery won't be able

to produce any great cookies without the skill of

putting the dough in the oven. So, if you don't have the

"putting dough into the oven" skill on your own, you

need to work together with folks that have that skill.

You need a team that can knead the dough, and that

can put it into the oven.

CONTINUED FROM PAGE 13…

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|47

It's pretty similar with a team that develops software. On a

team you need some folks with the programming skill, and

you need some folks with the testing skill. And you need to

know when to apply which skill, and become aware of skills

that you currently don't have on your team, and need to

compensate for somehow differently.

Mostly people associate testers with the testing skill, and

programmers with the programming skill. I have seen great

testers that were called programmers in the company they

worked for. And I have seen great programmers that were

called testers. All of them were able to produce great results

together with their teams because they knew how to make

their knowledge about a particular skill an advantage for the

team's purpose.

In the past I have been terrible at predicting anything about

the future. So, it might be that at some point in time we have

reached a state where all of us have learned enough about

testing so that we don't need any pure testers any more. We

certainly need to find out how to overcome the problem of

cognitive dissonance before that. And this journey might take

us a few centuries.

When it comes to exploratory testing, I don't see how we will

get rid of it. In my view, with automation we automate

knowledge that we already have. There will always be a

demand to examine those corners of our knowledge that we

don't know - and that includes also the knowledge about the

things that we don't know that we don't know them.

Exploratory Testing is a good starting point to put some light

into these areas.

Do you believe in tester Vs programmer mindset?

Do you think testers can get biased if they get

involved more in development or programming?

If you dive deeper into the background regarding tester vs.

programmer mindset, you will come across the concept of

cognitive dissonance. In essence that means that I will be

biased when testing the code that I developed on my own.

The 1960s and 1970s solution to that problem was to create

departments for testers, and that’s probably as well when

test factories started to grow for the first time.

Personally, I believe that the whole software industry

would have taken a completely different turn if we

kept on exploring alternative solutions to overcome

cognitive dissonance. I have seen companies with no

testers, where peer testing the code among developers

was the way to go. This is one solution that worked for

a medical devices company that created software to

run in the emergency room. The first tester they hired

became their first ScrumMaster.

I think we need to continue exploring those

alternatives with an open mind. I also believe that we

are currently putting too much interpretation into the

whole “testers could be biased by being more involved

with programmers” thing. If you think that your testers

can become biased by being more involved with

programmers, then you should also be concerned

about their bias by reading the same documents, i.e.

requirements documents. Let’s try to educate testers

well enough so that those biases don’t lead us into

trouble, and move on.

You often speak about Cognitive dissonance.

What is it? How does it impact testers? Is it

good or bad if we consider typical tester's

mindset?

Cognitive dissonance is neither good nor bad in itself.

You need to consider the context where it surfaces.

Cognitive dissonance means that I will be too eagerly

biased to trust the code I wrote, and not try out some

of the essential test cases since that framework

handles that one, or “what could go wrong here?”

Testers are not necessarily impacted by it, but might if

they start to work closer together with programmers.

They then risk to trust the code too eagerly. Something

that can be solved by proper education.

My bottom line is this: I think the traditional testing

department was a solution to cognitive dissonance

stemming from the 1960s and 1970s – and in fact large

materials in the traditional testing community

nowadays steams from 1960s to 1970s. I think there

are other solutions that are more in line with today’s

competitive, fast-paced world.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|48

If you don’t believe me, just compare the computer industry

from the 1970s with today’s. How many systems have there

been? How many are there today? Why do you think the

same solutions still make sense at all?

You have written couple of books on testing. Please

tell us more about your books, publications.

The only full book that I have written completely on my own

was ATDD by Example. I was inspired by Kent Beck’s approach

to discuss TDD in Test-driven Development – By Example. I

took the same structure. That means that we work through

two examples using the approach. Then I dive deeper into

some of the connections that help learners new to ATDD to

reach for the principles that are described in other books.

That was the overview vision when I first started working on

the book itself.

I also contributed a bit to other books. How to Reduce the

Cost of Software Testing from Matt Heusser and Anand

Kulkarni come to mind. I basically describe the advantages of

agile testing in it. I was heavily inspired by Elisabeth

Hendrickson for my chapter in that book. Literally I took her

awesome presentation, and described the principles and

practices for it.

There were other publications, but most of them are in

German. For example for the translation of ATDD by Example

I took the effort to update the frameworks, and give the

screenshots a facelift. I am currently working as well on some

secret writing projects that I don’t dare to mention as of now.

So, stay tuned. :)

What impact books have made in you? Which

books would you like to recommend for testers?

I really can’t answer that. I read a bunch of books since 2006.

It’s probably around 200 to 300 right now. There are lots of

things that inspired me, and I always make a conscious effort

to pick the next book to read based upon where I can learn

most. That said, a book I can recommend is “How to read a

book”. Oh, and there is no chicken-and-egg problem involved

in this recommendation. It’s a great book that can help you

find your approach to reading books – and that reading books

from cover to cover is not the only thing to do.

What is the ideal form of influence in your

opinion?

Hmmm, that’s a broad question. First of all there is no

ideal form in my book. Today I would formulate it this

way: a form of influence that makes the influenced

person follow the influencer by picking to be

influenced.

That’s also why great responsibility comes with great

influence.

What are those skills and habits that have

made you what you are today?

It’s partially curiosity, and partially to get involved in so

much stuff. Oh, and it’s also a mixture of things that I

did from age 14-26, including working in a

supermarket, doing seasonal preparations for our

outdoor swimming pool in the community I lived in,

and being a swimming trainer and organizer of

swimming events.

That said, I keep on re-inventing myself every few

years. For example in 2014 I started to dive into

gardening with my 800sqm of garden back at home.

Over summer I became a gardening nerd. Now I hope

that I know how to grow my lawn without all the stuff

that used to be in there. Oh, and I also learned that I

probably need to shift jobs in order to do that in a

reasonable manner. That’s when I realized that some

outside help from a gardening professional might be

worth the money. :)

What makes you an excellent tester? What

would be your advice for our readers?

Keep your curiosity, and follow that. It will lead you to

the right job at the right time. But maybe you will also

need some patience to get there.

Thanks for your time Markus. It was great

talking testing with you!

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|49

Happiness is….
Taking a break and reading about testing!!!

Like our FACEBOOK page for more of such happiness

https://www.facebook.com/TtimewidTesters

http://www.teatimewithtesters.com/
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters
https://www.facebook.com/TtimewidTesters

 Teatimewithtesters.com November 2014|50

NOVEMBER - 2014

YEAR I ~ ISSUE I

http://www.teatimewithtesters.com/
http://www.teatimewithtesters.com/#!software-tools-magazine/cjyx

 Teatimewithtesters.com November 2014|51

 Tell a story, do not just report

We all make reports/presentations for/to senior management. As technical people, we are typically

generous with facts. Since a picture is worth a thousand words, we spice it up with graphs. Feeling happy
with the amount of details we have packed in, we are raring to make a great presentation to the senior
management. Hey, wait a minute...

What are we trying to achieve? To furnish information or provide insight to assist in decision making? To
report facts or tell a story? To showcase value or the quantity of work done?

I prefer story telling. Telling an engaging story that is factual, easy to assimilate, providing insights to
facilitate decision making and finally showcase the value of my work. Think it is a good idea? But, what

does this take?

Certainly it takes more than just dumping a lot of facts and getting into too much detail in the beginning.

In fact less is more! And this is what people find difficult. Let me summarise my recent experience with
my colleagues who came to me with a dense and detailed presentation that they intended to present
our customer's senior management.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|52

1. Understand target & their expectations- "Who is the audience for the story?"

Before you jump into making the presentation, understand to whom are you presenting to and what

they are looking for. Typically senior folks look for outcomes and value, not just activities and facts.
When you report activities done, align these against the intended objectives. And if you have issues that

hinder your activities, state clearly what you need from them to resolve, don't whine! Don’t just report
tons of facts, process these into meaningful information. Remember the senior management is going to
ask you the question ’so-what?’ when a fact is presented, hence analyse & process these to meaningful

information that can be correlated against intended objectives.

The patience levels of senior management are typically low, hence be clear about the objective, crisp in

communication and hold their attention by 'outline first and detail later'. A good story needs a great plot,
well-formed characters and a cogent buildup to the climax.

2. Organise the content - "Setup the chapters/scenes"

A good story flows smoothly. Start with a clear exposition of the objective of presentation, and then

identify key information to be presented. Arrange the facts (content) into key sections, much like the
chapters in a story creating a cogent sequence that form the story line. Then connect these information
across these slides. It is the weaving of information that strengthens the story. The interrelationship of

the activities, intended goals, and the final outcomes is what strengthens the story and makes it
interesting.

3. Detail out the information/facts - "Choose the characters wisely'

A great plot with a cogent buildup is not enough. It is characters that breathes life in a story. In our

case, the characters relate to the various facts/information. The information to be presented, their
degree of detail, how objective they are, the relevancy to the context is what that makes the character
contribute to the story line. Keep in mind that we are presenting to senior management who value

objective information and have a high degree of impatience to wishy-washy subjective information.

4. Present the information well - "Dress up the character"

If the characters are not presented well, it is not fun reading the story. They have to fit well into the
role, present themselves well, play the part for the right time and exit gracefully.

In addition to what information is presented, how it is presented makes the character play its part well.
The way the information is presented include the layout, colour schemes, consistency, spelling, grammar,

sentence formation, tone of voice, choice of fonts, use of callouts, using pictures in lieu of text. Short
phrases, pleasant colour schemes, right choice of tone (active/passive, 1st/3rd person), appropriate
fonts are what 'dresses up the character' making them very presentable.

5. Edit, re-edit - "Practice, practice..."

Much like how the characters need to practice multiple times to deliver a stellar performance, writing is
iterative, requiring multiple edits, each one refining and embellishing. In every edit, refine by removing

information that is superfluous. Remember 'less is more', by removing potentially noisy information.
When you can remove no more, you probably have reached the end of edit cycle.

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|53

T Ashok is the Founder &CEO of STAG Software

Private Limited.

Passionate about excellence, his mission is to

invent technologies to deliver “clean software”.

He can be reached at ash@stagsoftware.com

6. Read aloud - "Watch the characters perform"

Once you think you are done with the presentation, read the text aloud. In the recent case, I read some

of the text in the presentation around and watched the author (my colleague) squirm! Well they could
spot the issue and know what they had to modify. This works wonderfully to quickly analyse the content

and spot issues. Note that you have to read text in the presentation using the right modulation for you
feel good, or spot problems. This is very much like watching the performance of the characters and
rapidly getting to know as to what you want to tweak.

We started with “Understand target & their expectations" focusing on what they want and now we close
by playing the role of customer by reading it aloud. It is indeed amazing as to how many times I have

helped refine content by becoming the customer via reading aloud.

When drab reporting gets converted into a story, the author can make the presentation come alive and

engage the typically impatient senior management. Leadership is about great storytelling and when you
engage in this manner, you lead the conversation. You are in control then and therefore can get your
message across powerfully be it to communicate the value of your work or seek assistance to smoothen

bumps you have encountered.

As engineers, we are typically left-brained rooted in logical thinking. On the other hand story-telling is a

right-brained activity involving creativity and emotions.

So the next time, you make a presentation, ask yourself "Can I tell this as a story?" At the least, sit in

a quiet corner and read aloud and assess if it feels good. I bet you will know what to do. If you find
soliloquy challenging, do this with your best buddy.

Cheers.

http://www.teatimewithtesters.com/
mailto:ash@stagsoftware.com
http://www.stagsoftware.com/

 Teatimewithtesters.com November 2014|54

What does it take to produce monthly issues of a most read testing magazine?

What makes those interviews and articles a special choice of our editor?

Some stories are not often talked about…otherwise….! Visit to find out about

everything that makes you curious about Tea-time with Testers!

www.talesoftesting.com

http://www.teatimewithtesters.com/
http://www.talesoftesting.com/
http://www.talesoftesting.com/
http://www.talesoftesting.com/
http://www.talesoftesting.com/
http://www.talesoftesting.com/
http://www.talesoftesting.com/

 Teatimewithtesters.com November 2014|55

Advertise with us

Connect with the audience that MATTER!

Adverts help mostly when they are noticed

by decision makers in the industry.

Along with thousands of awesome testers,

Tea-time with Testers is read and

contributed by Senior Test Managers,

Delivery Heads, Programme Managers,

Global Heads, CEOs, CTOs, Solution

Architects and Test Consultants.

Want to know what people holding above

positions have to say about us?

Well, hear directly from them.

And the Good News is…

Now we have some more awesome offerings

at pretty affordable prices.

Contact us at sales@teatimewithtesters.com

to know more.

http://www.teatimewithtesters.com/
http://www.youtube.com/watch?v=Wp2flctM6II
mailto:sales@teatimewithtesters.com

 Teatimewithtesters.com November 2014|56

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|57

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|58

our family

Founder & Editor:

 Lalitkumar Bhamare (Pune, India)

Pratikkumar Patel (Mumbai, India)

 Lalitkumar Pratikkumar

Core Team:

Dr.Meeta Prakash (Bangalore, India)

Unmesh Gundecha (Pune,India)

 Dr. Meeta Prakash Unmesh Gundecha

Editorial|Magazine Design |Logo Design |Web Design:
Lalitkumar Bhamare Cover page image – Anu @ My Dream Canvas

Sagar

Online Collaboration:

Shweta Daiv (Pune, India)

 Shweta

 Tech -Team:

Chris Philip (Mumbai, India)

Romil Gupta (Pune, India)

Kiran kumar (Mumbai, India)

 Kiran Kumar Chris Romil

Contribution and Guidance:

Jerry Weinberg (U.S.A.)

T Ashok (India)

Joel Montvelisky (Israel) Jerry T Ashok Joel

http://www.teatimewithtesters.com/

 Teatimewithtesters.com November 2014|59

To get a FREE copy,

 Subscribe to our group at

 Join our community on

 Follow us on - @TtimewidTesters

http://www.teatimewithtesters.com/
mailto:teatimewithtesters@gmail.com?subject=I want to join "Tea-time with Testers"
https://groups.google.com/group/teatimewithtesters?hl=en
http://groups.google.com/group/teatimewithtesters
http://twitter.com/TtimewidTesters
http://twitter.com/TtimewidTesters
http://www.teatimewithtesters.com/
http://groups.google.com/group/teatimewithtesters
http://www.facebook.com/pages/Tea-time-with-Testers/127802230619982
mailto:teatimewithtesters@gmail.com?subject=My Feedback on Tea-time with Testers

