
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Learn new things
this Spring.
What do we really mean when

we say Quality?

Page 11

Perils and pitfalls of new age

test automation.

Page 46

Is your app Reddit proof?

Page 54

A SPECIAL EDITION //
CELEBRATING 10 YEARS OF AWESOMENESS

ISSUE #01/2021

TEA-TIME WITH TESTERS ISSUE #01/2021 3

GUEST EDITORIAL
BY FIONA CHARLES

INTERVIEW: 20-26
OVER A CUP OF TEA
WITH GRIFFIN JONES

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

COMMUNITY
WITH LOVE
FOR TESTERS
BY TESTERS
OF TESTERS

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 1 0

1 1 – 1 3

1 4 – 1 6

1 7 – 1 9

ENLIGHTENING IN TESTING
Testing shows the presence, not the absence of bugs. Dijkstra was discussing testing with researchers
focused on finding ways to prove that code was working…

WHAT DO WE REALLY MEAN WHEN WE SAY
QUALITY?
How does your team or organization measure quality? People often equate testing to good quality or
‘quality assurance’, but if you have good testing practices, does that mean you have a good quality
product?

EXCELLENCE IN TESTING, TODAY MORE
THAN EVER
Most places will define excellence as outstanding, being extremely good, the quality of excelling at
something, or being the best at what you do.

A PANDEMIC ISSUE
Do you know what a pandemic and software testing have in common?

PUT THE
CRAFT
BACK
IN
TESTING!

TEA-TIME WITH
TESTERS
06 20 28 46 62

A NEXT GENERATION
MAGAZINE

FULL OF CONTENT AND
TIPS FOR TESTERS

2 8 – 3 0UNTANGLING TESTABILITY
A whole team focus on testability is one of few levers in software delivery that can provide a positive
impact on a team's productivity.

SEBTE - A SIMPLE EFFECTIVE EXPERIENCE-
BASED TEST ESTIMATION - PART 1
The American Heritage Dictionary defines estimation to be A tentative evaluation or rough calculation
A preliminary calculation of the cost of a project A judgement based upon one’s opinion…

FEELING GOOD ABOUT YOUR
PERFORMANCE TEST COVERAGE?
Do you feel confident your Mobile App performs well enough to not only meet your company’s
expectation but also your customers’ expectations?

A GUIDE TO TEST AUTOMATION
PORTFOLIOS
Automation is considered an essential skill in many software testing positions. Yet it remains very hard
to judge someone’s automation experience by conversation alone.

PERILS AND PITFALLS OF A NEW AGE TEST
AUTOMATION
I just spent some time googling. I was trying to find who and where created the first-ever automated
test. No luck. The same goes for the year when it happened…

SEARCH ENGINE OPTIMIZATION TESTING
Back in 2014, I was assigned to the projects to test the search engine optimization along with the
projects which were focused on increasing traffic on the website.

IS YOUR APP REDDIT PROOF?
Robinhood and WallStreetBets are a warning to all involved in software.

T TALKS TESTING
Heuristics for identifying corner cases in testing

TEA-TIME WITH
TESTERS

3 1 – 3 5

3 8 – 4 1

4 2 – 4 5

4 6 – 4 9

5 0 – 5 3

5 4 – 5 7

5 8 – 5 9

By publishing this ezine we promise to offer
an open platform where we all can discuss,
share, suggest, contribute, criticize, guide,
relax, and many other activities related to
the world of software testing.

We will be more than just happy if we
succeed to bring the same confidence and
never-fading smile on yet another new
tester‘s face.

In January of 2011, Lalitkumar Bhamare and
Pratikkumar Patel launched a brand new
online testing magazine with that pledge.
Produced, edited, and staffed by willing
volunteers and stuffed with interesting,
useful, and entertaining articles, the first
issue established Tea-time with Testers as a
must-read resource. Excepting 2019, there
has been at least one issue every year since,
and sometimes as many as 12, though
publishing monthly turned out to be too
difficult after the first few years.

Today I have the great pleasure of welcoming
you to this 10th-anniversary issue of Tea-
time with Testers.

Since Lalit invited me to write this guest
editorial, I’ve been browsing through
different issues of Tea-time, often stopping
to read or reread articles that intrigued me.
(I even found one that I wrote a few years
ago and had forgotten). In this time of
plague when we are all worn down with WFH
and the tedium of Zoom meetings and
isolation, it’s been a delight to renew my
acquaintance with Tea-time and its
community of bright, challenging, funny,
sometimes even cantankerous, contributors.

I love Tea-time’s quirkiness and the variety
of articles and points of view:: the fun stuff,
the serious, and everything in between. I
didn’t need to be reminded that there are
engaged, thoughtful testers all over the
world doing interesting and innovative work
and eagerly sharing what they learn and
invent, but I enjoyed the reminder all the
same. It jumps off the virtual Tea-time page:
from thought pieces by legendary authors
and testing luminaries like Jerry Weinberg,
Karen Nicole Johnson, and many others
whose names you will readily recognize*, to
hands-on practical how-to’s—and also
thought pieces—by testers whose names
may be new to some of us, but from whom
we will surely hear more quite soon. Visiting
the Tea-time site and reading previous
issues is an activity I highly recommend.

In this issue you will find—as you have in
every issue of Tea-time from the beginning—
excellent articles by testers representing a
wide range of interests across the testing
world: to think about, learn from, and argue
with. Some may reiterate things you know
already, but that are new to others. Some
may challenge your existing beliefs and ways
of working. I hope so, anyway!

I hope also that you will join me in thanking
and congratulating Lalit, Pratik, and their
collaborators for fulfilling their original
promise and giving us a terrific 10 years of
Tea-time with Testers. Congratulations! (and
many happy returns).

*I realized that once I started naming
authors there’d be no good stopping place,
so I arbitrarily picked one man and one
woman and stopped there.

GUEST EDITOR - FIONA CHARLES

–
Fiona is a software test consultant, teacher, writer,
speaker, iconoclast. She leads workshops "beyond
process", coach, renovate & rescue testing of any
scale.

Welcome to this 10th Anniversary Issue!

HEAR FROM MORE LUMINARIES ON THE OCCASION

TEA-TIME WITH TESTERS ISSUE #01/2021 5

https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Dec-2020.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Dec-2020.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Sept-2020.pdf
https://youtu.be/MdCVV_4SGmo
https://youtu.be/MdCVV_4SGmo

ANDERS DINSEN

–
Anders thinks of himself as a driver of learning and
development testing complex software. His title is test
manager and he work for KMD, a NEC company in
Copenhagen. He leads people in agile, waterfall, and
hybrid contexts, is critically minded, and enjoys the
short power-distances part of Danish organizational
culture as it enables effective influencing and driving
quality for those who matter. He has 25 years of
experience as a developer, tester, manager, facilitator,
and coach, and tested his first piece of code in 1982.

Bugs are different

Bugs in computer programs in 1969
were quite simple: The program was
loaded on the computer, it was fed
some input which was then
processed according to the program,
and when the program had
completed running, results were
produced and stored on magnetic
tape, punched cards, paper tape, or
merely printed on the console or
line printer. Defining a bug in that
context follows simple reasoning: A
bug equals an incorrect result.

For about 20 years, I have worked on
enterprise systems used by users to
create, access, and manage cases of
varying kind. Such systems are used
to manage logistics, social services,
customers, pensions, taxes, etc.
These systems always have some
automation running to process
payments, messages, requests,
claims and more. These automated
processes handle interactions with
other systems some of which may
be internal to the organization
running and developing the system,
while some will be external.
Compared to software in 1969,
software systems today are more
complex as for example the
relations between inputs and
outputs in a modern software
system is far from trivial.

The concept of bugs has therefore
become complex.

Do bugs carry meaning?

I vividly remember some of the
discussions we had around the
dining table at home. My father was
a computer engineer in the 1970’s
and he read piles of code like it was
poetry identifying bugs in it without
even running it on the host
computer. He worked on several
pioneering computer projects. The
highlight of his career was writing
the library functions and microcode
for a vector processing unit for a
mainframe computer. It was custom
designed for cartography.

Although I followed his path and
became an engineer like him, I have
always found the kind of logic
reasoning he was so fluent at and
which enabled him to read code the
way he did difficult and unintuitive.

Fortunately, the industry had
changed by the time I graduated
engineering university during the
90’s: My first job was programming a
multimedia games title where the
success of my work depended more
on collaboration with the graphic
designer and the composers for the
music and sound effects we used
than on my abilities to write perfect
code. Later I changed to enterprise
systems and became a tester. Where
the software my father talked about
at the dining table could be
evaluated by its ability to produce a
consistent output, evaluating
software in the 90’s was much more
complicated. Performing these
evaluation is still my profession.

Let me generalize a bit: 50 years ago,
scientists discussed software as
data processing. We still call what
computers do “data processing”, but
note that the where the processes
used to be linear and procedural,
they are more complex today.

Dijkstra’s statements limits the
scope of a proof that testing can
perform to falsification. At the
essence, that is still what a test can
do when testing is evaluating
outputs based on inputs. But is that
what we do today?

No. We automate that.

So why is it that testers can still be
great at finding bugs in software by
running it and trying out different
things it is supposed to do and
should not do?

You know what a bug is, don’t you?
You are a tester, aren’t you? Ok.

Then ask yourself the following
questions: What is the meaning of
the bugs you find? What do the bugs
mean for users? What do they mean
for stakeholders? What threats to
the value of the system are you
looking for?

Do you still know what a bug is?

I am asking you those questions
about to make you doubt what you
think you know.

Something about knowledge

~
Pe
op
le

ENLIGHTENING IN
TESTING

What you cannot know

E. W. Dijkstra expressed this principle of
testing in 1969:

Testing shows the presence, not the absence
of bugs.

Dijkstra was discussing testing with
researchers focused on finding ways to
prove that code was working. They were in a
conference organized by NATO and although
I was barely born when it took place, I would
have loved to be there as according to the
transcript Dijkstra terminated the discussion
with this statement. It takes courage, but
some of the wisest people around are those
who tell others what they cannot know.

Computers are machines. We can assume
that there is always a root cause for any
undesired behaviour we may see. Even
unpredictability would be a problem with
root-causes.

Computers are also reliable: Unlike testing a
human, testing a program running on a

computer potentially, but objectively
shows whether there is a bug in it. But the
objectivity comes with a price: The test
will never be able to say anything else
about the program other than the fact
that there is a bug.

Dijkstra’s statement relies on concepts of
objectivity and reliability. It also relies on
something else, however, namely an
assumption about what a bug is.

6 7TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

~
Pe
op
le

Should I let the tester go?

I felt I had to apologize to my
tester to get the conversation
back on track. I was a high-level
project manager in a complex
project, and I told my tester that
I was ready to support him in his
role. Testing was critical in this
project.

“You need to approach the
necessary people in the
hierarchy when you find a bug. “

We agreed that I would e-mail
the senior developer asking him
to prioritize the bug reports.

At my next meeting with my
manager, I raised the problem:

A: “It seems our testers are not
allowed to address developers
directly.”

I got his support to change that,
but not the support I expected:

M: “Let me know if I need to
make a statement. We have had
problems with bad testers
before.”

I felt worried. I did not want to
let my tester go as he was good
at his job. But he was not
providing value to the project.

Enlightenment and gut feeling

Enlightenment is the concept of
understanding things from a
higher level. At almost 52 I feel
more enlightened that I used to.
A wise person once said that
before enlightenment you chop
wood and carry it

home so you can burn it and
keep your family warm. So is
there less work now? No, he also
said, that after enlightenment,
you still chop wood and carry it
home to keep warm.

Testing involves lots of tedious
work of managing test data,
preparing testing, performing
testing, noting results, gathering,
and communicating details in
reports, collaborating with
colleagues, taking time to
socialize. I still do the labour.

But as I mentioned above, I have
realized something about the
labour, namely the importance
of the choices I make while
labouring.

This is where “gut feeling” comes
into play. While we often think
our choices have a reason, and
most of us think about ourselves
as rational beings who prepare

and make plans, and who mostly
follow the plans we make, we
must admit that that cannot be
the whole truth: In the moment
of actually making a choice, we
often end up improvising -
instead of sticking to the plan we
made.

There is always “gut feeling”
involved in decisions. Gut feeling
is there but can be difficult or
outright impossible to explain in
a situation. And if we try
afterwards, the question is if we
are not only making up a story
about our reasoning.

Facing a dilemma

So, are we as humans
fundamentally irrational? I do
not think so. I just think our
rationality is bounded: We can
think rationally, but in the
moment of making a choice, our
judgment is tied to the event
and we cannot say if we are.
Because of that, improvising to
me also means taking
responsibility.

I was in a dilemma with my
tester: My boss saw the problem
I did not want to see that my

tester was not ready to make
bold decisions and take
responsibility. He could test
according to his books, but he
did not have the courage to do
more.

Should I let him go? I thought
about it and made a choice.
Some people need support in
the form of clear directions, and
training before they are ready to
escape the plans and best
practices. I decided to teach him
that it’s a best practice to escape
the best practices he had
learned.

A new realization

Although the developer had
assured me that he would
attend to our bug reports, things
were still not moving: Testing
was slow, and bugs did not get
fixed. Speed mattered: We had
deadlines to meet and testing
and debugging was becoming a
bottleneck. I had to do
something, but what? Everybody
was working as fast as they
could, it seemed.

Changing the meaning

Meaning is another complex concept.

It is intuitively easy, but when you start thinking about meaning, things are
often messy. Let me be honest: I have found that when I thought I knew for
sure what a bug meant, I was always wrong. At least to some degree.

So why am I still testing to find – prove! – those damned bugs? I do it too,
so let us make it a “we” question: Why are we still testing to prove bugs?

Could we change our ways and avoid problems in testing?

My answer is that we can, and we do. I see testers changing testing every
single day by asking themselves similar questions to the question I asked
you above: What is the meaning of this?

The answer is often: “I cannot know for sure, but I think…”

Improving testing

A skype call with a remote tester

We had only briefly met each other before, the person in front of me, and
myself. He was in fact not sitting in front of me, but in an office space 6300
km away. We were wearing headsets and staring on blurred images of
each other on our screens. He was onboarded on the team before I started
as the manager. I knew very little about him or his skills. I remember how
I reminded myself of the cultural differences before greeting him welcome
to this our first one-on-one meeting. I remember I was a bit anxious about
the whole situation.

Working with people from different skillsets, backgrounds, and culture is
one of the most fascinating things about working in tech.

I have worked in tech for more than 25 years now, and that kind of
experience is worth a lot. I am not thinking in terms of money, but I see
that being where I am today is a good place: Where others might see chaos,
I often see patterns. That has made me more robust and happier dealing
with complexity and uncertainty.

When I was younger and less experienced, I looked to my senior colleagues
to learn from them. I often looked at leaders with a combination of awe
and frustration, especially when they organized meetings. I have always
been impatient, and my impatience had given me some lessons in the
past, so I started observing their behaviour and asked myself: “Why are
they taking time out for these conversations that seem to go nowhere?”

It took a while before I understood.

Coming from different places

The conversation does not flow easily. I notice we are coming from quite
different places and that getting a common understanding of his role is
annoyingly difficult.

A: “The bug you reported earlier. Tell me about that.”

T: “I prepared the scripts according to the specification. I had to wait a long
time until the feature was released from the developer. Executing the
script, step 7 failed. I reported that.”

A: “Has the developer reached out?”

T: “No”

A: “I’d like you to reach out to him to ensure the bug is fixed.”

There is silence on the call. My team member at the other end of the
network call clearly does not feel comfortable.

My next sentence emerges with a slightly irritated tone:

A: “Testing is a critical process performed with the team, and not a matter
of completing the test case and reporting whatever bugs you have found.
If the developer does not understand that, we have to teach him.”

Making choices

A test manager early in my testing career once asked me about my gut
feeling about the system I was testing. I still vividly remember the panic I
felt when she asked as I had not imagined she would have been interested
in my feelings: Software should work. Software does not involve feelings.
That’s a different domain. That was my reasoning, the reasoning I had
learnt at home by the dining table.

Her question however, shaped a learning path for me as I worked on the
project for more than 3 years. The learning path involved learning what it
takes to work on a big project in a big organization. It is very much about
the choices we make.

Choices and decisions are made all the time: A developer decides to solve
a problem in a certain way. A tester chooses to perform a specific test. A
manager reports a specific metric. A senior manager decides to allocate
funds.

Choices made and decisions taken by developers and testers are usually
very concrete. The effects are often seen immediately. This immediateness
mean that we often forget the choices we make and focus on the work
carrying them out: Writing the code, performing the test, preparing the
report.

Defining testing

I perform a test and find a bug. I perform another test, and things work as
specified. I change an input value and repeat the test and the front-end
crashes. Oops!

It is all happening right in front of me as a tester. It happens because I test.
It happens because of the process of testing.

But let us talk about definitions: What defines the testing I? The defining
thing about my testing is not the process I follow, but the choices I make
in my testing.

Results matter, and the choices I make before getting these results matter
more as there is always a direct causation between the choice and the
outcome in testing. In the big project, for example, we were under pressure
and I learnt I could sometimes make a difference by the way I was
reporting my testing: Even though my testing could still only identify
(prove!) bugs, there was a lot I could not report: Like the effects on users.
So I focused on the people around me: and started reporting the absence
of bugs as well because it helped me express appreciation of my developer
colleagues’ work. The social contract we had on the team helping each out
had to be remembered.

Taking time to socialize with colleagues was a choice I made. It was not in
my job description, but it helped me establish something else. It helped
me establish a sense of meaning with what I was doing.

People do not often see that.

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

WHAT DO WE REALLY MEAN
WHEN WE SAY QUALITY?
How does your team or organization measure quality? People often
equate testing to good quality or ‘quality assurance’, but if you have
good testing practices, does that mean you have a good quality
product? Many teams measure process quality and don’t realize they
forget about the product quality – which is what the customer cares
about.

There are many things that go into a quality product, and testing is
only one aspect. In this article, I explore the interaction between the
development process (which includes testing) and different types of
quality measures that organizations use.

There are many dimensions to thinking about quality, but I’ll focus on
product quality and process quality, and the correlation between the
two.

How we develop our products, influences

how we view our product quality. How we

view our product, influences how we develop

our product.

There are many contexts, and each may need a different way of looking
at quality and in all cases, quality needs to be built into the product
from the beginning and make the customers part of the process.

There are 3 sections to this article: 1. The Product Quality, 2. Process
quality, and 3. how they might be measured.

Product Quality
Describing product quality is hard. There doesn’t seem to be any easy
way to do it. Gerry Weinberg has used the definition “Quality is value
to some person”. This seems to be the most popular definition
because it’s true, and it’s easy. However, I think it might be too
simplistic and understates some of the dimensions teams should be
thinking about.

Consider your product. Is your product simple enough that you can say,
I know what Sally likes in our product so if she says it’s a quality
product, it must be so? Most of us do not have that luxury. We have
many different types of customers, and end-users, and they all look for
different aspects. They have different perspectives. There are also
internal customers such as product management who want fitness for
use and user experience for the customer, the finance group who cares
about profit, or the regulatory governance group who cares about
legality. Teams have to satisfy all those needs.

One day I looked at one of the bug reports that my tester had raised.
I could not make sense of it. No wonder the bugs did not get fixed!
The bug reports were impossible to understand.

I felt I was at the root of the problem that had bugged me: The
problem was about communication. It irritated me. I was especially
irritated that I had not realized this before. I had pushed everyone to
work faster and longer hours. Test more. I felt stupid.

I woke up early next morning frustrated as I realized I might have to
let this guy go now. Had I wasted everyone’s time?

In office I called him up and explained the problem. I then made a
choice: I took time to explain and ensure he understood that the
current practice did not work, and that he had to change. He was not
comfortable, and neither was I, but I kept us on the path.

Afterwards I felt better. Was it not my moral obligation to make this
choice? Explaining the problem as well as I could giving my tester a
chance to improve. He listened, but it was difficult for him. He did not
know how to make the change. He was not ready.

But he had listened and seen the problem. He probably knew his role
in the project was at stake.

I offered him to rewrite the open bug reports. That was easy for me. I
would also make a template to guide him and his colleagues: A new
best practice in the project. He thanked me. I felt we had a process
and could make progress.

We discussed perspectives for a moment: His view on bugs, and the
view developers would have on bugs.

We are all different.

Epilogue

The story ends here. It turned out the bug reports was not the only
problem we had in the project. There was lots of friction in the project
where people were sticking to whatever best practices they had been
trained at and forgetting the best practice of doubting your best
practices.

But over a year or two, we succeeded improving our processes and
deliver a working product. At the end people were asking themselves
questions about the meaning of what they were doing. They started
doubting their proofs. They started saying: “I think this is because…”.
And others chipped in in the discussions.

They started learning and because of that they started making more
enlightened choices.

They still wrote code and tested it. Often the tests we did in my team
still proved lots of bugs, but often they did not produce the obvious
proof, so the bug reports had to become items of communication and
discussion. To the outsider nothing changed: Development was still a
job along the same lines as before as we went through ideas,
concepts, designs, solutions, code, and back to testing ideas,
scenarios, data, cases, scripts, and exploring. That was sad as we
could not establish this way of working as a new model because what
management saw was just a delivery and best practices followed.

But I knew what we did: We had more conversations about
communication, collaboration, and making personal choices about
things to do. And that helped us succeed.

The Germans have a beautiful word for enlightenment: Bildung. They
use it in their word for education: Ausbildung. Ausbilding literally
means taking your images and imaginations out of yourself, and into
the social contexts in which they can make a difference.

Bildung is about having an image by your heart that you follow.

Testing has potential to teach people things about the software they
are working on. Done right, testing is an education for everyone
taking part. But let’s use the German word: Ausbilding is about what
you can do as a colleague: Help get the images they have out in the
social context, make them items for exploration and discussion so
they can make a difference to people in the real world

.

CONTACT SALES@TEATIMEWITHTESTERS.COM

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

mailto:sales@teatimewithtesters.com

As another tact is to ask questions about risk. Ask “What’s the worst
thing that can happen?” – that would be the biggest risk. Ask, “What’s
the best thing that could happen?”. That might be something you want
to measure. A good quality strategy should be based on mitigating
risks.

This might be a good time to consider those quality attributes from the
lower right quadrant of the agile testing quadrants. Those tests are
about mitigating risk, and a step towards measuring product quality.

Margaret Dineen did a talk and wrote a blog post about using sliders
for quality attributes to start the conversation within a team. Identify
quality attributes that are important to your product based on the
identified risks and prioritize using priorities sliders as in Figure 2.
Compare, discuss, and then take it to other stakeholders until a
shared understanding is reached. It can be very revealing and may
open up new conversations. Once you have that shared under-
standing, you can decide how to measure.

Conclusion

Everyone in an organization plays a part in delivering a high-quality
product:

• The organization and senior management provide a safe
environment to enable questioning and learning.

• Product management provides clear priorities to enable the
teams to work effectively.

• The business understands the ‘what’ and the ‘why’ and answers
“Did we build the right thing”?

• The delivery team strives to build it right.

• The individual knows how they contribute to the quality of the
product and works toward that end.

It is not enough to make sure the product works, it needs to satisfy all
the needs of the customer. If your teams are not talking about quality
first, you have the opportunity to start that conversation. If you don’t
have that conversation, how will you know what testing needs to be
done? How will you know what risks to consider?

Testing supports good quality but does not assure good quality.
Process quality helps but doesn’t automatically make a product good.

The nature of quality is complex and diverse, so understand what you
mean when you say ‘quality’!

References:

• Accelerate: The Science of Lean Software and DevOps, Nicole
Forsgren PhD, Jez Humble, Gene Kim

• Agile testing quadrants, Janet Gregory, Lisa Crispin agiletester.ca/
w p - c o n t e n t / u p l o a d s / s i t e s / 2 6 / 2 0 1 4 / 0 9 /
Gregory_Chapter_8_Final.pdf

• Quality sliders, Margaret Dineen, https://3weststreet.com/using-
priority-sliders-to-help-create-a-team-vision-of-quality/

• https://www.forbes.com/sites/nicolemartin1/2019/03/26/why-
millennials-have-higher-expectations-for-customer-experience-
than-older-generations/

• Gerry Weinberg’s definition of quality, Quality Software Man-
agement: Volume 1, Systems Thinking, 1992

Janet Gregory is an agile testing and process consultant with
DragonFire Inc. She is the co-author with Lisa Crispin of Agile Testing
Condensed: A Brief Introduction (LeanPub 2019), More Agile Testing:
Learning Journeys for the Whole Team (Addison-Wesley 2014), and
Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-
Wesley, 2009), the Live Lessons Agile Testing Essentials video course,
and “Agile Testing for the Whole Team” 3-day training course.

Janet specializes in showing agile teams how testing activities are
necessary to develop good quality products. She works with teams to
transition to agile development and teaches agile testing courses
worldwide. She contributes articles to publications and enjoys
sharing her experiences at conferences and user group meetings
around the world. For more about Janet’s work and her blog, visit
https://janetgregory.ca or https://agiletester.ca You can also follow
her on twitter @janetgregoryca or LinkedIn

Together with Lisa Crispin, she has founded the Agile Testing
Fellowship to grow a community of practitioners who care about
quality. Check out https://agiletestingfellow.com to find out more
about courses and membership.

There are many conflicting interests in how we define quality, and we
should be looking at them, having conversations about them, and making
decisions based on those needs. There are different lenses in how we view
quality, including – are we getting value for our money? There are also
generational differences in how we view quality. For example, younger
people seem to care more about the user experience more than some
older folk. I recently had a conversation with a group of people (between
20 – 30) about coffee and coffee shops. They told me they never thought
about the money if they liked the experience. It’s a different way of
thinking about quality. There is no right or wrong – only different
perspectives.

It’s these differences in expectations that make the quality discussion
difficult.

Process Quality

Process quality is much easier to talk about so most organizations
concentrate on that – how well do they build their products. Testing
activities are one way to contribute to product quality. Many people think
about testing only as testing the software after it is built, but testing
activities also happen throughout the delivery cycle. Testing activities:

• Provide feedback in many forms (defect reporting or code reviews are
two examples).

• Identify hidden assumptions – many are because of different
perspectives.

• Help identify and mitigate risks (product, business, technical are a
few).

• Give information about the state of the product.

• Assess quality (assuming the team knows what that means)

Note: I do not believe that testing (investigating or evaluating) can assure
(tell someone something positively or confidently to dispel any doubts)
quality.

The agile testing quadrants (Figure 1), including all their variations, is a
model to help teams talk about testing activities, and which ones are
important to consider for their product. The testing activities in the
diagram are examples of tests that a team could perform.

The left-hand side of the quadrants is about activities that happen before
code is written – the focus is on preventing defects. The right-hand side is
about finding defects in the code as quickly as possible. Both are needed
but preventing defects in code is much more cost-effective. The top half is
about tests written so that business can understand them, and the bottom
half are tests that are written from a technical perspective. The business
might care about the results but couldn’t read the tests. If you are
interested, I suggest you read more in Chapter 8: Using Models to Help
Plan, from More Agile Testing.

The testing activities shown in the lower right quadrant are quality
attributes that address product constraints and risks. Many quality
attributes are “expected” by our customers. For example, if your team is
working on a medical device, safety is probably extremely important.
Another example might be data integrity – each of us carries a lot of
personal data in our phones. We expect the apps we use to treat our data
with caution and not to share it.

When teams don’t think of different dimensions of product quality, they
often overlook building it in. In every aspect of our delivery cycle, they
need to consider the best way of building their product and how to build
quality into their process.

As team members, we test ideas to make sure we are solving the right
problem. We clarify our needs. Identify hidden assumptions and test our
understanding of the problems by providing examples. We talk about the
risks and which quality attributes are important and ask more questions
to learn more. For example, do we need to think about the diversity of who
is using our product? We may be building in limitations without even
thinking about it. These types of testing are early in the cycle and are
about preventing defects in code.

Testing activities during development include unit testing (TDD), code
analysis, pair testing, exploratory testing (ET), test automation, even user
acceptance testing (UAT). These activities help teams feel confident they
are not introducing coding-level bugs. ET and UAT do address product
quality by testing as different stakeholders and looking at the product
holistically.

There are even testing activities that can happen after releasing to the
customer – for example, testing in production (observability) and
monitoring enables teams to get feedback from the customer’s actions
and reactions. The learning from these activities feeds back into building
new features or addressing something that wasn’t quite right.

So, with all these feedback loops, teams should have enough information
to assess the quality, right? The question that still needs to be answered,
is: “How do they know what to assess if they don’t know what to measure.”

Measuring Quality

Measuring quality is not easy, but we can agree that low quality is bad,
right? But is that always the case? We sometimes accept lower quality
because it comes at a cheaper price – that doesn’t make it bad.

Teams often measure things because they are easy. For example, the
number of bugs or severity of bugs tells me how bad the quality is, not
how good it is. Even if absolute numbers aren’t used, but watch the trend,
it is not guaranteed that the product has good quality. It might be better
than before, but still not great.

Accelerate has some good measures for process quality like cycle time,
rework rates, etc. Other measures like test coverage tell us nothing about
product quality but are also about process quality.

Organizations tend to use more qualitative measures for product quality
like above based on surveys or feedback from customer support.
Customer loyalty can be measured – how often do customers come back,
or how long do they stay customers. For example, if a company offers a
product for free, but gets income from add-on services, customer
retention is extremely important.

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://3weststreet.com/using-priority-sliders-to-help-create-a-team-vision-of-quality/
https:// agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https:// agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https:// agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https:// agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https://3weststreet.com/using-priority-sliders-to-help-create-a-team-vision-of-quality/
https://3weststreet.com/using-priority-sliders-to-help-create-a-team-vision-of-quality/
https://www.forbes.com/sites/nicolemartin1/2019/03/26/why-millennials-have-higher-expectations-for-customer-experience-than-older-generations/
https://www.forbes.com/sites/nicolemartin1/2019/03/26/why-millennials-have-higher-expectations-for-customer-experience-than-older-generations/
https://www.forbes.com/sites/nicolemartin1/2019/03/26/why-millennials-have-higher-expectations-for-customer-experience-than-older-generations/
https://agiletester.ca
https://www.forbes.com/sites/nicolemartin1/2019/03/26/why-millennials-have-higher-expectations-for-customer-experience-than-older-generations/
https://agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https://agiletester.ca/wp-content/uploads/sites/26/2014/09/Gregory_Chapter_8_Final.pdf
https://www.amazon.com/Accelerate-Software-Performing-Technology-Organizations-ebook/dp/B07B9F83WM/

JOEL MONTVELISKY
–
Joel is a Co-Founder and Chief Solution Architect at PractiTest.
He has been in testing and QA since 1997, working as a tester,
QA Manager and Director, and a
Consultant for companies in Israel, the US and the EU. Joel is
also a blogger with the QA Intelligence
Blog, and is constantly imparting webinars on a number of
testing and Quality Related topics. Joel is also
the founder and Chair of the OnlineTestConf (https://
www.onlinetestconf.com/), and he is also the cofounder of the
State of Testing survey and report (https://
qablog.practitest.com/state-of-testing/). His
latest project is the Testing 1on1 podcast with Rob Lambert,
released earlier this year - https://
qablog.practitest.com/podcast/
Joel is also a conference speaker, presenting in various
conferences and forums world wide, among them
the Star Conferences, STPCon, JaSST, TestLeadership Conf, CAST,
QA&Test, and more.

What is excellence?
Most places will define
excellence as outstanding, being
extremely good, the quality of
excelling at something, or being
the best at what you do.

All these are good definitions,
but when I look at testing and
specifically at excellence in
testing, I am referring to those
special attributes we see in
some testers that draw them
apart from the rest of the pack.

They are not the fastest testers,
nor are they the most technical
ones, and usually they are not
the ones finding the most bugs…

They are the testers that know
how to test thoroughly but
accurately, reviewing the system
from the important angles and
asking the questions to help the
team deliver the features
correctly but also quickly.

They shed light on the things
that matter and leave aside
those that are not relevant,
helping to focus the conversa-
tion and not to confuse it with
irrelevant information and noise.

They get the job done, effectively
and efficiently.

Do you need to be technical?

To excel at testing you don’t
need to be the most technical
tester, but you need to be
technical enough in order to
understand what you are testing.

You don’t necessarily need to
know how to write the complex
scripts, but you will want to use
technical tools to facilitate part
of your tasks.

Most testers work on projects
that include technical aspects,
and so being technical will allow
you to comprehend the system
you are testing, and to
understand the reasons behind
the different behaviours of the
systems (both the good as well

as the bad behaviour).

There will also be testing
projects that require advanced
technical skills, and in order to
excel at them you will need to
acquire these skills either before
or as part of your work. You
should not shy away from this
opportunity, instead use it as a
reason to expand your virtual
toolbox of skills and knowledge.

Can I excel at testing without
intimate knowledge of the
user?

Being an airplane pilot may help
you test systems that run on an
airplane’s cockpit, and being a
medical doctor may help you
test tools used during brain
surgeries. But you don’t need to
be a pilot or a brain surgeon or
to excel at testing either of these
systems.

You can use a number of
approaches to understand
enough about the users and
their interactions with the
system in order to test correctly.
Yes, it helps if you have previous
experience in the field, but most
times this is not a mandatory
requirement.

You can spend time with subject
matter experts, reviewing what
they do and what is important to
them as they do it. You can then
create personas or user profiles
to help both you and your team.

When you don’t have access to
end users, there is the option of
interviewing people within your
organization who can tell you
more about them, what is
important to them and how they
interact with the system. For
example you can reach out to
the Customer Support team,
Sales people, or Professional
Services engineers.

EXCELLENCE IN TESTING,
TODAY MORE THAN EVER

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

You can also decide that for a specific project there is no substitute
for real users, and choose to have phases of field testing to
compliment the internal testing you do as part of your testing cycles.

In short, being a real user is an advantage, but not a requirement to
being an excellent tester.

Is excelling at testing different in Agile or DevOps teams?

Yes and No.

Some of the skills needed in one organization will not be the same as
those needed in others, but excellent testers tend to excel in most
places they work. This is because testers who excel at their work are
usually flexible in their approach and focused on the value of their
work - not on the methodology used to achieve this value.

The value we provide can be in a number of different aspects of the
testing and quality areas of the project.

We can be focused on the actual testing efforts, spending all the time
interacting with the product and critically evaluating its behavior.

We can be more focused on leading and orchestrating the testing
efforts of a number of testers. Breaking the tasks into smaller pieces,
organizing them and assigning people to them. Reviewing the plans
and findings of your team in order to ensure proper and successful
testing, even when we are not the ones doing the actual testing
efforts.

There will be times when you will find yourself coaching testing to
players who are not usually testers in your team. This can happen if
your organization adopts an “all team testing” approach, where you
are tasked with empowering developers, POs, and other members of
your group to plan and execute their tests, even when they have never
done it before and sometimes they believe it is beyond them to do it
properly.

Most times you find yourself doing a mix of all the above, while
constantly performing risk-based reviews of your project in order to
adapt your approach to the ever-changing constraints and goals of
your team, forever focused on providing business value to the
organization.

How do I learn all I need in order to excel at testing?

This is the most important but also the most gratifying part of
excelling at testing (or at any other task for that matter), the approach
that will make you stand out from the pack. It is the realization that
learning is not a task or a step along the way, it is a way of life.

Those who excel at what they do, in this case testing, are those who
never stop learning and are looking for new lessons everywhere they
work and from everyone they interact with.

Those who are passionate about something can never get enough of
it, and will seek new knowledge and experiences whenever they have
a chance to find them

There are all the theoretical testing-related sources you can and
should read, but there are also more diverse skills that are no less
important such as critical thinking, story telling, observation,
experimentation, and more.

Today knowledge is right in front of you, there is no real problem in
finding sources, even free sources, with high quality information for
you to learn. Sometimes the problem is how to select from all the
different sources to review - but this falls under my list of good
problems to handle.

If you are reading these words, it means you already found an
excellent source. I am writing this article on the occasion of the 10th
anniversary of Teatime with Testers, one of the most amazing sources
of knowledge and information about real-world testing available
today. Lalit and his team have gathered countless articles from many
authors and testers around the world, all of them sharing their
knowledge, their experience, and their passion for testing with the rest
of the world.

I want to congratulate the Team on a job well done all these years, but
most of all I want to thank them for their efforts and for making the
testing world a better place, one edition at a time! May we all enjoy
many more editions of Teatime with Testers in the years to come!!

Do you know what pandemic and software
testing have in common? If not, taking into
account that the likelihood of you never
having heard about the former is pretty low,
for the purpose of this piece of writing I will
assume that I need to go deeper into the
latter.

This is weird because, if you are reading this
magazine, I guess you are already familiar
with software testing.

Well, I hope I don't bore you too much...

So, if you have been working in this industry
for a decent amount of time, I bet you have
had to deal with counting disease at some
point in your working life.

As brilliantly explained by Michael Bolton
throughout his enlightening course on Rapid
Software Testing,

“Counting tests (and requirements, bugs, and
other measures derived from these counts) is
an endemic means of deception in the testing
business. Some well-known testing experts

promote this form of deception; testers then
practice it, and project communities have
learned to ask for it. [...] in the testing
business, we are infected with counting
disease - we are constantly counting test
cases, requirements, lines of code, and bugs.

Yes, it happens all the time.

Most managers want to count things. Which
is quite understandable. The problem is that
they usually tend not to spend enough time
thinking about the right things to count. Or
fail to realize that some things should better
be assessed, rather than measured(1).

By the way, do you want to see a situation
start going off the rails? Make your metrics
become goals.

Yes, I believe Goodhart was absolutely right:
when a measure becomes a target, it ceases
to be a good measure.

Do you want your project or product go even
worse? Just add money to the equation.

Yet again, it happens all the time.

Some managers may decide to start counting
test cases, for example. And they usually
know pretty well that they don't need to
reinvent the wheel: just look at the
percentage of test cases executed, the
percentage of test cases passed, and, at most,
a few variations around the same theme.

Now, if the fact there's usually no too much
value in these metrics might be not self-
evident to some people, the moment such
(questionable) information starts being
confused with a goal, it turns into something
completely meaningless. Do you want your
test cases to become automatically
irrelevant? Make sure everybody understands
the goal is to make them pass. Your test suite
will magically start returning perfect green
reports and will be quickly converted into a
deceitful, unreliable, meaningless tool. (2)

Similarly, some managers may decide to
count bugs too.

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

A PANDEMIC ISSUE
ILEANA BELFIORE

Quality obsessed and Agile enthusiast professional. Software tester by day, wine taster by night.

Multilingual writer. Compulsive questioner. Slow and deliberate thinker.

https://rapid-software-testing.com/
https://rapid-software-testing.com/

In doing so, chances are they will fall into the trap of choosing
between two different (yet equally toxic) approaches either rewarding
people based on the number of bugs they find - hence fostering the
intentional injection (and consequent exposure) of (usually shallow)
bugs into the product(3) or blaming them for the excessive amount of
bugs they have uncovered - so discouraging them from doing their
job.

I'm not even sure what's worse...

Other managers may decide to make people put a lot of effort into
automating test cases at the GUI level, for instance.

After a while, they may even celebrate that, at last, there are fewer
bugs in their software product.

They may never realize that the reason behind that apparently good
news might be that, on one hand, their (poorly) automated (yet really
difficult to automate) test cases are not able to find any bugs, and, on
the other hand, nobody is performing genuine exploratory testing -
that is, nobody is really trying to uncover all those bugs that, in spite
of not being exposed by an ineffective tool/strategy, are still there.

I wonder why opportunity cost(4) is so important and so underrated
a concept...

After a longer while, those same managers may start acknowledging
that a lot of new bugs are now surprisingly being reported (hence
exposed) by customers or final users. Their reaction to this bad news
will likely result in more ineffective (yet expensive) automated test
cases.

They actually seem to believe that more is better [].The idea can never
be wrong, it is just that people are not doing it with sufficient vigor.5

In other words, they repeatedly fail to understand that when
something doesn'tt work, the answer is not to keep doing it with even
greater fervor. The real answer is to stop doing it and try something
else instead.6

But how is this related to the current pandemic? - I'm hearing you
asking.

Well, if you have had a look at the last couple of footnotes, you might
be guessing already...

Anyway, let's start talking about a PCR test, for example. Something
not that different from a test case after all.

The main issue I have with it is that, even though it's nothing more
than an indicator, it is being treated, trusted, probably even venerated
as though it was an accurate diagnostic tool.

Yet, as far as I understand, as an indicator of a potential infection, it
should rather be used to help physicians make better decisions.

Even the World Health Organization seems to officially agree with me7.

Does this patient presents symptoms compatible with coronavirus? 8
Let's do a PCR test. Is the result positive? Let's do some other tests to
confirm the cause of the symptoms. Is the result negative? Let's do
some different tests to try to figure out what's going on here.

Otherwise, have this patient's symptoms (e.g. a joint pain) nothing to
do with coronavirus? Don't even consider ordering a PCR test. Do
whatever makes more sense to discover the reason behind the
symptoms instead. Isn't this just common sense after all?

Finally, also taking into account the high cost involved, what's the
point of performing a PCR test when there are no symptoms at all?9

The problem is that, as I said before, the infamous PCR test is being
improperly used as though it was an accurate diagnostic tool. It is
not(10). As a matter of fact, like practically all tests, it might be affected
by false positives(11) or false negatives .

Anyway, even if it were more reliable, I want to stress once more that
it is just an indicator.

As such, its value alone cannot (and should not) be misused to
declare the healthy or unhealthy condition of a patient.

Think about a standard blood test.

It usually includes a lot of indicators.

An out-of-range value in one of them is never enough to declare a
patient ill.

What an out-of-range value usually does is triggering some questions,
an investigation and probably the scheduling of some other tests.

I wonder why an indicator alone is now being methodically (yet
inappropriately) used as a diagnostic tool, actually like a weapon of
mass destruction12 to close shops, restaurants, gyms and schools; to
overlook other (often more serious) diseases; to shut down the
economy; ultimately, to scare people.

Meanwhile, language as well is worryingly changing.

I don't really understand why for so many people testing positive to a
PCR test has become a perfect synonym of infected with coronavirus
and dangerously contagious. It isn't. It shouldn't.

Or why nowadays mass media are so fervently tarring heterogeneous
groups of people with the same brush.

I mean, should someone dare to question any of the methods applied
to counter the effects of the current pandemic, they would be
immediately and without mercy labelled as negationist, conspiracy
theorist, anti-vax, etc.

How come? Is this the end of critical thinking?

Also why some words/expressions (such as lethality, mortality rate,
morbidity13) are hardly uttered by news reporters (especially in
comparison with previous years' data).

Or why a powerful and reliable tool like EuroMOMO14 seems not to be
among their favorite official sources of information.

By the way, why aren't they asking questions instead of taking data for
granted? It seems to me that they are now officially in the business of
spreading fear by means of incomplete or misleading figures.

Oddly enough, they don't call this fake news, though.

To make things worse, similarly to what I have mentioned before
about rewarding testers based on the number of bugs they find, in
this case too, the moment money was added to the equation that is,
the moment public administrations or health systems start receiving
funding in direct proportion to the number of positive results15, PCR
tests became automatically/practically irrelevant. Goodhart's ears
must have been burning at that point...

But let's talk about lock-downs now.

I'm going to quote Dr. Malcolm Kendrick again here(16).

“no study is ever done to find out if the idea works, or not. It is just
conceived to be so obviously beneficial, such common sense, that
there would be no point in wasting time and resources trying to
prove it works. [...]

The most expensive, invasive, and potentially destructive medical
intervention ever attempted by humanity. Was there any evidence
from anywhere, in history, that lockdowns would work? No, there was
none.”

Nevertheless, “The idea has become the truth. Its proponents now
demand that those who doubt the efficacy of lockdowns prove that
they dont work. However, I dont believe its up to those who dont
believe that lockdowns work, to prove that case.

The starting point, for any scientific hypothesis, is for the proponents
to disprove the null hypothesis. Demanding that those who believe
something may not work, to prove that it doesn'tt, is to turn the
scientific method upside down. You can never prove a negative.”

No, to turn the scientific method upside down doesn't seem a good
idea indeed...

Speaking of negatives, as pointed out by Jose Gefaell17 within one of
his reports about the current pandemic(18), since lock-downs have
always - at least in the UK and in Spain - been applied when R019 was
already negative, it would be extremely difficult to demonstrate any
positive impact of this kind of measures (20).

Still on negatives and back to software testing, if you agree and if you
are reading this magazine, I hope you do that nobody can
demonstrate the absence of bugs, only their presence, you should
also agree that requiring a negative PCR test to enter a country, to
attend an event or to "safely" perform an activity does not make sense
at all(21).

Now, don't get me wrong: I do believe the virus exists, of course. Yet, I
don't think it's a good idea to get obsessed with it, or to misuse
questionable indicators in order to justify that obsession(22) , to such
an extent that we are not thinking about anything else.

.That's not life. That's infodemic-driven mayhem(23).

All in all, I guess my answer to the leading question of this article
should be pretty obvious now.

Meaningless metrics: definitely a pandemic issue...

References:

1 For a deep discussion about this topic, please find Assess Quality, Don’t Measure It. https://
www.satisfice.com/blog/archives/, by James Bach.

2 I find this issue so worrisome that it even triggered a series and a hashtag of mine about
software testing https://www.ileanabelfiore.me/whats-the-goal-of-your-bloody-test-suite/

4 Opportunity cost means, basically, that we won’t be able to do that potentially valuable
thing because we’re doing this potentially valuable thing. - excerpt from The Sock Puppets of
Fomal Testing (https://www.developsense.com/blog///sock-puppets-of-formal-testing/),by
Michael Bolton. Also in Value and Cost in Automated Checking or Don’t Fall into GeMPuB
(https://www.linkedin.com/pulse/value-cost-automated-checking-dont-fall-gempub-
michael-bolton/): ”Opportunity cost: the degree to which stuff you’re doing displaces your
opportunity to do other stuff that you might value more.”

5 Excerpt from Does Lockdown work, or not? (https://drmalcolmkendrick.org/2021/01/27/
does-lockdown-work-or-not/), by Dr. Malcolm Kendrick.

6 Excerpt from What is left to say? (https://drmalcolmkendrick.org/2020/12/30/what-is-left-
to-say/), by Dr. Malcolm Kendrick. Yes, again. A rare source of common sense nowadays.

7 “Most PCR assays are indicated as an aid for diagnosis, therefore, health care providers
must consider any result in combination with timing of sampling, specimen type, assay
specifics, clinical observations, patient history, confirmed status of any contacts, and
epidemiological information.” emphasis added. – excerpt from WHO Information Notice for
IVD Users 2020/05 (https://www.who.int/news/item/20-01-2021-who-information-notice-for-
ivd-users-2020-05), issued on January the 20th of .2021

8 After all, even according to the Centers for Disease Control and Prevention (https://
www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-
nCoV.pdf), “The CDC -nCoV Real-Time RT-PCR Diagnostic Panel should be ordered for the
detection of COVID-19 in individuals suspected of COVID-19 by their healthcare provider.”
[emphasis added.]

By the way, I would say that considering everybody suspicious instead doesn’t usually
correlate with effective detection, does it?

9 “Mass testing is simply causing mass panic and achieves absolutely nothing.” - excerpt from
Excerpt from What is left to say? (https://drmalcolmkendrick.org/2020/12/30/what-is-left-to-
say/), by Dr. Malcolm Kendrick. Once more, I definitely agree with him.

10 By the way, also the Centers for Disease Control and Prevention seem to agree with me
(https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-
Providers-2019-nCoV.pdf) “Laboratory test results should always be considered in the context
of clinical observations and epidemiological data ... in making a final diagnosis and patient
management decisions.”

11 “In previous epidemics, health authorities voiced concerns that false positive results from
PCR-based tests could harm both the individuals tested and the ability of government
agencies to assess the outbreak, and they adopted measures to limit the occurrence of false
positives. For example, the World Health Organization and the U.S. Centers for Disease Control
and Prevention limited PCR-based testing to individuals with a high probability of infection
those with symptoms and/or significant exposure and usually required confirmation of
positive results by a second, independent test These warnings and requirements are
absent from the same organizations guidance on SARS-CoV- testing.” – excerpt from
Diagnosing COVID-19 infection: the danger of over-reliance on positive test result. (https://
www.medrxiv.org/content/10.1101/2020.04.26.20080911v3.full.pdf)

12 Here you can find a post of mine inspired by this concern (https://www.linkedin.com/
posts/ileanabelfiore_ihelppeoplestopbuyinglies-activity-6752156557372338176-VCIQ/)

13 Some other factors starting with the number of tests carried out that, in my opinion,
should be uttered more often can be found within the previously mentioned Dr. Malcolm
Kendricks article titled “Does lockdown work, or not?”

14 https://www.euromomo.eu/

15 As explained within the Spanish Official State Gazette BOE published on June the 17th of
2020 https://boe.es/boe/dias/2020/06/17/pdfs/BOE-A-2020-6232.pdf for example.

16 Excerpt from Does lockdown work, or not?

17 https://www.linkedin.com/in/josegefaell/

18 https://www.dropbox.com/s/s9muiwsixqy9b7e/Excess%20Deaths-1st-2nd-3rd-Waves-
Spain-29Jan2021.pdf?dl=0 , p. 26 and 19 https://en.wikipedia.org/wiki/
Basic_reproduction_number

20 Or, in Dr. Malcolm Kendricks words: “Unfortunately, once you introduce a medical
intervention that affects everyone, everywhere, you have lost the possibility of carrying out a
controlled experiment of any sort.” - excerpt from Does lockdown work, or not?

21 As a matter of fact, according to the Centers for Disease Control and Prevention (https://
www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-
nCoV.pdf) “a negative result does not rule out COVID- and should not be used as the sole
basis for treatment or patient management decisions.”

22 “Paradoxically, human beings, when compelled to act, learn to justify a chosen course with
an assurance unwarranted by the evidence for the course chosen. “ - excerpt from A Chai he
Rece (https://bernardlown.wordpress.com/2011/02/03/a-chair-to-the-rescue/) by Dr. Bernard
Lown.

23 And I haven’t even mentioned masks! Well, I would need another article just to talk about
this topic...

ISSUE 01/2021
PEOPLE

ISSUE 01/2021
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://www.satisfice.com/blog/archives/
https://www.satisfice.com/blog/archives/
https://www.developsense.com/blog///sock-puppets-of-formal-testing/
https://www.linkedin.com/pulse/value-cost-automated-checking-dont-fall-gempub-michael-bolton/
https://www.linkedin.com/pulse/value-cost-automated-checking-dont-fall-gempub-michael-bolton/
https://drmalcolmkendrick.org/2021/01/27/does-lockdown-work-or-not/
https://drmalcolmkendrick.org/2021/01/27/does-lockdown-work-or-not/
https://drmalcolmkendrick.org/2020/12/30/what-is-left-to-say/
https://drmalcolmkendrick.org/2020/12/30/what-is-left-to-say/
https://www.who.int/news/item/20-01-2021-who-information-notice-for-ivd-users-2020-05
https://www.who.int/news/item/20-01-2021-who-information-notice-for-ivd-users-2020-05
https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-nCoV.pdf
https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-nCoV.pdf
https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-nCoV.pdf
https://drmalcolmkendrick.org/2020/12/30/what-is-left-to-say/
https://drmalcolmkendrick.org/2020/12/30/what-is-left-to-say/
https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-nCoV.pdf
https://www.cdc.gov/coronavirus/2019-ncov/downloads/Factsheet-for-Healthcare-Providers-2019-nCoV.pdf
https://www.medrxiv.org/content/10.1101/2020.04.26.20080911v3.full.pdf
https://www.medrxiv.org/content/10.1101/2020.04.26.20080911v3.full.pdf
https://www.linkedin.com/posts/ileanabelfiore_ihelppeoplestopbuyinglies-activity-6752156557372338176-VCIQ/
https://www.linkedin.com/posts/ileanabelfiore_ihelppeoplestopbuyinglies-activity-6752156557372338176-VCIQ/
https://boe.es/boe/dias/2020/06/17/pdfs/BOE-A-2020-6232.pdf
https://www.dropbox.com/s/s9muiwsixqy9b7e/Excess%20Deaths-1st-2nd-3rd-Waves-Spain-29Jan2021.pdf?dl=0
https://www.dropbox.com/s/s9muiwsixqy9b7e/Excess%20Deaths-1st-2nd-3rd-Waves-Spain-29Jan2021.pdf?dl=0

GRIFFIN JONES
–
Griffin is Sr. Manager: Agile Consultant /
Coach - Specializing in regulated
industries (FDA and Financial Services)

Weinbergian and Griffin the
expert on regulated software?

After college in 1987, I started
working at Eastman Kodak as a
tester - on a giant project that
would digitize, index, store, and
retrieve all the historical
physical paper records of
gigantic organizations. I stayed
at Kodak till 2007, focusing on
testing the initial imaging
digitization of different business
verticals. Computed radiography
is an example of my regulated
work, while movie special effects
software is an example of ‘cool’,
but unregulated work. The big
point is that I sought out broad
technical and line-of-business

In the early 1990s, I discovered
Jerry’s books, and his ideas fit for
me. But I could never fully
implement my insights at Kodak.

In 2007 I quit Kodak to work at
the startup iCardiac Technolo-
gies (which designed and
delivered cardiac safety analysis
for pharmaceutical clinical
trials) where I led their software
testing effort and eventually
became the Director of Quality
and Regulatory Compliance.
During my time at iCardiac, Jerry
and Cem Kaner were both
presenting at CAST 2008 in
Toronto - and I decided to attend
the conference and Jerry’s
workshop.

My specialty is helping
individuals and teams unfold
and move toward becoming the
best versions of themselves in
their situations and role. I look
for the people that have that
glow about them - that are ready
and willing to level up. I find
what they often need is a person
to give them some time,
attention, and a bit of direction.

It is a bit like being the Wizard of
Oz, I help people rediscover the
things that already have hidden
inside themselves.

When I think of Weinbergians
and regulated software, Griffin
Jones is one name that my brain
never skips. Would you like to
tell us more about Griffin the

experiences while developing a
deep capability in medical
devices.

That broad experience led to my
ideas about testing evolving
(described with some
exaggeration) from a Boris Beizer
function point proof, with
elaborated and traceable
requirements, a Capers Jones
metrics program, and a Quality
Assurance gatekeeper’s veto
mindset - toward an Exploratory
Testing mindset as described by
Cem Kaner and others. Bret
Petticord’s Four Schools of
Software Testing is a good take.

IN
TE

R
V
IE
W

Is the craft of
testing dying? What
does it mean to test
regulated software?
Did testing lose it
all to Agile? Hear
from Griffin Jones.

agile, and regulated.

Six years ago, as an agile coach
began working thru BigVisible
Solutions, SolutionsIQ, and
eventually Accenture on
business agility transformations.

Currently, my typical client work
is eighteen months, individuals
and teams, and up to the C-level
in their agile journey. Testing is a
part of that ecosystem.

Hi Griffin, it has been an honor
to interview for this special
issue of Tea-time with Testers.
Please tell us how have you
been and what are you up to?

It is nice to talk with you again -
I’ve been very busy.

Since we last spoke, I have
continued as a fly-to-the-client,
consultant - working in my venn-
diagram combination of testing,

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

20 21TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

http://www.testingeducation.org/conference/wtst_pettichord_FSofST2.pdf
http://www.testingeducation.org/conference/wtst_pettichord_FSofST2.pdf

Jerry and the many people from our community attending the
conference - made the event magical for me. I was hooked. I left
iCardiac and became an independent consultant, binging on Jerry and
our community - trying to make up for a lost time.

I directly interacted with Jerry of the following years by attending
multiple AYE conferences [https://www.ayeconference.com/] ,
attending the Problem-Solving Leadership workshop (PSL) [https://
www.estherderby.com/workshops/psl/] , and the Change Artistry
workshop [associated book: https://leanpub.com/changeartistry]. My
recent work with Jean McLendon and the work of Virginia Satir, and the
Organization and Relationship Systems Coaching (ORSC) is just me
following Jerry’s footsteps.

Jerry has been the most influential person in my life that I did not
share a home with.

On the day I learned of Jerry’s death, I was working with a new client
in Chicago. Throughout the day, I noticed each time I did a Jerry-like
thing - and would remember with sadness-of-loss the past interaction
where I learned that specific consulting move from him. I was struck
by how often that happened. By the end of the day, those memories
were still tainted with loss. But, there was also deep soulful gratitude
to him for what he gave me: for what I had learned, and for the gift of
his presence with me during that time in my life.

He profoundly changed me.

My regulated industry experiences are more straightforward.

First, I think I inherited some of it from my father who was deeply
involved in the nuclear power industry at the local power plant as a
trainer, safety officer, problem investigator, and designated company
interface to the regulator.

Half of my career at Kodak was in Health Imaging. Plus I was often
given a side-mission to create the Software Development LifeCycle for
the program. I happened to be in Health Imaging in the middle 1990s
and helped adapt the FDA Quality System Regulations (QRS) when
they became effective.

I left Kodak to become employee #11 at iCardiac, where I was part of
the team that created and implemented the entire FDA-compliant
QRS. Multiple employees of the company were also Special Govern-
ment Employees of the FDA which was our first customer. We built the
QRS to allow us to implement agile practices in a compliant way.
During this time I joined the Regulatory Affairs Professional Society
(RAPS) and became the Director of Quality and Regulatory Compliance.
iCardiac was incredibly successful, and I was hosting pharmaceutical
onsite audits monthly. I started speaking at conferences and became
a co-host of Workshop on Regulated Software Testing (WREST). My
story of blending agile with regulatory compliance attracted people’s
attention, so I left iCardiac and became an independent consultant.

I worked as a consultant in multiple roles with medical device,
pharmaceutical, and financial services companies in a blended testing
and regulatory affairs role.

In my agile coach role at SolutionsIQ / Accenture, I am often the
liaison between the regulatory and compliance organization and the
larger business agile transformation. I am fluent in “regulatory”.

How does testing differ when it comes to regulated software? Do
testers assure quality in the regulated software domain?

Well, when it goes well, testing in that context has a four-part mission:

a. Gather evidence to support a “you built what you said you built”.

b. Gather evidence to support that “it produces the desired
outcome”.

c. Actively gather evidence about risks to the testing effort and the
business.

d. Weave all that evidence into a coherent story that your
management and regulators will understand.

Elaborating on each of those:

a. Gather evidence to support a “you built what you said you built”

a.1 Which is like ‘verified’ to use the FDA legal meaning.

a.2 Which is like an attempt to understand in a very Cynefin
ordered domain way.

a.3 Which is like to behave very ISO 9001-like.

a.4 Which is like to adopt a Phillip Crosy ‘conforms to
requirements’ definition of quality.

[Cynefin: https://www.youtube.com/watch?v=N7oz366X0-8]

b. Gather evidence to support that “it produces the desired
outcome”.

b.1 Which is like ‘validate’ to use the FDA legal meaning.

b.2 This is like an attempt to understand using a very Cynefin
complex domain meaning.

b.3 Which is like to adopt a Joseph Juran ‘fitness for use’
definition of quality.

c. Actively gather evidence about risks to the testing effort and the
business.

c.1 Gathering evidence of the active exploration of risks to the
testing effort.

c.2 Gathering evidence of the active exploration of producer’s
risks to their business (using ever harsher Karl Popperian
assumptions).

c.3 Gathering evidence to help answer the question ‘can we
operationally execute all of this in an acceptable way as an
ongoing business?”.

d. Weave all that evidence into a coherent story that your man-
agement and regulators will understand.

d.1 Construct a coherent story of what it all means, in a very
Michael Bolton Braiding the Stories way.

https://www.developsense.com/blog/2012/02/braiding-the-
stories/

These missions work for non-regulated just as well. They are just good
engineering.

But when it goes bad, one (or more) of those four missions has failed:

a. We didn’t build what we say we built.

b. It doesn’t work.

c. We can’t function as a business doing this.

d. We can’t explain the story of what happened in a way that our
regulators will let us stay in business.

Regarding “assuring quality”, well it depends.
Some individuals will take on that mantle, but
it is an overreach - as Brian Marik explained
in The Testing Team’s Motto. http://
www.exampler.com/testing-com/writings/
purpose-of-testing.htm

But, sometimes the organization is
constructed around that belief, and the QA
organization acts like an uber-program-
manager. Brett Petticord described it in The
Four Schools of Testing as The Quality
Assurance School. That pattern is tending to
be becoming rarer, except in the case where
the organization had a near-death encounter
with their regulator.

Would you say that in a regulated software
context, there is very little room for
creativity and free-thinking for testers?

[Laughs out loud] Yes and no.

Magic happens when you can be creative in a
compliant way. The important problems will
require creative compliance to solve.

Yes, because there is the desire to gain more
understanding and reduce risk. It often takes
creativity and free-thinking to make that
happen.

No, because working in the “compliant” way
tends to be slower and more expensive. And
if you are going to share this work as
evidence, you are not prepared to share the
unedited versions of your attempts with all
the mistakes and failures transparently

included.

And frankly, some of the work is grunt work
that you just have to grind through. It is part
of the Cynefin Simple domain.

Part of the problem is the language and zero-
sum thinking around control. There is a
wonderful TED-talk, Lead Like a Great
Conductor, by Italy Talgam - that illustrates
control and creativity operating at different
levels. See 14:50 to 16:47 of the video. [https://
w w w . t e d . c o m / t a l k s /
itay_talgam_lead_like_the_great_conductors]

Look for opportunities to put down the baton,
and give others the freedom to contribute in
their own way.

It is also expressed in Turn the Ship Around,
when the Captain “vowed to never give
another order ever again”. Clarity of Intent,
Competence - and then you can give people
Freedom. [https://www.youtube.com/
watch?v=psAXMqxwol8]

Creativity: My creative muse (or genius) is a
trickster and waits for me to not have pen
and paper at hand: See 11:50 to 14:20 of
Elizabeth Gilbert’s TED Talk.

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

22 23TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

”A twisted but enlightening story
about regulated

industries
would be to imagine a Cargo Cult where the desired outcomes seem to always

happen. Or a magician that can only perform a trick successfully if there is no

audience present.

https://www.ayeconference.com/
https:// https://www.estherderby.com/workshops/psl/
https:// https://www.estherderby.com/workshops/psl/
https://leanpub.com/changeartistry
https://www.youtube.com/watch?v=N7oz366X0-8
https://www.developsense.com/blog/2012/02/braiding-the-stories/
https://www.developsense.com/blog/2012/02/braiding-the-stories/
http://www.exampler.com/testing-com/writings/purpose-of-testing.htm
http://www.exampler.com/testing-com/writings/purpose-of-testing.htm
http://www.exampler.com/testing-com/writings/purpose-of-testing.htm
https://www.ted.com/talks/itay_talgam_lead_like_the_great_conductors
https://www.ted.com/talks/itay_talgam_lead_like_the_great_conductors
https://www.ted.com/talks/itay_talgam_lead_like_the_great_conductors
https://www.youtube.com/watch?v=psAXMqxwol8
https://www.youtube.com/watch?v=psAXMqxwol8
https://www.ted.com/talks/elizabeth_gilbert_your_elusive_creative_genius

How does the strategy for automation in testing get affected in the
case of testing software in a regulated environment?

There are a few key points about using automation in this context.

The speed, precision, and repetition that tools can offer if used well can
be an enormous benefit.

But before they can be used, every tool in the entire software
development life cycle and development stack needs to go through
basic processes of: vendor qualification and product selection,
installation qualification, operational qualification, and production
qualification. These answer the questions:

a. Who and what are you making/buying, and why are they a good
choice to choose them?

b. Can you install and configure it in your larger system?

c. Does it operate (for the aspects we care about) as they described
it in their documentation?

d. If you run it in your actual production environment, with
production data, and production standard operating procedures -
do you get acceptable results?

e. Keep documentation describing what you did for all the previous
steps and what decisions were made, and by whom; have it at hand
and reviewable by a third party.

All that work is before you use the tool for its intended purpose. Using
the automation tools in these ways and preserving an authoritative and
complete record of results is part of the significant work of being
compliant.

The best use of automated tools that I have seen are hybrid-systems
that combine the strengths of tools with human judgment, where the
result is better than either alone. The tools don’t fully replace the
humans, rather they augment the judgment and evaluation capabilities
of the people.

[This is elaborated in my talk What is Good Evidence?]

You have great experience in the testing field as well as in coaching
teams for Agile. How do you think Agile has affected the testing
profession and the industry perception of it?

Testing won but didn’t realize it.

Left-shift is a win for testing. Continuous integration and continuous
delivery are a win for testing. TDD and BDD are a win for testing. People
with T-shaped skills on teams is a win. Story acceptance criteria is a
win. Frequent demonstration of valuable working software (to your
customers) is a win. The whole team-ness is a win. Development and
management have taken two big steps in the direction of “getting better
incremental information via experimentation about what is really
happening”, aka testing, is a win. But management will frame and
explain it from their own points of view, so Testing doesn’t notice the
win.

The best people and teams I have worked with were T-shaped with one
or two deep specialties, multiple secondary skills, and always a desire
to learn, teach, share, and pair. They tend to identify themselves to
outsiders as “team members”. The formerly-known-as-testers on these
teams all bringing something extra to the party: facilitation skills,
technical skills, UX-design, analysis skills, the ability to influence
management, understanding of the business, relationships to others in
the broad organization, new-eyes -- but they are all not one-trick-
testing-only-ponies.

The best situations seem to disperse the testers into delivery teams,
while also gathering them back together in testing communities of
practice - where they can hone their craft. It is described as Business
Agility in Scaled Agile Framework (SAFe) - a responsive value delivery
structure along with an organizational hierarchy to give some
permanence. [https://www.scaledagileframework.com/business-
agility/]

I remember having a discussion with you around feedback loops and
the system collapse (How Software Is Built - Jerry Weinberg
reference). In the regulated software industry, have you seen the
system collapsing? If yes, what were the reasons, and if no what
protected them?

Run-away systems either collapse or explode. In Managing the Risks of
Organizational Accidents, the author James Reasons cites multiple
examples of critical systems failing - planes crash, banks fail, chemical
plants explode, etc. So catastrophe still happens, just infrequently or
the consequences are contained (and the public don’t notice the near-
miss).

Risk equals probability times impact. Regulated industries are
regulated because by the nature of the work, they generate high
enough potential risk of unacceptable high costs (especially to
innocent and uninvolved bystanders), that society has imposed special
conditions on the producers of those risks.

The people responsible for designing and running these systems have
done a good job preventing single-points-of-failure. They recognize the
critical nature of human communication and have instituted Crew
Resource Management procedures and training. Since failures of the
system are so infrequent, they actively search for and investigate “near
misses”. Often, they discover that the action by the human in the loop
was what prevented a catastrophe. Or not. [https://www.youtube.com/
watch?v=kjLrZ2SDDaU]

[Beyond The Black Box: The Forensics of Airplane Crashes by George
Bibel; Organizational Accidents Revisited, by James Reasons; Normal
Accidents: Living with High-Risk Technologies, by Perrow; Aircraft Safety:
Accident Investigations, Analysis & Applications, by Krause; Crew
Resource Management: Principles and Practices, by LeSage, Dyar, and
Evans.]

I assert the recent Boeing 787 Max catastrophe was just the most
visible outcome of a series of little failures with a root cause of the
collapse of Boeing’s engineering culture. [See the Swiss Cheese Model:
http://blog.enterprisetraining.com/swiss-cheese-accident-causation-
model/]

As our system grows bigger and older, a growing risk is the
combination of: “your system and all its’ emergent properties in the
present is infinitely larger than your head was in the past, or is now -
so you can’t be absolutely sure what is going to happen”; and we are
reluctant to retire anything - maintenance on and extension of
existing systems can be very risky. Especially the low-risk changes.

A tiny little close-to-zero technical enhancement to a text editor on
the Therac-25 was a technical cause of the device unexpectedly
entering calibration-mode, massively irradiating six people and killing
them.

Reading the IEEE account of what happened and why it happened
should make you weep. https://ieeexplore.ieee.org/document/274940

Do you think software testers by nature of their work and skills are
best equipped to help prevent systems from running into collapse
mode or not?

Yes, in the sense that they are at the intersection of where the
questions are first asked, and where the resources and inclination are
to investigate.

Tester’s super power is a belief that “things can be different” than they
were described, and a strong inclination to run an empirical
experiment to support or refute a theoretical analysis.

Testers need to be able to observe without preconceptions the
produced system, the production system, and the human system
doing the production.

Management giving license to testing to comment on all of this is a
political problem for the organization. Often the testing group’s
mission is shriveled because the testers lack the technical skills to
investigate and the political skills to present the results. Or,
management fears that they lack the skills to effect a change in the
organization in response to what testing would find. So the questions
go unasked.

Jim Bullock’s Big Book of Testing elaborates on this idea. [https://
www.linkedin.com/in/rarebirdenterprises/]

As someone who has closely worked in an industry where a small
failure in software can risk the patient’s life, what is your opinion
about the “Good enough quality” notion with which tech companies
are trying to operate with, more and more (apparently)?

I have a few takes about “Good enough quality”:

First, context matters. Second, search for the palmed-cards. Good
enough for whom? For what values of ‘good’? For what purpose? For
what costs? Compared to what? Who gets to decide? Who is impacted?

I think Jerry’s definition of Quality helps untangle the question:
“Quality is value to some person that matters, (at some point in time)”.
Who matters, or doesn’t matter? When do they matter? What does
each of them value? Why do they matter?

Using that analysis, it seems to me that the general use of “Good
enough quality” is about producers deploying what they think is a
minimal viable product in a marketplace sooner versus later, and
getting faster feedback. They have a gold rush model of how the

marketplace works. They believe that consumers will tolerate a
minimum viable product.

The extreme version of “good enough quality” is not really a viable
commercial option in the regulated spaces because the regulator has
the capability to block sales, confiscate your goods, freeze your
business with investigations, fine you or just take your money, and put
you in jail.

Regulators are incepted to search for bad actors and expand their
regulatory power and scope.

Do you think our industry is suffering from a Cargo Cult problem
especially when it comes to deciding about testing culture? (E.g.
Google, Microsoft, Facebook test their product so and so way, let’s
do that because it must be the best thing to do.)

Success begets imitation, and imitation is the sincerest form of
flattery.

The fast follower is a strategy that can work, but to work it has to be
more than buying a template, or adopting the processes of others.
They are not magical items that sit on our shelf.

In agile coaching, this is the “they are doing agile, rather than being
agile” problem. It starts with mindset, accepting “this is my problem to
solve”, and engaging with the problem, including emotionally. It is like
the scene from Bruce Lee’s Enter the Dragon, the actions need
emotional content. https://www.youtube.com/watch?v=sDW6vkuqGLg

If they are Cargo Culting their testing culture, they are focusing all their
attention on the tangible artifacts, aka, the finger - versus the moon.

Choosing a high stakes strategy of half-forgotten, poorly understood,
and badly executed rituals for channeling dangerous forces rarely
leads to successful long term outcomes. But maybe we’ll get lucky this
time.

I get a lot of ‘you must do test cases in a medical / life-critical
environment because of auditors/FDA etc’ - is that true? Were you
able to use other forms of testing documentation other than test
cases which the auditors were satisfied with?

The short answer is, “No, the regulation does not explicitly call out for
a thing called ‘test cases’”.But the longer answer is, “maybe”.

Maybe your company has painted their policies and procedures into a
corner, and “test cases” is the only black-letter-of-the-law way to
comply with your organization’s policies and procedures.

Maybe people can’t conceive of a different way, or can’t convince an
authority in the company to document a limited waiver to allow a
different way. Maybe your regulatory posture and relationship with
customers and the regulator demands that you use test cases.

Maybe you can’t explain why a different way could be acceptable and
address the concerns of those that matter that has concerns.

The most elegant solution I have implemented that survived audit was
to embed inline a short test charter, description, and acceptance
criteria with each requirement/story so they were tightly coupled. All
testing was video recorded, both the tester and the system. All
electronic test data, output, and logs were saved, analyzed, and
preserved. Ditto with physical results.

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

24 25TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://www.scaledagileframework.com/business-agility/
https://www.scaledagileframework.com/business-agility/
https://www.youtube.com/watch?v=kjLrZ2SDDaU
https://www.youtube.com/watch?v=kjLrZ2SDDaU
http://blog.enterprisetraining.com/swiss-cheese-accident-causation-model/
http://blog.enterprisetraining.com/swiss-cheese-accident-causation-model/
https:// https://ieeexplore.ieee.org/document/274940
https:// https://ieeexplore.ieee.org/document/274940
https://www.linkedin.com/in/rarebirdenterprises/
https://www.linkedin.com/in/rarebirdenterprises/
https://ieeexplore.ieee.org/document/607108/metrics#metrics
https://www.youtube.com/watch?v=sDW6vkuqGLg
https://youtu.be/i8he7Rejn5s

ISSUE 01/2021
PLACE YOUR CATEGORY HERE

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

26 27TEA-TIME WITH TESTERS ISSUE #01/2021 SHIFT MAGAZINE ISSUE #01/2017

The key in my opinion was having the tester confidently explaining real time what they were doing, why they were doing it, what system results
they saw including anomalies, and what the meaning of the results was.

Pre-written text cases are wishes for what I hope will happen. What actually happened is bigger than a confirmation-bias “passed” test case
checkbox. I want to see and hear a recording of what really happened. I want to watch the tester synthesizing meaning during the performance
from tacit knowledge, observations, and pre-analysis and preparation. And express it so I can record it and share it with a regulator.

I have also seen traditional agile scrum stories with acceptance criteria pass audit if underneath the Jira ticket was enough evidence. Again, did
your performance generate enough evidence, can you explain the evidence, does the story make sense?

Is it permissible to attempt, do you understand the different stakeholders and their concerns, can you design a test and make preparations, can
you honestly and skillfully execute it, do you address the concerns raised in question #3, do you collect enough evidence of what was done during
the execution, and can you construct a credible story with all of that information that a third party could examine and arrive at a similar
conclusion? If all the answers are yes, then consider it. Like all things, consider asking for help.

You are an inspiration, Griffin. We would like to know more about things that made you who you are today.

I remember a summer weekend in 1975 when I was about ten. My father left me in the new truck alone while he ran into the store - the truck was
off, and dad had the keys. I decided to investigate all the buttons and controls. I remember puzzling out that if I turned on the hazard lights, and
turned on the turn signal - I could briefly energize the circuit to the fan or the radio. I always wondered if I had found a secret behavior that even
the designers were unaware existed.

Activities: Science fiction and military history stories, chess, coin collecting, dogs, skiing, and the stock market, hopefully running again soon.

People-wise: Mom and Dad. Going to a Jesuit high school. Jerry and his work with Virginia Satir. My wife.

And Cindy Halstand, who delivered a very personal message to me, “Don’t be afraid.” I have pondered and tried to heed that message since.

It is the interesting people I get to interact with that is both thrilling and exhausting.

What would be your advice for an experienced tester today and also for someone who is willing to make a career in testing?

Spend the time to work on yourself. Search out and make time to spend time with the best people you can. Partner with others, find a coach. Keep
a journal, exercise, practice mediation, get enough sleep, and eat correctly. Read Becoming a Technical Leader, by Jerry. Read and explore other
fields - how might that be similar to testing? Be kind to yourself - life is about making choices. Practice and get really good at something other
than testing. Consider reading the best and most useful book I have ever read: More Secrets of Consulting, by Jerry.

Work on your Emotional Quotient, and the associated soft-but-difficult-skills. Work on being Congruent, in a Virginia Satir way.

May you grow into the best version of yourself possible, and may you help someone else you care about to do the same.

mailto:contact@teatimewithtesters.com

ROB MEANEY
–

Rob Meaney is an engineer that loves tough software
delivery problems. He works with people to cultivate an
environment where quality software emerges via happy,
productive teams. When it comes to testing Rob has a
deep and passionate interest in Quality Engineering Test
Coaching, Testability, and Testing in Production.

Currently, he’s working as Director of Engineering for
Glofox in Cork, Ireland. Rob is co-author of “A team guide
to testability” with Ash Winter, a keynote speaker and co-
founder of Ministry of Test Cork.

Previously he has held positions as Head of Testing, Test
Manager, Automation Architect and Test Engineer with
companies of varying sizes, from large multinationals
like Intel, Ericsson & EMC to early-stage startups like
Trustev.

One day after encountering yet
another crash in the application I
decided to pair with one of the
developers in order to replicate the
issue. As usual, we followed the
steps I recalled completing before
the application crashed. We
repeated the steps time and time
again introducing slight variations
each time. Eventually after hours
back and forth we replicated the
issue… success at last. Having
replicated the crash the developer
quickly isolated the cause and fixed
the issue. That’s where the story
gets interesting.

Irked by having wasted hours trying
to replicate this issue the developer
suggested that he add a flag to the
application that would record all
interactions and write them out to a
file. Two hours later his changes
were in place and it was ready for
use.

From that point forward those hard
to replicate issues became a thing
of the past. Whenever I experienced
a crash I retrieved the contents of
the log output into a bug report and
the developers could replicate
easily.

This experience taught me two
valuable lessons.:

• The first being that we need to
share the challenges we each face
in each of our roles as a team. In
this case, the developers had not
felt the pain of trying to replicate
crashes themselves and therefore
did not realise this was such a
huge problem. From my
perspective I had no idea that this
problem could be solved so easily.
Being problem solvers when we
expose the developers to a
problem they naturally look for a
solution.

• The second lesson I learned
was that a relatively meagre
investment in Testability can yield
a hugely disproportionate impact
on testing effort. In this case, a
couple of hours of coding saved
me countless hours of trying to
replicate crashes.

Deliberately designing software
with testing in mind

This set a seed in my mind that lay
dormant for a few years until I again
found myself in a situation where
doing great testing seemed almost
an impossibility. I started working as
a test automation engineer in a
newly established software
engineering department for a
hardware company. This was the
companies first time building a
software product and after positive
feedback from the market, we were
tasked with building upon their
initial proof of concept.

As part of onboarding, all 35 people
in the new engineering department
were tasked with regression testing
the software for a forthcoming
release. Everyone in the engineering
department got involved. After
seven weeks of tortuous regression
testing the release finally limped
out the door.

This regression testing exposed the
team to testing challenges that
made the whole experience
exhausting. The test automation in
place was so unreliable it had to be
disregarded. We had to test
everything manually including
checking thousands of product
attributes via a REST API. When we
did find and fix issues it often
introduced new bugs in unrelated
areas of the product. The highly
coupled nature of the code meant
that we had to run regression cycles
for every change we made. This
resulted in people working late
nights and weekends. Within a week
of the release numerous issues
were reported by customers and
morale in the engineering
department plummeted.

Once the dust had settled, the
software architect came to my desk
and asked me a profound question
“How can we make this system
easier to test?”. We talked through
the testing challenges we had
encountered. We formulated an
approach to design our first
component with testability as a
primary concern. I use the
mnemonic CODS to describe the
design approach we adopted. Each
letter represents a design attribute
to consider when designing a
system with testability in mind.~

Pe
op
le

UNTANGLING
TESTABILITY

In this article, I’ll share the story of how my
understanding of testability has evolved
over the last fifteen years. Hopefully, once
you’ve read the post you’ll share my
enthusiasm for all things testability. I’ve
discovered that a whole team focus on
testability is one of few levers in software
delivery that can provide a positive impact
on a team's productivity.

Discovering that developers can make
software easier to test

Like many of the lessons I’ve learned in my
career I discovered the value of testability by
chance rather than design.

As a junior tester, I found myself working on
an R&D project building the world's first
camera safety system. It was a fascinating
project that presented me with a host of
different testing challenges. It was a
complex system consisting of visual sensors,
a physical control unit and a desktop
application for configuring and controlling

the safety system in an industrial
environment.

Of all the challenges I faced the single
most frustrating problem was trying to
reproduce crashes in the application. The
application allowed safety engineers to
monitor industrial environments so that
when workers approached dangerous
machinery it would detect their presence
and slow down or stop. The application
required a sophisticated graphical user
interface that allowed safety engineers to
interact with representations of the
environment.

An unfortunate side effect of this
sophistication was a persistent stream of
applications crashes triggered by even
subtle interactions. The safety-critical
nature of the system meant I had to
investigate and replicate every single
crash that we observed. Each crash took
hours or even days to replicate as often
both the order and location of user clicks
were critical.

28 29TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

~
Pr
oc
es
se
s

1. Controllability - The ability to control the system in order to visit
each important state.

2. Observability - The ability to observe everything important in the
system.

3. Decomposability - The ability to decompose the system into
independently testable components.

4. Simplicity - How easy the system is to understand.

We decomposed the new component into a single, independently
testable service. We added control points that allowed us to
manipulate state and added observation points that allowed us to see
the inner workings of the service. Within twelve months of introducing
this new approach we revolutionised the way the whole software
organisation delivered software. Painful regression testing cycles were
a thing of the past as we now had robust reliable automation that
provided almost immediate feedback on every change. This freed up
our testers to do deep, valuable testing. Teams were working at a
sustainable pace and delivering better software faster.

The transformation was staggering and convinced me that testability
was the key to moving at speed without compromising quality. I also
realised that the huge quality improvements weren’t driven by testing.
They were driven by building relationships and influencing the right
people at the right time to build quality in.

I began consuming everything I could find on the subject of testability.
I studied the content and models of James Bach, Michael Bolton, Anne-
Marie Charret, Maria Kedemo, Ash Winter and Bob Binder to mention
but a few. My CODS mnemonic helped influence the testability of the
product itself but not the environment in which the testing was
performed.

Helping teams capture their testing debt

Around this time I began coaching development teams to improve their
testing practices. I created a simple model called the testing debt
quadrant to help teams capture their testing debt. Testing debt occurs
when a team chooses an option that yields benefit in the short term
but results in accrued testing cost in terms of time, effort or risk in the
longer term. In other words testing debt is the manifestation of a lack
of testability.

The exercise requires the whole team to capture details of anything
that makes their testing activities impractical, slow, complex or
untrustworthy.

This exercise is a simple way of understanding the unique testing
challenges each team faces. It provides a great starting point for
discussing and addressing testability.

The 10 P’s of testability

The more I worked with teams the more the sources of testing debt
began to appear. It was apparent there was a common set of factors
that influence a team's testing experience. I called this model the 10 Ps
of Testability. The 10 Ps provide a lens through which teams can self
assess their testing experience. By viewing the team testing experience
through each of these lens teams can better determine where they
need to invest their improvement efforts.

The 10 Ps has proven to be a hugely versatile model. I’ve used it as a
quarterly testability health check for development teams. I have used
it to create career development plans for testers. Whenever I have to
think about a testing related problem I find myself inevitably thinking
through the 10 Ps.

Why do cars have brakes?

I’ll finish up with an analogy. Consider for a moment why cars have
brakes? Is it to slow us down? Is it to keep us safe? These answers are
correct but ultimately cars have breaks so that they can go fast. Today's
software development teams are moving faster than ever. Our teams
need effective and efficient brakes, we need great testability. Without
reliable testing to slow us down when we’re in danger we’re likely to
crash head first into a wall.

So to summarise encourage the whole team to talk about their testing
experience. Use the models described to identify and understand your
testing challenges and work together to overcome those challenges as
a team.

The American Heritage Dictionary defines
estimation to be:

A tentative evaluation or rough calculation

A preliminary calculation of the cost of a
project

A judgment based upon one’s impressions,
opinion.

As a software engineer, I have a professional
track record that includes the ability to
consistently make and keep commitments.
To consistently make and keep commitments
I have developed the ability to judge the
effort required to complete my work.

Over the years I have used many different
estimation techniques, including individual
and team approaches, analytic models, and
even Monte Carlo methods.

The estimation method that sticks the most
with me is something I call SEBTE, Simple
Experience-Based Test Estimation.

Past Data

When using SEBTE I base my estimate on past
data.

I try to make it remarkably simple to collect
past data. I invest a few seconds per task to
collect the information. I find that team
members actively participate in the data
collection process when the data can be
collected, in a seamless, natural way, as part

of the normal team workflow.

The data I collect is relevant to the team
working on the project. If the team changes,
or if the organization changes, or if the
business changes, or if the technology being
used changes, or if the culture changes, or if
the lifecycle model changes, then I will need
to recalibrate the estimation from scratch.

There are two points at which I collect data.
The planning step and the task completion
step.

During test planning activities I collect data
associated with each task identified. I collect
the SIZE and COMPLEXITY of each task.

SEBTE: A SIMPLE EFFECTIVE
EXPERIENCE-BASED TEST
ESTIMATION - PART 1

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

30 31TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

About SIZE

I usually break SIZE into three levels, based on the number of factors,
variables, or conditions the tester will need to consider when
implementing the task. I define size as SMALL, MEDIUM, and LARGE.
One way to define SIZING a testing task could be:

SMALL: The task will consider fewer than 5 factors

MEDIUM: Task will consider between 5 and 10 factors

LARGE: The task will consider more than 10 factors

Teams must have a simple clear definition of SIZE. I urge my customers
to collect a series of examples of recently completed tasks that
illustrate different SIZES. That way when trying to SIZE a new task the
team can look at similar recent tasks for inspiration. Although the
number and range of SIZE are up to you, I try to keep it to three levels.
To me, this is just a simple rule of thumb that has worked well over the
past 30 years or so.

About COMPLEXITY

During the planning session, I like to consider the complexity of the
testing based on the nature of the changes to the software under test.
As with SIZE, I try to define three simple levels of COMPLEXITY named
something like SIMPLE, TYPICAL, and COMPLEX.

I might define these complexity levels as follows:

SIMPLE: There has been no change to the program logic

TYPICAL: There has been some change to the program logic or new
logic has been added.

COMPLEX: The underlying code is new or has been redesigned or
refactored.

It is important that the team have a simple and clear definition of
COMPLEXITY. As with size, I urge my customers to collect examples of
recently completed tasks that represent examples of SIMPLE, TYPICAL,
and COMPLEX tasks.

About TASKS

I have been using the term task quite a bit so far. I call this estimation
technique task-oriented because it applies to testing activities which
can be divided into a series of tasks.

I consider testing tasks as a chunk of work done by a single tester to
learn something about the software being tested. In my experience
testing is about learning. I define testing tasks as activities in which the
tester is endeavoring to learn something about the software under
test.

I identify testing tasks when planning and as I am testing. The task list
of a testing project is dynamic and evolves. As I learn more about the
system under test, I identify more risks that may be important to
explore. Indeed, the best testing ideas I come up with seem to be
generated when I am actually testing.

As a rule, I use short phrases to describe testing tasks. The task
description is an explicit statement of what I am interested in learning
about. I also am incredibly careful never to use the word test as a verb
in a description of a testing task. I will never have a task that says, “test
feature ABC”, instead I may have one or more tasks explicitly describing
what I want to learn about feature ABC. “Confirm feature ABC can
processes foreign and domestic transactions” is an example of a task
description I might use. I try to keep task descriptions to under 160

characters of text. This is a rule of thumb I derive from my experience
over the years using 80 column CRT terminals. I could not always get
my testing task descriptions to fit on one line (80 characters) but I
could almost always get my testing task descriptions to fit on two lines
(160 characters). Today testers would probably prefer the metaphor of
a testing task is tweetable.

I generally encourage a work break down granularity to the level of
tasks that will require anywhere from 1 hour to a couple of days if the
feature works well!

Some Popular Types of Testing Tasks

Here are some of the types of tasks I identify:

Capabilities

Test tasks based on what the application is supposed to do. Capa-
bility-based tasks focus on confirming that an application does what it
is supposed to do. Requirement and functional specifications can be
used as a source of capability-based testing tasks.

Failure Modes

Failure mode test tasks are “what if” questions. I ask “what if”
something breaks. Failure mode test tasks are often inspired by how a
system is designed. I look at all the objects, components and
interfaces in a system and ask what if they break or exhibit some sort
of unanticipated failure. Failure modes can be the result of harshly
constrained system resources or forced error conditions.

Quality Factors

Quality factors are characteristics of a system that must be present for
the project to be successful. Quality factors are the “ilities” including
usability, reliability, availability, scalability and maintainability, Quality
factor test tasks often involve experiments to determine if a quality
factor is present. Examples include performance, load, and stress
testing.

Usage Scenarios

A usage scenario test task challenges whether a user can achieve their
tasks with the software under test. To paraphrase the Kennedy
inaugural address – we ask not what the software does for the user but
rather we ask what the user does with the software. Usage scenario-
based test tasks involve identifying who is using the system, what they
are trying to achieve, and in what context.

Business Rules

Business Rules are an asset. Business rules can be an excellent source
of testing tasks for transaction-oriented information technology
systems. Decision tables and process flow models can be a basis for
powerful test tasks which can make or break a company. Testing
business rules is not just about finding bugs, it is about validating
systems to implement core values.

Combinations

When running transactions there are often many factors that influence
the processing approach taken by the application. Each factor, or
condition, may have several different values and they interact with
each other to impact the behavior of underlining algorithms and
processing in the system under test. Varying combinations and
permutations of values of variables can help identify bugs related to
how multiple factors are processed with a reasonable number of test
cases.

States

When testing a stateful application a state model helps me come up
with test tasks. For example, a transaction goes through many states
of existence from creation through approval, payment, and delivery. I
use state models to identify test tasks such as getting to states,
exercising state transitions, and navigating paths through the system.

Data

Data is a rich source of testing tasks. Data flow paths can be exercised.
Different data sets can be used. Data can be cooked up and build from
combinations of different data types. Stored procedures can be
verified. Test tasks can be developed to create, update, and remove
any persistent data.

Environments

Exploring how the application behaves in different operating
environments is a rich source of testing tasks. Environment test tasks
can relate to varying the platform, hardware, software, operating
system, locale, co-resident third-party software, and locales.

Internationalization and Localization

When products are developed for the international markets a lot of
risks come up as part of internationalization and localization.

Internationalization enables products to support multiple languages
and cultures.

Localization is creating a locale-specific version of the product.

There are enormous risks along the path to addressing the global
market related to processing data, business rules, and literally the
complete computer-human interface.

Unit Test

Unit Test tasks are derived from the technical work programmers do to
build the software being tested. Unit test tasks can look at the
structure of the software and the interaction between components,
modules, objects. Methods, classes, stored procedures processes and
other elements used to construct software.

Test Oracles

Test Oracles are strategies to assess correctness. Many different tools
and techniques exist to help assess correctness. Some oracles are
documents such as classic IEEE 830 style requirement documents.
Other oracles are problem-solving heuristics or rules of thumb that
guide domain experts. The method of assessing correctness may
suggest testing tasks that can confirm or contradict the hypothesis that
the application is working correctly.

Creative Tasks

Creative test tasks come from many sources. I often use deliberate
lateral thinking techniques (For example Six Thinking Hats from Edward
De Bono) to come up with cool and effective tests. I also use
metaphors to come up with testing tasks. I wonder what would happen
if the Tasmanian devil used the system? Perhaps a Dr. Seuss story
inspires some testing tasks? Perhaps Great detectives? Movies? Pretty
much anything goes here.

Path Test Tasks

Many applications have a series of capabilities that can be used in a
wide variety of patterns, the pathways users use to navigate through a
system are a great source of test tasks. There are also workflow paths,
data flow paths, control flow paths, and many others. Paths can be a
powerful source of test tasks to help identify problems in which one

feature interferes with another.

Boundary Test Tasks

Boundary bugs continue to show up in software projects at points
where extreme values for variables are selected or at the extreme
minimum and maximum points of structures, Boundary test tasks can
be suggested from written requirements or any objects in which two or
more people must interpret the same technical descriptions.

Automation Test Tasks

Automation is not only a toolset to help in the creative execution and
organization of tests. Having tools available to support the testing
effort in and of themselves can be a source of test tasks. Imagine what
testing you could do with the right tool. This section explores
generating test tasks from test automation tools.

Regression Test Tasks

Regression testing dominates continuous integration servers in many
agile projects. So much energy is dedicated to making sure we didn’t
accidentally break something when we change our code base for
whatever reasons. How our codebase behaves in response to change
is the topic of regression testing. How can regression testing be
implemented, and what should be included in regression testing? This
remains an open question and a remarkably interesting source of test
tasks.

Collecting Task Data

Whenever a task is completed, I capture the amount of effort which was
required to implement the task. I try to make this remarkably simple
and done in the same system used to manage work. If I am in an agile
team, I ask the Scrum Master to collect the data during the stand-up
meeting.

So, the data I have collected for every completed task includes only
three simple elements:

SIZE collected when the task is identified.

COMPLEXITY collected when the task is identified.

ACTUAL EFFORT when the task is completed.

I place this data in a spreadsheet. One row per data set. The unit of
effort I choose to use in the project from that this example is derived
is the number of sessions of testing required to complete the task. I
defined a session of testing as 90 minutes, plus or minus 10 percent,
of uninterrupted work on a specific task. During a session, the tester
is not distracted by email, social media, or any other type of
interruptions.

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

32 33TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

You will note that there are exactly nine types of tasks categorized by SIZE and COMPLEXITY.

To compute the estimate for each task type I use the Pert Estimation Formula. I learned the Pert Formula in my earliest days as a professional
software engineer in the 1980s. The Pert Estimation Formula is taught as part of project management in general and in included in the Project
Management Institute body of knowledge PMIBOK. Pert Formula is simple and practical. It makes use of what are known as three-point estimates.
In Pert the estimated effort of a task is computed based on the optimistic (minimum) effort required, the pessimistic (maximum) effort required,
and the typical (mode which is the most common) effort required. I rely on spreadsheet table look ups to derive this information from the
collection of past data.

Estimating a new task

When a new task is identified I can look up the estimated effort required if I know what the SIZE and
COMPLEXITY values are. In the above example if a new task is identified with a SIZE of LARGE and a
COMPLEXITY of TYPICAL then I would estimate the effort required to implement the task as 7 sessions of
testing.

Using Simple Experience-Based Test Estimation

A couple of years ago I was honored to receive an email from a client who shared their experiences using
SEBTE for over 10 years of projects at a major financial services company. The method stood the test of
time being applicable across dramatic changes in lifecycle models and technologies. The method was
trivial to implement and was easily recalibrated whenever context factors changed, or teams were
restructured or restaffed.

When Not to Use Simple Experience-Based Test Estimation

I have only been able to apply SEBTE to work which can be broken down into tasks related to what the
tester is being asked to learn about. If I cannot break the project down to tasks, then I cannot use SEBTE.

What Simple Experience-Based Test Estimation does not do

SEBTE does not estimate elapsed time. SEBTE does not estimate capital cost. SEBTE does not estimate
test coverage. SEBTE does not estimate bug counts. SEBTE does not estimate team size.

Can Simple Experience-Based Test Estimation work with more than two factors?

In most projects I use two factors for estimating tasks, namely SIZE and COMPLEXITY. I have on some
projects used additional factors when it made sense and found SEBTE to be quite extensible. A specific
example was on an internationalization project where the factors influencing the effort included SIZE,
COMPLEXITY and MULTILINGUAL DATA HANDLING. I estimated and tracked over 430 tasks with this method
and was able to accurately estimate to go effort as the project evolved.

How can a team use Simple Experience-Based Test Estimation?

In my experience the best way to get great test estimates is to consult a group of people who are involved
in the project but who have varied roles and diverse perspectives.

I will usually start alone and build a list of testing objectives which will become tasks. I invest about
ninety minutes in this activity and derive the testing objectives from sources available to me from the
product requirements, design, past similar projects and even the source code.

I then share the list with different individuals from diverse roles such as programmers, testers, product
managers, project managers, support staff, system administrators, customers, and users. I ask them to
read through the list and come up with similar testing ideas based on their own personal experience and
knowledge. Generally, I get a great set of ideas which can easily be ranked and sorted and turned into
testing tasks.

Using Simple Experience-Based Test Estimation in turbulent projects

I consider a project turbulent when there are many and frequent changes to context factors. When
Business, Technology, Organizational and Cultural factors change frequently it is important to revise
estimates.

In turbulent projects you will need to update the tasks. I urge you to estimate testing effort on project
elements in a short time horizon. For example, in one sprint you can estimate all the testing tasks for
the stories being implemented but you should probably not estimate beyond the sprint boundaries since
that is a moving target.

I have used SEBTE to estimate tasks combined with risk-based prioritization. For risk based prioritization
the impact of the testing task on business and the likelihood of failure are used to prioritize testing
activities. I sort activities by decreasing priority. I can then sum the effort required for all tasks sorted
by priority to see how much testing we can complete on a fixed budget. This provides me with useful
information to help advocate testing to project stakeholders and also shows different alternatives as to
how the testing budget can be spread across product risks.

ROB SABOURIN
–

Rob has more than thirty-nine years of
management experience leading teams of
software development professionals.
A highly-respected member of the
software engineering community, Rob has
managed, trained, mentored, and coached
thousands of top professionals in the
field. He frequently speaks at conferences
and writes on software engineering, SQA,
testing, management, and
internationalization.
Rob authored I am a Bug! the popular
software testing children’s book. He
works as an adjunct professor of software
engineering at McGill University; and
serves as the principal consultant (and
president/janitor) of AmiBug.Com, Inc.
Contact Rob atrsabourin@amibug.com

TO BE CONTINUED IN NEXT ISSUE

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

34 35TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of
time.

Over the last ten years, Tea-time
with Testers has published
articles that did not only serve
the purpose back then but are
pretty much relevant even today.

With the launch of our brand
new website, our team is working
hard to bring all such articles
back to surface and make them
easily accessible for everyone.

We plan to continue doing that
for more articles, interviews and
also for the recent issues we
have published.

Visit our website
www.teatimewithtesters.com
and read these articles.

Let us know how are they
helping you and even share with
your friends and colleagues.

If you think we could add more
articles from our previous
editions, do not hesitate to let us
know.

Enjoy the feast!

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

36 37TEA-TIME WITH TESTERS ISSUE #01/2021 SHIFT MAGAZINE ISSUE #01/2017

https://www.teatimewithtesters.com

Performance
matters

Do you feel confident your
Mobile App performs well
enough to not only meet your
company’s expectations but also
your customers’ expectations?

Not all Mobile Apps have the
same architectural design
despite what some believe.
Then, does it make sense to
provide the same test coverage
to all types of Mobile Apps? If
you think it does make sense,
ask yourself, “am I providing
maximum test coverage
efficiently?” For example, would
you test a communication
Mobile App like LinkedIn, Twitter,
or Facebook the same way as
you would an eCommerce app
like a food delivery service?
Would the same set of tests for
a video streaming app be
applicable to a game app or an
eCommerce app? To be efficient
in your test coverage, I suspect
you will need to understand
what types of performances are
important to your company and
to your customers/users. Each
Mobile App type I refer to is
architecturally defined as a
hybrid app, which means usage
of a Web server as well as the
device’s features like a camera,
audio own storage.

Performance testing is an
umbrella type of testing. I break
down Performance Testing into 4
concepts:

1. Speed/timing

2. Load

3. Stress

4. Endurance

These concepts can be defined
in different ways depending on
the application under test.
Define your needs of
performance based on these
concepts. Your Mobile App may
display behavior concerns for
your company but may not be
seen as a problem by your users.
Testers need to decide to
balance out the type of tests
applied to successfully launch
the app for usage and meet your
company’s mission.

Let’s examine each type of
Mobile App and then discuss the
types of most appropriate tests
which provide efficient and
maximum test coverage.

Speed/Timing or
Response Tests

Communications apps rely on
transactions that primarily fall
on the responsibility of the
webserver. When Mobile Apps
utilize the device’s features like
a camera, audio, notifications,
storage, then speed becomes a
factor. Depending on the
criticality of speed/timing is to
the user response of these
features existing on the device to
communicate with the app, a
speed test becomes a vital test
where device features are
utilized interacting with the
communication app. For
example, being able to take a
photo you took is not as timing-
dependent to post on LinkedIn
or Twitter as it would be to
loading that photo to a medical
app where you are sharing the
photo which will be sent to your
doctor’s office. How fast can the
app respond to loading a photo
into the app to be able to be
sent would be the performance
test? Setting up the
appropriate condition to
test that response time
may or may not be
important to your
app’s usage. Testers
need to make
decisions based
on what is most
relevant to the
c o m p a n y ’ s
mission for the
Mobile App’s
intended use as
well as how
r e l e v a n t
performance is to
customers using the
app. If the Mobile App
is communicating
statuses in real-time
where users rely on those
statuses, timing then becomes
time-dependent therefore, the
speed or timing tests will
become more significant.
Speed/Timing tests materialize
based on context which is why
testers need to recognize both
the company’s goals and the
users’ goals for the app and
prioritize their testing activities
accordingly.

E-commerce apps like a food
delivery service have a few areas
which require speed/timing
tests. In addition, there might be
some areas that require fast
communicating, the speed at
which search features exhibit
results, calculating the total cost,
or verifying payment method are
all accessing a webserver
performing those functions.

JEAN ANN HARRISON
–
Jean Ann has been formally involved in
testing software applications and systems
for 20 years and been a mobile systems
tester for 14 years. The mobile systems
testing involve law enforcement system,
medical device systems, and commercial
apps including healthcare apps, games,
financial apps, weather apps, business
administration apps. Mobile apps were to
be used on proprietary devices,
smartphones, and tablets. Jean Ann has
been a consistent speaker at various
testing conferences for 9 years, a
contributing author in published books,
articles, and webinars. Jean Ann is an
active mentor to many testers and leaders.

FEELING
GOOD
ABOUT
YOUR
PERFORMA-
NCE TEST
COVERAGE?

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

Therefore, the Mobile App tester will rely on the web server tester to
test those functionalities. A Mobile App tester can also conduct web
server performance testing although performance testers typically
concentrate on webserver testing only. If the Mobile App takes
advantage of the audio on the device, does the Mobile App respond to
the audio commands within an expected rate? Does the Mobile App
utilize Notifications? A food delivery service can include notifications
like expected delivery time, the shopper is communicating with the
user within the app itself, confirmation of the order placed which are
all important to the customer. Is the notification timely or is that
notification lagging behind? What is the expectation by the customer
and by the Mobile App company?

Gaming apps pose a lesser requirement when talking about speed/
timing. Game apps are typically played by users accessing a web server
and are not reliant on the mobile device to provide transactional data.
Speed tests will be centered on the transactional speed of the
webserver which means testing the webserver and not the Mobile App.
Typically, web server testing is done by a different type of tester
possessing certain skills while a performance tester has other specific
skills to conduct performance testing on a webserver very similar to
performance engineering. To learn more about webserver testing, I
suggest following Performance Test Academy on Twitter and PerfBytes
podcasts site are great places to start.

Video streaming apps are a combination of E-Commerce and Game
Apps when talking speed and/or timing testing depending on the app.
All of the content available to stream originates from the webserver.
Does the video streaming app send notifications about available or
changed content based on the user signing into an account? Does the
app intend to have a functionality where downloading content is a
primary or even a secondary function for the app? Paying close
attention to the app’s intended usage as well as meeting the
company’s mission for the app can dictate the types of tests prior to
release.

Load Testing

Communications apps and testing the load can have different
meanings depending on the Mobile App’s objective. When
performance testers talk about “load,” they are concentrating on the
load or number of concurrent transactions accessing the webserver.
But the load on a mobile device can refer to concurrent transactions
the mobile device’s CPU is accessed. If the user has too many Mobile
Apps in use at the same time and running in the background, the load
on the CPU can create annoying problems or worse, crashes. Knowing
the limitations of your app’s thresholds is a vital test. Developers can
provide the limitation of the CPU load on a mobile device but they also
may not know what that threshold is, due to the many different types
of devices. However, with a typical communication-type app, the load
tends to be on the webserver and not on the device CPU. If the app
is a safety-critical app, the tester should try to explore the threshold
value to avoid a disastrous event. Checking with stakeholders might be
a solid approach to assist in the planning of appropriate test decisions.
To be efficient, project teams need to communicate early in the project
regarding the intended design of the app and testers need to be
involved as part of the project team.

E-commerce apps and Gaming Apps: Load Testing puts a very little
load on the device’s CPU. Unless the Mobile App requires downloading
data, images, video directly saved onto the device, this type of test is
not applicable to Mobile App testing.

Video Streaming apps pose an interesting challenge for Mobile App
testers. Many apps we currently use for streaming require connectivity
to a webserver. However, some video streaming apps allow the user to
download the video content, making use of the device’s CPU. If the
video content infringes on the CPU to the point of not allowing other
apps to run in the background, the functionality of that Mobile App will

prove to be unsatisfactory to the user. Does the Mobile App allow
notifications from other apps while a video is playing? Can the video
be paused and not place an unforeseen load on the CPU? These tests
might be considered important information affecting the use of the
Mobile App.

Stress Testing

Communications app: Stress testing is testing the reliability and
stability under normal and abnormal conditions. Having a known set
of thresholds after setting a baseline of values although developers
can set thresholds and communicate those values through
documentation or verbal communication. Because communication
apps themselves access data to and from a web server, there is little
stress testing required. However, some conditions may be required to
be tested. Can the app send only a certain-sized image taken by the
device’s camera? If the image is too large, how does the app
communicate the problem? Does the app crash or recover? Is there a
limitation of notifications it can display either from within the app or
from other apps? Do the Mobile App’s notifications step on other
Mobile Apps? (Note: this was an actual bug I found with one
communication Mobile App stepping on other apps which is why this
question needs to be asked.) Depending on the criticality of the
purpose of the Mobile App, these tests might all be vital testing.

E-commerce and Gaming apps: Stress testing can involve downloading
the app to be saved onto the device. If the app is too large to be stored
on the device, how does the app recover? Was there a warning to let
the user know they need more free space on the device? Gaming apps
in particular can be large with heavy graphics so the app should have
a built-in check during the installation of the Mobile App and warn the
user if the app is too large. If downloading is started but cannot
complete, how does the Mobile App respond to the adverse condition?
Will it crash the device with no explanation of the circumstances of the
crash? Another type of test to consider, when the connection to the
webserver has been lost, how does the Mobile App react? These types
of apps tend to have advertisements pop up during use especially the
game apps. But those transactions, along with storing the place where
the user is while playing the game (or placing an order), are done
through the webserver. When there is a loss of connectivity, does the
app maintain the location where the user is, in using the app?
Example: While playing the game, is the score saved locally on the
device, and then when connectivity is returned, does the app update
the data? Or does the app become unusable? With games, stoppage
of game playing might anger gamers not being able to continue. These
tests should be a standard stress test for any Mobile App and can be
a fairly quick test to set up.

Video streaming apps can only allow downloading the content,
allowing the user to view it completely locally on the device. This is the
only type of video content viewing app that would require stress
testing. Streaming content would involve access to the webserver and
not have any impact on the device. Stress testing for the video content
storage and playing type apps requires pushing the limits of the
storage capacity, the type of image files to be played, and testing if that
content file type is supported or not within the app. Will the app
recognize if the image file type is playable, provide an error message if
it’s not compatible, or simply crash the app? Evaluate whether the
impact of these tests would be important for the intended use of the
app.

Endurance Testing

Endurance performance testing of Mobile
Apps doesn't come much into play for hybrid
apps and definitely not with mobile web
apps. This is because these types of Mobile
Apps rely on transactions between the
device to a web server. Endurance type tests
need to be done on the webserver and not
on the downloaded Mobile App.

E-commerce apps do not force the user to
download inventory on their devices as this
would be considered an outdated design
type. Endurance tests for E-commerce
testing will be done on the webserver and
not on the Mobile App on the device itself.

Gaming apps have the ability to sustain
without connectivity and then once
connectivity is reestablished. Did the
gameplay data endure reconnecting to the
webserver where the gamer could continue
to play the game with no interruption is
apparent? An example of this type of game
is a casino-type app where the saved coins
earned from play when not connected are
updated appropriately to the web server
once reconnected. Losing their winnings
would not make the gamer happy once there
is a reestablished connection with the

webserver. Specifically, can the user play the
casino app for hours, stop play, exit the app
and then start the app again without
connectivity? Can the game then be updated
once connectivity is reestablished? Would
there be any loss of data on either the app
itself or once the data is transferred?

Video streaming apps also rely on
webservers to provide content. If the app
allows the downloading of the content,
testers should then test the ability to
download content and set up some
endurance-type tests. One test could be:
play content, replay content, maybe on
repeat to ensure there are no crashes. If the
app stops playing after one completed
content but is not available for further
playing, it could create a negative reaction to
the company’s brand. Testers and
stakeholders need to examine the risk of a
poor result the conditional test is not tested.
How extensive would the impact of not
testing the conditions of endurance to the
Mobile App be?

Mobile App performance testing requires
testers to discern risk for a poor
performance observed by the user. Testers
need to understand what types of
performance tests are appropriate for their
type of Mobile App, the purpose of that
Mobile App, and the Impact of not

conducting certain tests. Do you test only to
meet the company’s intended design or do
you concentrate on tests meeting the user’s
expectation? Testers and stakeholders need
to prioritize what is the greatest impact
overall, but testers need to evaluate a user
impact as well as their company’s brand.
Each impact is a vital discussion point with
stakeholders within the project.

“ Do you test only to meet the
company’s intended design or do
you concentrate on tests meeting

the user’s expectation?

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

40 41TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://twitter.com/HowToLoadTest
https://www.perfbytes.com/
https://www.perfbytes.com/

ISSUE 01/2017
PLACE YOUR CATEGORY HERE

ISSUE 01/2021
PROCESSES

42 43TEA-TIME WITH TESTERS ISSUE #01/2021 SHIFT MAGAZINE ISSUE #01/2017

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

Automation is considered an essential skill in
many software testing positions. Yet it
remains very hard to judge someone’s
automation experience by conversation
alone. If you think it is important to
demonstrate your automation skills, why not
invest some time into creating a test
automation portfolio. Use it as a chance to
show off your existing skills, or grow your
technical prowess by conquering something
new. It is rare that something which could
have such a positive effect on your learning,
self development and career progression can
be entirely free, and the payoff could be well
worth the time investment.

What is a Test Automation Portfolio?

In 2019, Angie Jones authored an article titled
“10 portfolio projects for aspiring automation
engineers”. Angie notes that front end
developers, UX professionals and others in
technology are asked to provide examples of
their work when trying to secure a new job,
but as yet this isn’t commonplace for testers.
A test automation portfolio fills that gap, by
giving you an opportunity to demonstrate
your skills, and have some fun in the process.

Why are they a good idea?

Have you ever been in an interview where
people ask “can you tell us about your
automation experience?” or “Tell us how you
would automate a login page”? Wouldn’t it be
great to have a ready made response, to point
them to some actual code you’ve written that
demonstrates your point? Think of how much
more powerful a persuader this would be to
potential employers than a verbal answer. As
someone who has done a lot of interviews

over the years I know it would blow my socks
off.

Future career success aside, it is a widely held
view that the best way to learn is by doing.
Getting your nails dirty by coding an
automation framework, and working your way
through those gnarly issues (and there
always are gnarly issues) could really help
you to move from beginner to intermediate
to advanced level at a much faster pace than
watching an online tutorial can. Plus you may
be able to quickly transfer what you learn
back into the frameworks you use in your day
job, or indeed use your new code as a
working Proof Of Concept (PoC) to encourage
adoption of a new tool or technique at work.
Nothing speaks to people like seeing
something in operation - theory alone simply
does not have the same powers of
persuasion.

Most importantly, if you leverage the
incredible resources online such as Test
Automation University, Ministry of Testing or
YouTube, you can do this without spending a
single penny. Certifications can cost
thousands these days, and I’d put a well
written test automation portfolio on a par
with some qualifications, and above others,
when it comes to their potential impact on
your future software testing career.

A GUIDE TO TEST
AUTOMATION
PORTFOLIOS

BETH MARSHALL
–

A passionate QA advocate, Beth has been working in QA
for the last 13 years, most recently as Senior Test Lead at
Edtech company Smoothwall, based in Leeds, UK. Recent

projects have seen her co-host a software testing
bootcamp, and she also loves to collaborate with folk in

the wider testing community.
Many moons ago, a colleague handed Beth a well

thumbed issue of TTwT, and she remembers it vividly as
the first time she was made aware that her “job” was

actually a “career”. She is both delighted and honoured to
be part of the 10th anniversary edition.

You can check out Beth’s blog at beththetester.com, she
Tweets @Beth_AskHer, or connect with her on LinkedIn.

TL :
DR

mailto:editor@teatimewithtesters.com
https://techbeacon.com/app-dev-testing/10-portfolio-projects-aspiring-automation-engineers
https://techbeacon.com/app-dev-testing/10-portfolio-projects-aspiring-automation-engineers
https://beththetester.com/
https://twitter.com/Beth_AskHer
https://www.linkedin.com/in/beth-marshall/

OK, that sounds pretty cool. Where should I start?

It’s tempting to dive straight in and start creating that GitHub Repo, but
my advice would be to plan plan plan. Question why you want a
particular project in your portfolio, let those principles drive everything
that you select to go in it and set an achievable goal for yourself.

Ask yourself:

What is the driver for creating this portfolio?

Is it to demonstrate your incredible technical prowess to future
employers?*

Is it to provide a Proof of Concept for a new tool to use where you
work?*

Do you want a suite of examples you can use when creating
online demo’s or tutorials on YouTube?

Do you want to compare different versions of the same library /
language side by side to assess new functionality?

The possibilities are infinite - what level of breadth and depth do you
want to go to?

Perhaps you want to deep dive, and go into a great level of detail
for a single tool/language/layer of the stack.

Perhaps you prefer to be shallow and broad, and give examples
of a variety of different things to show you aren’t just a one trick
pony

Are you motivated by deadlines? If so, add one of those in too - just
make sure it’s realistic. My portfolio took me 4 months and I’m still
tinkering with it.

*if so, bonus points for creating a project based on their product, or
website. And if anyone lands a job/gets a tool adopted because of
following this advice, 1000% reach out and let me know, because
that’s a win that needs to be celebrated.

From my experience, I’d also suggest starting with something easy,
that you feel pretty confident achieving. Once you feel like you’re on
a roll you can tackle the more challenging things. I deliberately left
Selenium Webdriver 4.0 until last for this very reason - that way I was
in way too deep to quit by the time I got lost installing Chromium
browser driver and had to push through that pain barrier.

Can you give me some examples?

In my blog series, I set about creating a goal which included
frameworks throughout the stack. I wanted to try different tools, and
use different sites to practice against.

Beth’s Test Automation Portfolio Outline:

• C#/Java solution for web browser automation for Opencart using
Selenium WebDriver

• JavaScript solution for web browser automation for Opencart
using Cypress

• API testing for Restful Booker using Postman

• CI integration testing using TAIKO

• UIpath to do RPA testing reading from a sql server express
database

• BONUS: NUnit Testing of Restful Booker

Tips

1. Set a goal. Decide in advance what you want to do and do your
best to stick to it.

2. Use Github to host your completed code - use a private repo or
share with the world

3. Take advantage of free online resources such as Test Automation
University, they often provide example code to get you started.

4. Ask for help if you get stuck - reach out to the wider testing
community who are always happy to support.

5. Brag about it! Tell others about what you are doing, maybe even
try to collaborate on a project, the world is your oyster.

6. Enjoy it! If this starts to feel monotonous and like a chore, switch
to a different project or leave it alone for a while. Automation can be
a process of trial and error, and immeasurably frustrating, but
getting over those humps is a great feeling and worth the
perseverance.

7. Reward yourself! Every time you feel like you’ve made a
breakthrough with the portfolio, give yourself a pat on the back, or
treat yourself to something nice - the carrot is, after all, infinitely
better than the stick

ISSUE 01/2021
PROCESSES

ISSUE 01/2021
PROCESSES

44 45TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

Once you
feel like
you’re on a
roll you
can tackle
the more
challenging
things.

https://beththetester.com/2020/08/03/creating-a-test-automation-portfolio-episode-1-setting-a-goal/
https://wordpress.com/post/beththetester.com/337
https://wordpress.com/post/beththetester.com/337
https://beththetester.com/2020/10/06/creating-a-test-automation-portfolio-episode-5-ui-web-browser-testing-using-cypress/
https://beththetester.com/2020/10/06/creating-a-test-automation-portfolio-episode-5-ui-web-browser-testing-using-cypress/
https://wordpress.com/block-editor/post/beththetester.com/271
https://wordpress.com/block-editor/post/beththetester.com/225
https://beththetester.com/2020/08/09/automation-portfolio-episode-2-rpa-testing/
https://beththetester.com/2020/08/09/automation-portfolio-episode-2-rpa-testing/
https://wordpress.com/block-editor/post/beththetester.com/131

ISSUE 01/2021
PRODUCTS

ISSUE 01/2017
PLACE YOUR CATEGORY HERE

46 47TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

~
Pr
od
uc
ts

I just spent some time googling.
I was trying to find who and
where created the first-ever
automated test. No luck. The
same goes for the year when it
happened. Most of us just agree
that automation has been there
in one or another form for a long
time. I would say more than
twenty years. Mass adoption of
agile methodology triggered
mass adoption of automation so
I would say that we have been
actively automating for the last
ten-fifteen years. It is like ages in
the software industry.

Some would expect that by this
time we have mastered test
automation but the reality is
different. Many organizations are
still struggling even with unit
testing. Flaky functional and
end-to-end tests are the
constant topics of discussions
between test engineers and the
leadership teams, test
maintenance takes time and
dedication at the same time
causing a lot of pain. There is
always not enough coverage and
while there are builds that take
hours because test execution
lasts hours.

Part of this is caused by the
growing complexity of software
under test. Many new technolo-
gies emerged in a very short
time. First, we got cell phones,
then wearables and IoT devices.
We have containers, we have
clouds, AI and Big Data. All of
this needs to be tested and
testing tools always stayed a
little bit behind, to be honest.
Many companies built their in-
house automation tools and
frameworks to compensate for it.

Something changed a couple
years ago. I believe now we are
reaching a new age of automa-
tion where automation tools are
popping up on the market
almost every month. I’d better
say they are not exactly new, but
newer. Most of them have been
there for a few years and just
recently became mature enough
to be considered as a
replacement to old technologies.
I would not use a tool that has
two customers and is six months
old because automation is a big
commitment. I don't know about
you but I don't want to invest in
something that might be gone in
another year. Even if it looks very
good.

”What lies beneath the
cool tools?

Iryna Suprun shares her analysis of automation

tools in the market that is bursting with buzzwords.

OF A NEW
AGE TEST
AUTOMATION

PERILS
AND
PITFALLS

These new(er) tools are all “industry-leading”, “game-changing”,
“trusted by many”, “AI-based”, “future of testing”, “fully autonomous”
and there are many of them. I think we will see a lot of mergers and
acquisitions in this industry soon (it already started to happen). We will
end up with a few solid products, but now it's hard to see who will win
because so many things can go wrong and right.

Today I would like to talk about tools that use the most popular
technology nowadays - AI (Artificial Intelligence). There are many AI
testing tools. The maturity of these tools, the usability, and the
promises delivered vary. They use Supervised Learning, Unsupervised
Learning, Reinforcement Learning, and Deep Learning algorithms to
automatically generate tests, make test creation easy, and decrease
maintenance time. Almost every test automation tool on the market
nowadays uses AI in one or another form or claims it does.

There are two main categories of these tools. The first category uses
AI/ML in a supporting role. AI algorithms in these tools are designed to
ease tasks that are hard to do manually due to the physical limitations
of human beings. They also help with testing where before some
subjective measurements were used (audio/video quality for example)
and turning these subjective ratings into objective numbers. Test
authoring in this category usually is done with heavy user involvement.
Users either need to write code or record the test. The second category
of testing tools uses AI for test generation. They use the software under
tests to create tests, it can be done through analyzing code or
production logs, gathering clickstream of actual users, traversing links
in the app.

I think that AI/ML pays the most in the following testing tools features:

1. Test recording. Although many traditional testing tools also
provide the ability to record tests they do not collect data during
the recording process. The number of data points for a single UI
element can reach 30-50 entries. This info is used later to improve
the stability and maintainability of the tests.

2. Autonomous creation of automated test cases based on usage
traffic from real users, logs, and application functionality or code
analysis.

3. Self-healing. Automation maintenance is the most time-
consuming, never-ending task. AI tools help reduce maintenance
time by making automatic adjustments to the tests if software
changes. Although in most cases, it is still the job of the QA
Engineer to decide if this change is acceptable or not.

4. Converting test documentation to automation. It is a very useful
feature if you already have existing documentation and it is
created in some structural, formal way.

5. Visual testing. Some test tools tried to achieve this without
involving AI and ML algorithms by using pixel by pixel comparison.
This proved to be not a very effective approach because usually
it leads to many false positives. ML algorithms help to increase
the robustness and stability of automated tests by identifying
changes that do not impact user experience and ignoring them.

6. Audio/Video Quality Testing. AI can collect multiple data points
about audio/video at any given point of time and learn how their
variations impact audio/video perception by humans. Testing is
done faster and is based on data, which makes it more objective.

This list looks impressive and promising but there are major
drawbacks, at least for now. When considering the usage of newer tools
that have not been on the market for a long time we should remember
that AI tools are not mature or widely used compared to traditional
testing tools. If their users encounter a problem, they most likely need
to go to the tool vendors’ support team which can increase test
creation and troubleshooting time. There is less available information
about AI tools in general. Comparison charts, use cases, real reviews,

and case studies are hard to find. If you are considering adopting an AI
tool, be ready to do a lot of leg work by yourself.

Most of these tools are also not cheap. The open-source AI-based test
tools, as well as free tools, are rare and very young (and in this case
you don't have wide community or company provided technical
support, so you are truly on your own with your issues)

Last but not least - there are plenty of traditional testing tools for every
type of application, most of the AI tools only support automation of the
Web applications. There are just a couple of AI tools that provide
automation support for mobile apps.

I was lucky to land my hands on a few test tools that use AI and ML. I
used some of them (Mabl, Functionize, Appvance IQ) to go through the
full-scale proof of concept. I played with a free version of others
(Testim, TestCraft) and participated in some hackathons (Applitools
Eyes). This gave me a pretty good understanding of where these tools
are now and what works and what does not.

Let's start with positive and review what worked well:

• Quick Start. The pleasant surprise was how easy to start to use
most of the tools. The documentation, the setup, the intuitive
interface of Mabl, Testim, and Applitools Eyes are very user friendly. It
took me just a couple of hours from opening a tool for the first time
in my life to having my first automated test running. Of course, one
should invest way more time to use any of these tools to their full
potential, but the quick start is super important during the initial
rollout.

• Codeless Script Generation (recording). Honestly, I was a little bit
skeptical about this feature, but test recording went a long way in
recent years. I found that Mabl is the most mature test recording
feature for web applications, with the most stable and intuitive
interface. Another tool I would like to mention is Testim. The test
recording feature is also implemented pretty well there. TestCraft,
Functionize, and Appvance also provide test recording but it is a
much more challenging task and requires a lot of additional actions,
not just pressing the “Record” button and going with the flow.

• Decrease of maintenance time. Tests automated by me using
different AI-based tools were executed on multiple builds and
releases. Every tool I tried handled insignificant changes in the UI,
such as text, size, or other attributes well. If the change was
something that cannot be handled by a tool (introduction of new
elements, a major redesign of UI) it was much easier and faster to fix
automated test cases by re-recording steps than introducing the
same change using code.

• bUnfortunately, I was able to try this feature only during
Applitools Hackaton using Applitools Eyes. I was impressed by how
easy it was to automate challenging but very common use case
(selection specific color and model of the product in an online store).

All these features are great but there are still some challenges
everyone who wants to use an AI-based automation tool should be
aware of:

Codeless script generation. Although the creation of tests using
recording features is much easier and faster than using traditional
tools, it rarely goes smoothly. It is not just “press the button and go with
the flow”. The automation Engineer still needs to add some Javascript
snippets for complex cases, take care of reusable flows, setup
variables, and test data. Hence, do not expect that it will be done with
lightning speed and will not require any technical and test automation
skills.

The self-healing feature Self-healing is a great feature, but it does not mean that all your tests will be magically fixed every time. Different tools
handle self-healing in different ways. Some of them require the approval of every change, at least at the beginning while the system learns, so
it is still a time investment. Others just make changes and proceed without notification, which I think is dangerous. Fortunately, most of the
AI-based tools are starting to add the ability to review auto-fixed tests, accept or decline these changes, track history, and rollback to the previous
version.

Every big change in the application, like introducing a new element, removing tabs, or anything else, will still result in the test updates that
should be done by QA engineer.

Autonomous creation of automated test cases. The AI-based automation tools can generate tests in different ways. Some of them generate
tests by collecting information on how real users use the software in production. This information can be extracted from logs, clickstream, or
both. As you might guess this requires that the application should have quite a few users to collect enough data for ML algorithms. It also should
be already running in the production environment. That said, test generation based on the usage of application can only be used to add missing
regression cases.

Another type of self-generated tests are tests generated by link crawlers. These tests check that every link in the app works. This is a useful tool,
but a working link does not necessarily mean it’s the right link, or that it's a functioning application.

The auto-generated tests only cover what can be easily tested. They find shallow bugs, like not working buttons, particular values, broken links.
They will never help you find missing requirements, logic flaws, or spot usability issues.

As we can see there are plenty of use cases where the usage of AI and ML can improve the everyday life of QA Engineers and help us solve the
problems that are usually solved with traditional test automation tools more efficiently. AI-based tools are good in decreasing or in some cases
fully eliminating the time spent by QA Engineers on mechanical, boring tasks. They also allow us to automate tests much faster. Although we
should not expect that automation will be effortless. It will only be easy when software development is also an easy mechanical task. Another
thing to remember that with the new technologies new issues and new testing needs emerge all the time, and tools… tools usually stay a little
bit behind.

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

48 49TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

IRYANA SUPRUN
–
Iryna started her career as a software engineer in 2004 in Ukraine,
where she was born. She received her master’s degree in computer
science in 2006, and in 2007 she began her first position as a quality
analyst. She remained in QA, focusing on the telecom industry and
testing real-time communication systems and products such as the
audio platform for the GoToMeeting application. Three years ago, she
decided it was time to try something new and moved to AdTech.

She is presently an Engineering Manager at Xandr where she
concentrates on automation frameworks and implementing testing
processes from scratch

SEARCH ENGINE
OPTIMIZATION
TESTING
An Experience Report

The Journey…

Back in 2014, I was assigned to the projects to
test the search engine optimization along
with the projects which were focused on
increasing traffic on the website. During the
initial days, developers used to tell me what
I have to test since I do not understand the
impact of these changes. I use to test the
same, and report the bugs.

Let me take an opportunity to explain to you
in brief, what happened in the past release,
and why I was there, as I have learned from
the existing team members. I had understood
from the team members about the previous
release, including what went wrong. The
company had to pay a massive penalty to
Google because of the issue which was
introduced in the past release, since they did
not want to lose the existing customers.
Specifically, the issue was while fixing and
improving so many things from SEO aspects,
nobody looked that we are duplicating the
pages one with HTTP and another one HTTPS.
Since all the web pages were duplicated in
Google search, our website and all the
existing web page rank started lowering down
rather than increasing.

Let’s come back to what I was doing in the
team, now I was trying to develop a deeper
understanding of what the developer wants
me to test because I was seeing a pattern.
From the aspects of the team, I was lucky
because I found myself in a situation that a
senior tester was guiding me also. But this
was for starting because soon I found myself

in a situation where I was working alone
since the senior test went on paternal leave.
I was left alone during the critical period of
the release. This senior tester was handling
the whole Search Engine optimization
POD(similar to SQUAD) alone along with my
help for the past few months.

Since the senior tester was not present, I got
the opportunity to talk to developer leads
and business people. At times the conversa-
tion in the meeting was hard since I did not
know what to answer when the developer
lead and business people were asking me,
“Did you test well”? “How confident you are
with the release”? I was honest with them
because I had not had much experience in
this space at that particular point in time,
and I was doing the best I could.

The developer lead and I used to share the
same cabs while leaving the office. This is
because we were living in the same locality. I
had the opportunity to socialize with him,
and ask him more questions, or even
understand his previous experiences, and
other stuff in this domain. One of the most
interesting conversations was that he had
explained to me that “usually, some
companies have an internal SEO team and
anti SEO team”. This is because many people
in a company do not understand how Google
algorithms work, Companies hire a dedicated
team who can look from a different
perspective to help the company’s SEO.

The Lessons...

Good software practices overlap
and help different levels within
the software projects.

A good software practice is not
to take users or the user's
perspectives for granted.

Challenge yourself by actively
listening to all project
stakeholders, talking with
developers, and researching on
your own to learn more
perspectives.

Bl
es
se
d
ar
e
th
e
cu
rio

us
fo
r

th
ey

sh
al
lh

av
e
ad

ve
nt
ur
es
.

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

50 51TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

TRISHA CHETANI
–
Trisha is software testers and automation
enthusiast. She has been helping the team
to follow testing processes and support
that enable teams to deliver high-quality
software in DevOps Environment. She is
always enthusiastic to attend conferences,
meet-ups for professional development as
well as she is an active community
member. Trisha is looking for opportunities
to thrive in a management role. .

I thought this is important and he said, he is looking for our company
to have something similar. To add to this, I further learned involving
myself in the SEO conferences, that there are whitehat SEO experts and
blackhat SEO experts.

Wait! Now more surprises are coming for me.

1. I learned, the senior tester has cleared the interview in the U.S.A in
the same company, and he will move soon post his paternal leave. My
manager was also leaving the company. I will have a new manager and
new senior tester who will help me while learning about other ongoing
projects and new projects. The whole situation was becoming
challenging although, I was confident about a little experience, which I
have received while working on the domain along with the senior
tester.

2. While we were in process of releasing and adapting to many changes
happening internally in the team. Google declared they would be
making massive changes in their search algorithm which caused our
release to be moved further out to incorporate and align with these
changes. From a tester’s perspective, being able to see how existing
pages were impacted by the new changes allowed me to continue to
learn more about testing SEO.

If I remember correctly, in those days mobile apps were becoming
more popular, and Google came up with the recommendation that
website and apps should not have major differences .

I pulled my socks. I started looking at internal documents which were
across teams, I found many resources such as written documentation,
videos, websites, conferences et Cetra. I also found there were existing
test plans, test cases, bugs reported by another team on similar
aspects of what we were improving. Now, I was developing and gained
more confidence because I could talk to more people and learn about
Search Engine Optimization while having an active conversation with
them.

Here comes my learning while tackling all the difficult situation around
me:

Terminology:

I began to realize certain common terms were very useful in day-to-day
contexts, like organic(natural way of searching), inorganic search(paid
search). These were further divided into ON-page SEO and off-page
SEO. As far as I remember, there were more categories of an SEO search,
which we were tracking, like direct, paid, social, referral, display,
affiliates. I found it more interesting to learn and how to track these
sources of traffic. This was one aspect in which I was able to learn by
working closely with developers.

Crawling

Crawling(also known as spiders) of the website is a process, so the
search engine can read the pages. But there are many challenges too.
Crawling is the act of snaking the homepage to learn all the connected
links which exist under that home page. This process goes on until they
come out from the website. It is also called the internal mesh. There
are different kinds of crawlers like bots(such as Google bots or Bing),
sent by a human or someone who is stealing the content from the
website. So the website owner has to always monitor these aspects
else they will lose business. Crawlers keep track of information
whether the page needs to be indexed. Some of the information
specifically it keep tracks of is the title, HTTP status code of web page,
header and meta tags, internal and external no-follow links,
paginations[rel= next], hRef tags, canonical URLs, crawl depth, empty or
duplicated pages, URL filters, page category, comparing crawls et Cetra.
The crawler will have information about the user agent, crawl speed,
crawl limits etc.

Indexing

Indexing is a process where it stores and organizes the page in the
index after understanding the page content. Google search operators
are useful to find whether the webpage is indexed or not: https://
support.google.com/websearch/answer/2466433. Oh, how can I forget
about Robot.txt, which also specifies the crawler which pages are open
to crawl and not? Header and text can help a lot to improve indexing

.

Ranking

The ranking is the process where SEO is targeted to provide the best
answer available from the keyword the user is searching for. Staying up
to date improves the rank of the page. Not

the least, there are many websites which will suggest how to improve
the rank of the webpage.

Sitelink

Sitelink, which was launched to improve Google UX, it is also called
SERP. Sitelinks also appear with a search bar which the user can use
directly to start his search on the website. It improves brand awareness,
click-through rates, allows users to find the page they are interested in.

Rich Content

Another aspect to improve SEO on the webpage is looking to answer
the below questions. Does the website have good and rich content
which makes users come back on the website? For example, “ Is there
duplicate content”? “automatically generated content”? “little content”?
“no content”? “hidden content”? “too many contents”? “no single focus,
or motive of the webpage”?

Search Keywords

Keyword optimization is done to attract more users. We must start
researching which keywords are more searched by users. Under-
standing the target audience is key here. It can also be done with the
help of related keywords and comparison which is a bit of a time-
consuming process. By taking part in stakeholder meetings and
listening to developers' conversations, I was able to utilize tools to help
me specifically test the keyword searches a target audience might
conduct. This helped me to provide information to the stakeholders
about how we could improve our keywords on the website page.

Header & Meta and other Tags

Most of the header and meta tags are used for improving SEO, such as
title, description, URLs to improve the SEO. This is the reason it is good
to keep them clear and relevant. Usually, alt tags are used for
describing the image and it should be done properly and should have
uniqueness.

Backlinking

I have also learned that backlinking from different web pages were
helpful to increase the SEO of the webpage. It is also useful from a
usability perspective(sometimes) because the user can understand
where they are coming from.

Performance

A completely new perspective, if a webpage is loading fast then also it improves the SEO of a particular webpage.

Social Influence

Another reason where a webpage can increase the SEO is having citations or social influence on the web page. By this I mean increase SEO, be
sure to plan on adding links within the website, and not the links which are moving the user from the websites, such as, affiliates.

There were many more, but I think these were the most important concept from my learning journey.

My journey of SEO testing has taught me some meaningful lessons:

1. Good software practices overlap and help different levels within the software projects.

2. A good software practice is not to take users or the user's perspectives for granted.

3. Challenge yourself by actively listening to all project stakeholders, talking with developers, and researching on your own to learn
more perspectives.

4. In foreseeing the future, we can create an automated crawler to improve further test coverage.

I grew as a tester from my journey and I hope this article will not only improve your learning beyond testing SEO but also to improve you as a
tester in any domain.

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

52 53TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://www.teatimewithtesters.com

force in finance. However other
commentators like Bloomberg's Matt Levine
put the motivation down to boredom and
trolling - just "utter nihilism, a story perhaps
best told with rocket emojis".

The Robinhood Mobile App and Brokerage

To explain how it provides a warning for
testers and tech teams it is necessary to
provide some history. The most popular
brokerage and trading platform for retail and
small traders was the mobile app startup
Robinhood. Charging no brokerage fees and
allowing small purchases of even fractional
shares, it was an extremely easy way for
young people with time on their hands and
only small amounts in their pockets to get
started in the world of share investment and
trading.

For this reason it was the preferred app for
the US-based of the WallStreetBets crowd
and heavily used for the short squeeze.

WallStreetBets uses Robinhood to Attack
the Hedge Funds

With the sheer numbers of retail traders
piling in (especially after a supportive tweet
by Elon Musk) the share price of $GME
rocketed from $19.95 per share to $347 per
share in just over two weeks. Melvin Capital
was forced to close their short position at a
30% loss to their entire portfolio, requiring a
$2.7 billion investment by other companies to
keep Melvin Capital afloat. Overall an
estimated $6 billion was lost by investment
firms and hedge funds who were shorting
Gamestop and the S&P 500 fell by about 5%
over the course of about three days as nerves
spread through the market. Meanwhile Keith
Hill's investment of $52 000 in options was
worth $42 million by the share price's peak.

Robinhood, Brought to its Knees, stops all
trading in GameStop

The sheer numbers of Reddit traders taking
part in the short squeeze also brought
Robinhood to its knees. Clearing houses used
by the trading platforms started asking for
higher amounts of collateral for the trades
than the platform could afford. This is
important as trades are not instantaneous
(usually taking a few days) and usually
backed by collateral. Robinhood had to raise
$1 billion from its backers and debt facilities
to maintain collateral for its trades. Also
Robinhood makes 40% of its revenue from a
data selling arrangement with the hedge
fund Citadel LLC, which part-owns the
attacked hedge fund Melvin Capital, and the
short squeeze was a conflict of interest that
was starting to unravel that agreement.

On January 29th the Robinhood app along
with other online trading platforms such as
WeBull and IMC Markets took the
unprecedented decision to ban or limit
trading of $GME and other heavily shorted
stocks. Retail investors subsequently turned
viciously on Robinhood. Over a hundred
thousand poor reviews were given against
the Robinhood app on Google Play Store
lowering its overall star rating to 1 star,
requiring Google to remove them.

Criticism of the attacks on r/WallStreetBets
and Robinhood's decision came from
politicians, media and entrepreneurs across
the political divide - Alexandria Ocasio-Cortez
tweeting -

"Gotta admit it’s really something to see
Wall Streeters with a long history of treating
our economy as a casino complain about a
message board of posters also treating the
market as a casino."

IS YOUR APP REDDIT PROOF?

PAUL MAXWELL-WALTERS
–
A British software tester based in
Sydney, Australia with about 10
years of experience testing in
agriculture, financial services, digital
media and energy consultancy. Paul
is a co-chair and social media
officer at the Sydney Testers Meetup
Group, along with having spoken at
several conferences in Australia.

Paul blogs on issues in IT and
testing at http://
testingrants.blogspot.com.au and
tweets on testing and IT matters at
@TestingRants.

Did you hear about the battle over GameStop
between Reddit-based stock traders and big
hedge funds during January? This is about
how the vulnerabilities and limitations of a
popular stock trading app, Robinhood, were
exploited by a group of stock gamblers on the
subreddit r/wallstreetbets to not only gain
profits for themselves but hurt Robinhood
financially and eventually strike a blow at the
heart of Wall Street finance itself. It is a
lesson to devs, testers and company owners
that in the ages of social media, financial
vigilantism and doing things just to troll, the
costs of lack of vigilance and underes-
timating your user base are far more costly
than ever before. Robinhood’s experience
also shows that the costs associated with
bugs and limitations are amplified infinitely
when social media and highly visible trolling
are taken into account.

The Medium - GameStop

Over January 2021 the 4 million members of
the retail stock trading subreddit r/
wallstreetbets did something utterly
incredible that caused major ripples
throughout the US
financial system.

The US bricks and
mortar computer
games retailer
Gamestop had been
struggling for several
years. The COVID-19
lockdowns then hurt it
badly such that it
closed 300 stores at a
loss of $165 million, its
prospects looked
bleak and its share
price was in the
doldrums.

Some US hedge funds, notably Melvin Capital
and Citron Research decided to take
advantage of Gamestop's continuing decline.
They did this by short selling its stock -
borrowing stock from other financial services
institutions to sell and push down the share
price, to repurchase later and pocket the
difference. The short selling was enormous,
with at one point more than 140% of the total
shares issued being shorted.

Instigated by the update posts of a member
of r/wallstreetbets, Keith Gill aka Reddit user
u/DeepFuckingValue, members of the
subreddit and associated Discord decided

that this situation could be reversed by
buying cheaper Gamestop (known as $GME)
shares or put options (options to buy the
stock at a specific price at a later date) to
force up the price. Since shares borrowed for
short selling have to be bought back and

returned by a certain
date, the buying by r/
wallstreetbets users
put pressure on the
funds shorting the
stock to buy it back
(thus forcing up the
price further) at a loss.
This is a common
technique known as a
short squeeze. Similar
short squeezes were
done against the
similarly short sold
cinema chain AMC
and phone companies

Nokia and BlackBerry.

WallStreetBets users had various
motivations. The subreddit, calling itself "Like
4chan found a bloomberg terminal." has a
great irreverence of usual risk based trading
and investing approaches favoured by Wall
Street and an antipathy and meme-based
mockery of Wall Street institutions. It also has
a culture of heavily leveraged options trading,
taking large gambles to make profits (known
as "tendies") quickly (and in this case there
were great profits to be had), with heavy wins
and losses frequently shown off in posts.
Members often see themselves as the
vanguard of the common trader against the
powerful elites of Wall Street, a democratizing

“Robinhood and
WallstreetBets” are

warning signs.
Did you hear about the battle over GameStop between Reddit-based stock traders

and big hedge funds during January? You better know how the vulnerabilities in

your app can hurt you and cost lives for some...

An eye-opening piece by: Paul Maxwell-Walters

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

54 55TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.wsj.com/articles/gamestop-frenzy-puts-spotlight-on-trading-giant-citadel-securities-11612089000?mod=searchresults_pos1&page=1
https://www.wsj.com/articles/gamestop-frenzy-puts-spotlight-on-trading-giant-citadel-securities-11612089000?mod=searchresults_pos1&page=1
https://www.wsj.com/articles/gamestop-frenzy-puts-spotlight-on-trading-giant-citadel-securities-11612089000?mod=searchresults_pos1&page=1
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
http://testingrants.blogspot.com.au
http://testingrants.blogspot.com.au
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#

along with Donald Trump Jr. tweeting

"It took less than a day for big tech, big government and the
corporate media to spring into action and begin colluding to protect
their hedge fund buddies on Wall Street. This is what a rigged system
looks like, folks! "

What does this have to do with software and quality?

The answer is a great deal. This is far from the first time that Robinhood
and its app have been put to the test and found wanting by members
of WallStreetBets and other new retail traders. The risk of large scale
attacks and exploitation via social media opens up a new frontier in
what business experts and testers have to watch out for.

The "Infinite Leverage" Bug

A much worse problem with the Premium Gold service of the
Robinhood app was exploited later by around twenty r/WallStreetBets
members in November 2019. As described by Business Insider it
involved the following exploit -

• "Users who pay a premium for Robinhood Gold sell call options
with money borrowed in the app (a loan know as a margin or
leverage).

• Robinhood incorrectly adds the value of the options sold to the
user's cash pile.

• This gives the user more capital to trade with, and the more a user
borrows, the more the app adds to their buying power.

• There seems to be no limit to how much a user can exploit the
trick."

Call options (in the above case "covered" call options) are contracts
that allow the buyer to purchase a stock at a set price at a future expiry
date. A seller (or "writer") sells for a fee the right to buy the stock
(which they must sell if the buyer asks for it), the hope being that the
underlying stock will always remain below the agreed purchase price
(known as the exercise price) and thus the option will expire unused -
the seller pocketing the cash made from selling the option and
retaining the stock.

The bug in this case was that the more the user borrowed to sell call
options, the more the app added this to their balance and thus the
more the app allowed them to borrow. The original discoverer of the
bug, u/ControlTheNarrative, used the flaw to write $50000 worth of
Apple put options from a $2000 deposit. One user, u/MoonYachts, was
able to borrow a margin of at least $1 million for an original sum of
$4000! The user u/Cal_Warrior went even further, turning a $3000
deposit into a position of $1.7 million! They wrote "After seeing people
on the almighty wallstreetbets wager a timid 50k or so on average with
this new feature available, I thought it was only a clear choice to raise
the average for the good of all."

Overall about twenty members used the bug to borrow larger sums
than were allowed, getting the cue from posts in the subforum. A user
u/SocioButt even posted a "Hall of Fame" of users exploiting the bug.
It took days for Robinhood to find out and release a patch to fix the bug
and communicate with customers and there was no guarantee that it
could claim losses from people who used the exploit and lost money.
Robinhood also ran the risk of falling foul of regulators such as the SEC
and FINRA along with the costs required to take legal action to claim
back the funds.

Badly Displayed Losses Resulting in the Suicide of Alex Kearns

In June 2020 the student and budding retail trader Alex Kearns
tragically committed suicide after seeing a negative cash balance of
$730 000 in his Robinhood Margin (i.e. loan) account. According to his
family, later that night the company sent an automated email
demanding Alex take "immediate action," requesting a payment of
more than $170,000 in just a few days.

A note left by Kearns to his family stated the following - “How was a 20
year old with no income able to get assigned almost a million dollars
worth of leverage? There was no intention to be assigned this much
and take this much risk, and I only thought that I was risking the
money that I actually owned. If you check the app, the margin
investing option isn't even 'turned on' for me. A painful lesson.”

Bill Brewster, a relative and analyst at Sullimar Capital, publicly
criticised how the app displayed temporary debt exposure, stating “I’d
like them to fix the way that they’re showing exposure — I want them
to act like a financial platform should act. When you’re dealing with
retail money and actively soliciting traders under 30 years old to have
errors like this is inexcusable and at the minimum negligence.”

Check this post by u/Moonyachs showing a $1 million equity
position leveraged from just $4000 deposit.

Robinhood responded by offering to make changes to their in app
messages and history page to make the mechanics of trading options
clearer, along with providing more stringent eligibility requirements
and better educational resources for new investors. However William
Galvin, chief financial regulator in the state of Massachusetts, found
over 600 instances of people in the state who should never have been
approved for options trading by Robinhood’s own standards but were.
CBS News confirmed how easy it was to get around Robinhood’s
eligibility checks by simply “upgrading your experience”.

Alex Kearn’s family have since filed a lawsuit for wrongful death
against Robinhood.

Implications for Testers, Quality and Risk Management

The badly displayed temporary debt in the UI and poorly written
automated messaging created a tragedy for a brand new trader like
Alex Kearns. Robinhood app created the situation where easy access
to risky options trading resulted in the tragic consequences as well as
permanently damaging the company's reputation. That such a thing
was allowed to happen and not flagged up by Robinhood’s internal
processes is nothing short of disgraceful and a moral failure.

One way that could have improved the interface such as to prevent
the above would have been to apply persona based tests - testers
creating personas to study the app interface, emails and warning
messages from the perspective of new retail traders lacking
experience and financial expertise.

The "Infinite Leverage" flaw in particular highlighted the speed in
which bugs are made public and exploited in online forums along
with the motivations in which anonymous exploiters use the bug to
one up each other online. Suddenly issues that may carry one risk if
an individual does it are much graver when social media is taken into
account and lots jump on the bandwagon. They also carry new
reputational and regulatory risks when forum posts go viral and are
reported in the press.

In effect, brokerages and companies reliant on traders in groups like
r/wallstreetbets need to be aware that the spotlight is always on them
and mistakes and errors will be found out and the word spread
quickly. The costs of failure are thus potentially enormous and testers
and developers working on these apps have to always be "on the ball".
They also need real understanding of the users coming to their apps,
along their levels of experience, and the social media worlds they

inhabit and are influenced by.

The lesson gained from r/wallstreetbets and other groups of small
retail traders in their Gamestop short squeeze is that they are
realising their immense latent power and acting in ways that
institutions on Wall Street would never have predicted. This includes
using apps and brokerage tools to make incredible purchases
together which makes collusion difficult to prove and police. This
does not just affect shorting hedge funds but the tools they use -
online brokerage apps now need to allow groups of small retail
traders to make large moves en masse at individual stocks and always
have the collateral to manage it, otherwise be punished by these
same users.

For the rest of us, this is a parable about the power of social media to
allow groups of ordinary individuals to troll and exploit - whether it
be as anger against the elites, for financial gain or simply because
they were bored and it is a funny thing to do. It is a lesson in that just
because ordinary people take part in an activity or use your service
doesn't mean you control them, predict what they will do or think they
will act (in your definition of) rationally. We have to think again about
what we expect of users and the online communities they dwell in.
For those of us making and testing products to be used by the
masses, this is a wakeup call to all.

*Thanks to the great editing work and support of JeanAnn Harrison,
without whom this article would have been a poor shadow of itself.

”The "Infinite Leverage" flaw in particular
highlighted the speed in which bugs are
made public and exploited in online fo-

rums along with the motivations in which
anonymous exploiters use the bug to one

up each other online.

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

56 57TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.blogger.com/blog/post/edit/4691620995030959485/3445294658895192548#
https://www.cnbc.com/2020/06/18/young-trader-dies-by-suicide-after-thinking-he-racked-up-big-losses-on-robinhood.html
https://www.cnbc.com/2020/06/18/young-trader-dies-by-suicide-after-thinking-he-racked-up-big-losses-on-robinhood.html
https://www.cbsnews.com/news/alex-kearns-robinhood-trader-suicide-wrongful-death-suit/
https://www.reddit.com/r/wallstreetbets/comments/drqaro/robinhood_free_money_cheat_works_pretty_well_1/
https://blog.robinhood.com/news/2020/6/19/commitments-to-improving-our-options-offering

Heuristics for
identifying corner
cases for testing

Corners are interesting as they are subtle, invisible really. They could be complex with
many things that intersect and therefore display an unique behaviour. They may not
necessarily be symmetrical at ends, nor be similar to behaviour in the middle.

As a developer focused on solving a problem for typical or generic cases one may not
see the interesting extremities. For example we do everything right for a system in
normal state, but miss out what happens when it is brought up the first time. This
article outlines eight heuristics I discovered when testing a product that we were
building, a SaaS platform.

The heuristics outlined are based these aspects : Time, Lifecycle, Transformation,
Position,Space, and Size.

T.
talks
testing

Summary

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

58 59TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

T ASHOK
–

Ashok is a test Professional. Founder & CEO STAG Software.Ultra Cyclist. Ultra Runner. Wordsmith.

Passionate about excellence, his mission is to invent technologies to deliver “clean software”.

He can be reached at ash@stagsoftware.com

ISSUE 01/2021
PRODUCTS

ISSUE 01/2021
PRODUCTS

60 61TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

The first time when something is used. Thinking
from the perspective of time. Doing something on
an absolutely fresh system. Creating the first
project, registering the first user.Doing the final
action, removing an user. First time when a
transaction is done on a empty system. Purging a
system of content, signifying removal, the end.

The notion of volume, size when some is really
small or extraordinary huge. Say uploading
super large files, or really nothing or rally small
ones. In case of display, showing tiny/large
content/diagram, maybe via zoom?

Repetition of system states in terms of cycling
through. Starting off, then doing activities and
coming to an end. Then restarting and continuing.
A workflow that is half done, suspended and then
continued to finish. Finish by abandoning it or
ending with to a logical closure.

Changing something like say formats, views an
act of transformation. In the case of UI, this
could be relate to responsiveness like reaching
the extremities of views? In case of content
transformation, reaching the extremities of too
large or too small or null content being
transformed.

Looking for interesting behavior in case of the
elements that are right at start or end. What
happens when elements in the middle move to
either ends?

The nation of space as when contents close are far,
shrunk or expanded, especially when at
extremities of too close or distant, too small or
large. An example of responsive UI, when screen is
shrunk or expanded.

COMMUNITY

Synapse QA, a community-driven co-writing space specializing in Software
Testing and QA space, celebrated an International Women's Day 2021 with their
noteworthy RISE event.

A number of great women in tech field shared their wisdom and message on
this occasion as part of RISE.

We highly recommend our readers to check out their all posts published on
this occasion and even to share it further.

Thank you Synapse QA for organizing such a lovely event. You won our heart!

RISE.
Synapse QA celebrates

International Women's Day 2021.

ISSUE 01/2021
COMMUNITY

ISSUE 01/2021
COMMUNITY

62 63TEA-TIME WITH TESTERS ISSUE #01/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://synapse-qa.com/
https://www.linkedin.com/company/synapse-qa/posts/?feedView=all

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 02/2021
MORE AWESOMENESS IS ON YOUR WAY THIS JUNE

AN EXPERIENCE REPORT ON RST
In early 2019 one of the Engineering Managers in my organization encouraged me to attend the Rapid
Software Testing Applied online course. Initially, I was skeptical about how beneficial a remote course on
testing methodology might be for me. I had several years of experience working in testing roles and I was
quite comfortable with the way we were approaching testing in my current product team…

SHIFT-LEFT MET EARLY WITH E-MBT
Nowadays more and more test activities are being automated, especially when it comes to executing test
cases. But what about the development of test cases? Are the test cases still being developed in a structured
way with certain test coverage and based on a well-considered risk?

21ST CENTURY SKILLS FOR TESTERS
In this fast-changing world, you can ask yourself, what are the skills that I should have to be able to make a
difference with the colleagues around me? Is it being an expert in test automation? Or able to read all kinds
of different code languages? At least you know that the technology you learn today can be gone tomorrow.
For example; how much time will it take to learn a new programming language?

02

01

03

Put the Craft
back in Testing
Ten years ago when we first
launched Tea-time with Testers,
the community of testers
needed a platform, a medium to
express their thoughts, ideas,
concerns, and sometimes even
their disappointments.

One after another we kept
launching new issues that
consisted of thought-provoking
articles by bright minds in
testing field. We published
articles based on experience
that helped testers solve
problems at their work.

We published articles around
technical testing, automation in
testing, upskilling tips, and
techniques to become an all-
round tester.

The pleasure of finding things
out on a tester’s face was as
alive and visible as it was when
the magic wand of automation
made them (and their higher-
ups) look amused and
awestruck.

Much to my surprise and
amusement, that pleasure
seems to have been lost
somewhere today.

The discussions that inspire
critical thinking, deep analysis,
mindset building, and
challenging ideas are seen
sporadically. On the contrary, an
unreasonably high focus seems
to be on over engineering
solutions to make testing(?)
faster and easier.

I still do not understand our
industry’s obsession with
“automate everything”
nonsense. It was very much of
conquest for some a decade ago.
I am sure it was there even
decades ago before that and
here we are today, still selling
and buying that snake oil.

No doubt we need automation,
we need engineering solutions
to assist testing and expand it
further but it does not have to
be done at the cost of killing and

sabotaging the craftsmanship.
Testing as a whole is an
intellectual discipline and
simply focusing on making
machines do something is never
enough.

What we need is the balance, the
support of engineering solutions
to make more room for nurturing
the software craftsmanship.

While satisfying millions of
customers can be a challenging
task and therefore providing a
good-enough quality software
sounds a reasonable thing to do,
let’s please not forget that a
glitch in software can cost
somebody a life. And no amount
of engineering innovation can
repair that damage.

As long as we don’t wait until
millions of our customers to get
affected that badly, we shall not
live in vain.

Let’s please put the craft back in
testing!

See you
next time.

LALITKUMAR BHAMARE
Chief Editor “Tea-time with Testers”
–
Passionate tester @XING_de
Director @AST_News
International Keynote speaker.
Software Testing/Quality Coach.

Connect with Lalit on Twitter
@Lalitbhamare or on LinkedIn and Xing.

TEA-TIME WITH TESTERS ISSUE #01/2021 65

https://www.forbes.com/sites/sergeiklebnikov/2020/06/17/20-year-old-robinhood-customer-dies-by-suicide-after-seeing-a-730000-negative-balance/?sh=36838d201638
https://www.forbes.com/sites/sergeiklebnikov/2020/06/17/20-year-old-robinhood-customer-dies-by-suicide-after-seeing-a-730000-negative-balance/?sh=36838d201638
https://www.teatimewithtesters.com
https://www.linkedin.com/in/lalitkumarbhamare/
https://www.xing.com/profile/Lalit_Bhamare/cv

TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

