
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Testing and
beyond…
Dear future me: I am not alone

Page 06

Is talking about scaling human

testing missing the point?

Page 16

Machine learning for testers.

Page 54

WAKING TESTERS UP SINCE 2011 ISSUE #02/2021

TEA-TIME WITH TESTERS ISSUE #02/2021
3

EDITORIAL BY LALIT

INTERVIEW: 26-30
OVER A CUP OF TEA
WITH ALAN PAGE

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

COMMUNITY
WITH LOVE
FOR TESTERS
BY TESTERS
OF TESTERS

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 1 2

1 3 – 1 4

1 6 – 2 1

2 2 – 1 4

DEAR FUTURE ME: I AM NOT ALONE
I'm writing this while being very tired. I am still spending my time and energy on this deliberately,
hoping to remind you of a very stressful time I'm still recovering from: the last six months…

DO WE NEED A TECH DEGREE TO SUCCEED
AS A TESTER?
In the last three months, I have been interviewing multiple QA Leads and Managers about whether it is
necessary to have a tech degree to have a successful QA career…

IS TALKING ABOUT SCALING HUMAN
TESTING MISSING THE POINT?
I recently came across an article from Adam Piskorek about the way Google tests its software….

ARE YOU REALLY A TEST COACH?
For many years we have seen different kinds of coaches appearing within software development. …

MORE
THAN
“JUST”
TESTING!

TEA-TIME WITH
TESTERS
06 26 32 50 62

A NEXT GENERATION
MAGAZINE

FULL OF CONTENT AND
TIPS FOR TESTERS

3 2 – 3 4AN EXPERIENCE REPORT ON R.S.T.
In early 2019 one of the Engineering Managers in my organization encouraged me to attend the Rapid
Software Testing Applied online course

SEBTE - A SIMPLE EFFECTIVE EXPERIENCE-
BASED TEST ESTIMATION - PART 2
What is Charter Driven Session Based Exploratory Testing? There have been a few attempts to define
exploratory testing…

STORY OF A BOOK ON TESTING SKILLS
In this fast-changing world, you can ask yourself, what are the skills that I should have to be able to
make a difference with the colleagues around me? Is it being an expert in test automation?

COMMON TESTING MISTAKES: ARE WE
REALLY EVOLVING?
Last year when I was working on creating the #TestFlix e-book with Sandeep Garg, we used to have a
lot of candid discussions around Quality, Testing & Life in general. …

HOW TO EFFECTIVELY TEST THE CHATBOT
QA has always been a specialized job, though not many people believe so, but it is for sure and has
been proven all these years. The best of the developers cannot test and either they leave critical
scenarios, or they leave testing the integration scenarios…

MACHINE LEARNING FOR TESTERS: PART 1
There is probably no area of our lives these days not touched in some way by machine learning.
Applications cover such wide areas as translation, speech recognition, forecasting, fraud detection,
search engines, medical diagnosis, the financial markets, DNA sequencing and weather prediction for
agriculture.

SHIFT-LEFT MET EMBT
Nowadays more and more test activities are being automated, especially when it comes to executing
the test cases and checking the results in the system under test. But what about the development of
the test cases, the test case design?

TEA-TIME WITH
TESTERS

3 5 – 3 9

4 1 – 4 3

4 4 – 4 7

5 0 – 5 3

5 4 – 5 9

6 0 – 6 1

I still remember that day when one of the
senior backend engineer I was working with
proclaimed this in one of the retrospectives,
“After working with Lalit, I am convinced for
the first time that software tester is an
important part of the team. Until now I never
felt testers were much needed.”

It was indeed flattering to hear that but as I
thought deeper about it later, I wondered
why do I never hear programmers making
such patronizing statements about other job
functions in software teams? Like, “Good job
front end dev. Tell your parents they can be
proud of you.” or “This PO really knows his
stuff. I am no longer worried about the
future of our product.”

Does absence of such patronizing comments
about other job functions mean only
superheroes get to do it all? Of course not.
I could probably write a book on “How to be
a smart programmer so you build products
that people like to use.” And I am willing to
bet, it can be the best-selling non-fiction in
non-technical, no-code category. I have only
thirteen years of experience in the software
field and by now I have already met enough
programmers who were only good for writing
software which nobody wanted to use. And
some of them should have been prohibited
from even coming close to the computers.

Does that mean we generalize those
experiences and put certain job-roles in a
fixed box-of-perceptions? No! Generalization
is bad and typecasting of negative sort is
horrible.

In fact, I would rather talk about great
programmers that I met on my journey. I
learned a lot from them. They helped me see
things beyond the obvious which in turn
helped me become better at testing. I
honestly can not imagine claiming mastery
over certain skills if I would not meet those
wonderful colleagues.

The whole point of writing this all is that, in
last six months I met at least three testers
who have been let down, discouraged and
profiled by their Dev colleagues. Not only
that but in the State of Testing survey, every
single year we notice testers reporting about
the lack of respect and value they get in the
organization. And this is not okay. In fact it
will only disadvantage the project team, not
only the tester.

Yes, I acknowledge that people can have
poor perception about software testing as a
profession for the experiences they made
with testers. And I also acknowledge that fair
part of that typical “checking” work can be
easily automated. But I want to mention that

testing is not just about automating the
asserts or clicking here and there and saying
it broke.

There are many testers who have been
contributing to software projects way
beyond “just testing”. As a matter of fact, I
know great programmers who switched to
testing because they found testing to be
more challenging.

I see no reason to explain how hard good
testing can be and that it is not something
anybody can “just do” it. Because if you need
to be explained it all, you have been
probably living in a cave and I urge you to
come out, at least now. Or do me a favor and
read what a legendary computer scientist
had to say about software testing.

In one of his interviews Jerry Weinberg said,

”Testing is harder than developing. If you
want to have good testing you need to put
your best people in testing. Your smartest
people and maybe a little different type of
person, someone as we said who listens
better, talks better, so it's a very exceptional
kind of person that makes a great tester.

If you believe in that kind of thing then you
should reward them better than you reward
the developers. Instead, I go around and I
find that people habitually pay their testers
less than they pay their developers. That's
the number one thing that is not
understood.”

Mind you, Jerry said that about “testing” and
it is not about testers being more important
or superior than programmers. If you enjoy
doing difficult things, challenging things, be
our guest and join the club! The global
testing community is very welcoming,
supportive and you will never feel like an
outsider, that’s for sure.

If you are one of those people who think
very low of testing and testers, I forgive your
ignorance but let me humbly request you,
treat the testers (and everyone else) in your
team well. Teach them if you feel they don’t
know something and also learn from them
what you might not know. And if nothing
else, at least be kind and let them do their
job with focus. Because the most important
part of tester’s work happens far away from
the IDE, deep inside their brains. And there
is no AI driven co-pilot yet which auto-
completes tester’s next move when they test
things as they think.

But no complaints, it is just a tester thing.!

It is just a tester thing!

TEA-TIME WITH TESTERS ISSUE #02/2021
5

LALITKUMAR BHAMARE
Chief Editor “Tea-time with Testers”
–
Passionate tester @XING_de
Director @AST_News
International Keynote speaker.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedIn
and Xing.

https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Dec-2020.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Dec-2020.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Sept-2020.pdf
https://qablog.practitest.com/state-of-testing/
https://www.youtube.com/watch?v=DIWRdiE4XYI
https://testguild.com/tribute-gerald-weinberg/
https://en.wikipedia.org/wiki/Gerald_Weinberg
https://www.teatimewithtesters.com
https://www.linkedin.com/in/lalitkumarbhamare/
https://www.xing.com/profile/Lalit_Bhamare/cv

LISI HOCKE

–
Having graduated in sinology, Lisi fell into agile and
testing in 2009 and has been infected with the agile
bug ever since. She’s especially passionate about the
whole-team approach to testing and quality as well as
the continuous learning mindset behind it. Building
great products which deliver value together with great
people is what motivates her and keeps her going.
She received a lot from the community; now she’s
giving back by sharing her stories and experience. She
tweets as @lisihocke and blogs at www.lisihocke.com.

In her free time you can either find her in the gym
running after a volleyball, having a good time with
her friends or delving into games and stories of any
kind.

Our communication pathways
multiplied with every new person on
the team. With me as the dedicated
tester on the team still being
involved in all stories, the team
mostly working in solo mode at that
time, and people starting new
stories when waiting for feedback,
meant that I had at least twelve
stories at the same time on my
desk. Imagine the context switching
effort and waste coming along with
that alone. Feedback loops slowed
down immensely and our cycle time
increased. Everything took long.
Working modes that were okay-ish
before did not work at all anymore.

Onboarding effort multiplied.

So overall, in January and February
five new developers joined nearly at
the same time. With me being one
of two persons having been the
longest in the company, in the team
and on the product, plus having a
unique holistic view on everything
that's involved with developing it,
this meant a lot of the onboarding
and knowledge sharing effort ended
up on my desk. While I really enjoy
onboarding new people - and these
five were lovely people to join our
team - this really took a toll on me.
Yet still, we need to set people up
for success and give them the
knowledge they need to have
impact themselves. I simply can't
leave my teammates hanging.

Old conflicts reached the melting
point.

My team from last year was together
for quite a long time and it started
to dissolve more and more. We had
wonderful times together, and also
times we did not manage well.
There's a lot to learn from that
alone, yet the sad fact is that a long
and slowly growing conflict took a
toll on each and every one who had
been part of that old team
constellation. In the end, the two
other former developers decided to
leave the company for new
opportunities as well. All these ups

and downs took a lot of emotional
energy from everyone of us. It took
up a lot of cognitive capacity as well
and made any interaction way
harder than it had to be.

Building a new team, remotely.

Since beginning of May, we're now
finally our new team constellation
and starting to shape this team to
the one we want to be on, where
everyone is welcome, included, safe
to speak their mind, encouraged to
experiment and collaborate and
learn together and everything.
Exciting times, yet we need to put in
lots of effort. Also, this is the first
team for all of us, where nearly
everyone on the team only met
each other remotely. We need to
learn how to grant ourselves social
time, get to know each other, evolve
our culture, and more - all virtually.
We are distributed across four
locations, so the remote setup is
amazing in leveling the playing field
and providing the same access for
everyone. I'm curious where this
journey leads us, and already very
happy to be part of this new team.

Upskilling people to enable them
to take over activities that usually
ended up with me.

No matter how often I reached a
point where testing was indeed a
whole team activity, with the former
team constellation it ended up
again mostly with me. Especially
exploratory testing or testing for any
kind of other quality aspect than the
core functionality. The same with
operations and infrastructure tasks,
responding to alerts, user support,
writing release news, and so on.
Scheduling and facilitating
meetings. Cross-team
communication. All kinds of glue
work to keep the balls from falling
to the ground. I strongly believe in
the whole team approach and
creating a base of knowledge for
everyone..

Dear future me.

~
Pe
op
le

DEAR FUTURE ME:
I AM NOT ALONE

I'm writing this while being very tired. I am
still spending my time and energy on this
deliberately, hoping to remind you of a very
stressful time I'm still recovering from: the
last six months.

Over the past couple of years, I've started to
think a lot more about my energy levels and
capacity. Especially when the pandemic
became obvious beginning of 2020 and life
changed, I felt I needed to cut down on what
I do and focus on a few things at a time,
working at a sustainable pace. Thinking I
had achieved that, I promised myself never
to get back into a situation with high stress
levels over a long period of time, feeling
completely overwhelmed. Little did I know, I
did not have everything in hand to prevent
what happened since beginning of the year.
So here's a reminder to myself and anyone
who relates to this situation: if you
encounter circumstances again where
everything ends up on your desk, be
reminded of what happened this time, what
consequences it had and which strategies
helped to get through it.

So what happened? In short, my work
load exploded, I went with it and the
energy spent left me depleted.

Team size exploded.

End of last year, my product team
consisted of six full-time employees and
a working student. With only three full-
time developers we were looking for more
people to join. Then one of the three
decided to leave and the situation
became more urgent to solve. As a
blessing in disguise, four developers
moved internally and one developer
came from outside the company to join
our team - all within one month. Yay,
problem solved, right? Well, this meant
we suddenly were eleven full-time
employees plus one working student. I
guess most people who have worked in
cross-functional product teams can
understand what that meant.

6 7TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

~
Pe
op
le

The consequences of all this?

Being the bottleneck.

It's been a long time since I've
enjoyed being the bottleneck. A
long time since I said goodbye to
that mindset and never wanted
to look back. From time to time I
still ended up being the
bottleneck (e.g. being the only
one knowing how to do a certain
thing), yet I usually took this as
an indicator to change the
situation. Having bottlenecks
and knowledge silos is neither
resilient for the system nor fun
for the individuals. It just
increases waiting times, triggers
unhelpful behavior (like taking
on a new task while waiting) and
more. Believe me, I'm totally
happy with not being the
bottleneck and I'm way better
able to contribute then.

My cognitive load exploded.

With all the points above I had
to keep way too many things in
mind. Way too many context
switches. Way too much
balancing and juggling. If one
thing dropped, way too often it
cascaded into other things. Once
more I realized what 100% (or
more) utilization really means: a

catastrophe. So many times I
simply could not think anymore;
you know, deeply think, really
think something through.
Staying too superficial just to
cope with the situation led me to
make less fortunate decisions. I
lost focus on what's actually
important and what can wait.
Trying to make all these switches
slowed my thinking to a halt. And
yet I tried to pull through instead
of taking breaks.

The more stressed I got, the
more I fell back to bad habits.

Like solo work, trying to solve
everything myself (so it's "faster"
and just "done") without pulling
others in (so more people could
help out in the future). Especially
in the first months this was a
missed chance. Another bad
habit: being unable to say no. I
know I'm a people pleaser, a
learned behavior from
childhood years, so I'm aware I
need to work on this. I do have
an accountability partnership
specifically for that reason, so
we can keep each other
accountable on keeping an eye
on our load. Practicing saying
"no" to opportunities, or "not

yet". Trying to delegate things,
sponsor other people instead of
taking on more things that are
not in our focus, outside the
area where we want to make the
biggest impact. End of last year
this worked well, yet this year I
learned that the higher my
stress levels, the lower my
boundaries to accept new work
load. This is something to keep
in close check.

Getting angry with myself and
the example I set.

Angry with myself that I let this
happen to me (which was not
helpful at all but just added
another layer of energy spent
and capacity used up). Angry
with myself that I felt the need to
pull through all this and cope
with the situation - despite me
never wanting to take on as
much anymore. The con-
tradiction alone. Also, I was well
aware being in a position of
leadership, and leading by
example taking on that much
and not being able to delegate
or take breaks, this is setting a
really bad example I did not
want for our culture. Working
late or on weekends? I was

always the first one telling my
teammates that this is not the
way to go (unless where really
needed to balance with life), and
that it's not good to set this bar
for the rest of the team who
might start thinking it's expected
from them. All this while I was
doing exactly that, just trying to
hide this from my team. While I
am also the one who advocates
for transparency! Oh my.

My body alerted me of the
elevated stress levels.

I mean, more than usual. I
started developing new physical
responses to stress to a level
that my body actually made me
notice - a first timer for me. This
was something I could not push
away yet really got me thinking.
It made me realize I really need
to stop this. Get out of this
situation as soon as possible.

No need to become the expert in one area, yet we should be able to help
each other out, reduce bottlenecks and waiting time, unblock each other,
being able to go on sick leave and also vacation without things piling up
for us in the meantime or worrying they won't get done. So with new
people on board, this task could only be done by me, naturally. Super
thankful that my new teammates are very open and supportive and not
hesitating to see beyond their own nose. They stepped up and took over
responsibility even if things were outside their usual comfort zone.

Taking up product work and sharing its responsibility in the team.

Our product owner had great news: his family got a new member! I really
appreciate him going on a long parental leave and also preparing the
team for it. He is still working one day per week, yet we all agreed to
spread the product responsibility across the team and see that we all
carry a bit of the load so it's not too much for anyone. Still, with me being
the one longest on the team and product, I ended up as natural contact
person for most people outside the team, even though it was
communicated differently. So many requests coming in! While I am only
seeing a fraction of it, I'm in awe of product owner work.

Also, we all in the team are now learning how to tackle user experience
in a better fashion, how to spread UX knowledge in the team and how to
support our researcher better with his work, and how to fill the gap of
other UX roles like design or writing. A lot more to learn on this path!

Our team's domain got lots of fresh people.

Since beginning of the year, a lot more new people joined our domain,
including two new persons on the domain leadership level. New people
bringing new energy and lots of ideas! Naturally, onboarding needed to
be done on domain level as well. Again, as being one of the persons
longest in the domain and also having the "Principal" seniority level,
sharing a lot of knowledge and experience ended up on my desk without
the possibility of delegating this work. Giving feedback to new initiatives,
doing my share helping to drive them forward, new sync meetings,
participating in domain workshops, and more.

Seeds planted over the last years in my colleagues' minds finally began
to sprout.

I really don't know what exactly happened, yet since beginning of the year
a lot of people reached out to me. Suddenly they were taking me up on
my continuous offers to give workshops or talks, to listen and give advice
where wanted, to support their own experiments and initiatives, and
more. I love seeing people this energized and acting on their ideas and
I'm happy to support. "People first" as a principle does not only apply to
my own team, so I didn't turn them down. Yet all these requests added
up for me.

Mentoring, coaching and an accountability partnership.

Over the last years, I had about one mentee at a time, sometimes one or
two more without the formal relationship. This year I got a new mentee
to nudge further on her journey - which is great! Also, this part of the job
comes with the seniority as well: growing more senior people. With my
mentee from last year we had agreed to continue the relationship as
accountability partners - on the topic of saying "no" (imagine).

In addition, I took on my very first coachee as an experiment for both our
growth as well. Each and every of these relationships have clear
boundaries and don't take up much time - yet overall they do add quite
a bit. Yet again: people first.

Co-creating and running a series of six leadership workshops.

I'm in a hybrid role as a principal engineer who's embedded on a cross-
functional team. This means that I spend part of my capacity on cross-
team initiatives to drive change on a different impact level. Over the last
years I've found a rough rule that worked nicely for me: one third of my
time I spend on everyday work on my team to evolve our product, one
third for thinking ahead and driving innovation within said team and
product, one third for initiatives outside my team, usually on a global
scale. Worked pretty well last year, helping me to focus on less work in
progress and also keep a sustainable pace. For this year, the main
initiative I chose to do outside my team was to pair facilitate a series of
six leadership workshops together with our coach Shiva Krishnan. I had
participated in these workshops in the previous year and found their
content to be very relevant and valuable to spread further. My experiment
was to build quality on yet another level here, setting the base line and
culture for good things to emerge. According to my experience, driving
specific testing and quality initiatives mostly failed when they clashed
with the existing culture.

This year, I wanted to work on the mindset part from yet another angle
and also build awareness on diversity, equity and inclusion topics as part
of these leadership workshops. Well - long story short, Shiva and I ended
up reworking each and every one of the six workshops, pulling them to a
higher level and building yet a better framework by doing so. The magic
of pairing! Any one of us alone would not even have imagined the end
result. Together we put in a lot of effort yet also had a way better outcome
in the end. I don't regret any moment working on these workshops - even
though it was way more work than anticipated, and we had put ourselves
up to keep hard absolute dates with each workshop.

There might have been more things that I've forgotten to list here. Yet you
can already see that there's no way that all of this would ever fit into a 40
hours work week when everything needs to take place at the same time
and the goal is to achieve all that in five to six months. Some colleagues
reached out with lots of requests, and when I explained my situation they
shared they can really relate and things can wait; while giving me yet
three more tasks. Sigh. My task list of additional "small things" to work on
grew to 40 tasks that all would take at least 15 minutes to 1 hour and I
just didn't know when to ever do them, while me being the only person
who could work at them. I felt I was set up for failure and adding to that
myself. Believe me, on each thing landing on my desk I pushed back way
harder than at any time in my career before, challenging every bit of work
if it really needed to be done, be done this way, be done by me, be done
by me alone, be done by time x, be needing my attendance - and yet way
too many things ended up with me anyway.

Way too often I was in back to back calls the whole day (with follow-up
tasks coming from them of course), while in the meantime I received so
many chat messages with way more tasks waiting for me. Yes I can pull
through this, and yet it will drain my energy levels completely. Way too
often I felt I'm playing a game of "Whac-A-Mole" without being ever able
to win - at least not on my own.

“ "I am not alone". This

reframing allowed me to break out of my

solo overwork behavior (that helped no

one), reach out to others earlier, and

accepting their help better.

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

https://twitter.com/shiv_krish

Focus on unblocking people.

Teach people how to help themselves and the team and then let them
do it. Let them be responsible of follow-up tasks instead of grabbing
any little further todo in addition, like setting up meetings or taking
notes or checking in with another person.

Invest in upskilling people, continuously.

Pairing added to that goal just as much as sharing knowledge in a fun
and realistic way. For example, I gave two operations and support
trainings that put my team in the actual situation of an incoming user
request or an alert by our product, while also enabling them to
investigate the situation and go through it. This helped a lot with
sharing why this work is important, why we need to bring our pieces of
knowledge together, and how to do it without making it a tedious
burden yet allowing us to learn from it.

Explain your situation and manage expectations.

Share your context in any interaction. Being open and transparent with
people helped a lot with their understanding and us seeing the full
picture. It also allowed us to find alternative ways to accomplish things
faster or with less effort.

Find sympathetic ears.

What really helped me was talking with a lot of people - people who
listened and I'm ever grateful for that. Sharing your situation and
speaking out loud helps reflection and becoming clear that this is not
a situation to stay in. It sometimes triggered other ideas what to try, or
re-established my confidence in doing my job; yet even if it only
helped make the other aware of my situation, talking already helped.

Refrain from taking on more on top.

Saying "no", "not yet", "not me". A lot. If you can't (as priorities change,
right?) communicate what goes instead - you can't do everything at
once.

Connect people.

Instead of taking things on your own desk, empower others to do so.
Sometimes all there's needed is to make people visible and connect
them.

Reduce your cognitive load and singletask.

Wherever possible. Do one thing at a time and complete that one thing
at a time before tackling the next one. Sometimes more stuff comes in
on which you can't decide right away, yet instead of keeping this in the
head just park it in a todo list or similar. Anything that freed my
thinking capacity to focus on the current task at hand helped.
Sometimes it also meant getting rid of a few smaller and less
important things just to free my mind again for the big important
impactful one. Anything to get calmer or stay calm enough and
maintain thinking capacity. If I'm drowning, my biggest value is gone:
being there for people, going deep thinking in different perspectives
and creating bridges and connecting people, driving experiments and
inspiring change. So I'd rather should help 10 people not 100.
Spreading myself too thin does not work.

Consider unplanned work.

No matter what we do, we will discover new things as we go. Whether
it's the tooling that suddenly does not want to work with us anymore,
or incidents taking over priority, or a personal crisis. Some things will
happen and shift previous plans. We need to keep this in mind and
enable us to act on new insights quickly.

Maintain your own space.

I need space to drive testing and quality topics in my team. I need
space to contribute pro-actively. I need space to help other teams and
people in the company as well. I need space to be helpful. The safer I
feel and the more space within constraints I have, the more ideas I get
and think positively about my work and the impact we can have
together. Sometimes I just needed space to tackle a few things on my
todo list - so I'm really thankful for my team giving me this space. Yet
remember: filling the day with back to back calls is the opposite of
maintaining space.

Make space for others to step up.

My new team achieved a lot of things I wanted to drive forward just by
getting the space to do so. Together, we finally tackled some long
waiting improvement points. We introduced integration tests for
consuming Kafka messages, added template testing for our frontend,
increased the level of observability of our backend, introduced actual
feature flags to decouple deploying from releasing, integrated first
accessibility testing to tackle this increasingly important quality aspect,
and introduced user tracking with Hotjar to get even more data and
make more informed product decisions. Yes, I nudged a bit on all these
topics, yet most of this was achieved by my teammates with me getting
out of the way.

Reclaim your calendar.

Setting my work and private calendars to tentative helped me a lot.
This can serve as a signal to others looking for free slots and having
them reach out to me directly, yet it mostly served as a signal to myself
when looking at my calendar. Screaming in my face: "no more extra
meetings during this time, don't schedule or accept if not absolutely
needed".

Reclaim your inboxes.

Responding to private emails only on weekends; just because this way
no further response could come in between and add to my load.

Prioritize sleep.

This grew very important, especially after my body made clear my
stress levels are too high. Cutting on sleeping hours is never the way
to go.

Make space for "me time", no matter what.

Canceling private appointments to get a little me time here and then.
Even if I just used it to watch another episode of my current series.
Anything to distract my mind from work.

Feeling overwhelmed, helpless, anxious.

Way too many times I broke into tears or screamed in frustration or
wanted to throw something. Anything. All this took up again time and
energy that I felt I needed to spend to resolve this work situation and
get out of it as soon as I can - while still being aware that this would
mean months. Several colleagues and friends repeatedly reached out
to me sharing their concerns that I'm stretched too thin and that I
really need to get things off my table. Yes, I know. I don't know how
though, and I'm sad it shows. I really appreciate you all for reaching
out - I still couldn't see any other way out than pulling through.

Of course that's not everything. There's more to life than work.

We're still living in a pandemic.

I learned that I am totally happy with continuous change at work and
drive improvements actively, yet especially in private settings I need
a constant to hold on to and give structure, like my schedule. Any
change in my daily routine takes a long time to establish new
automatisms around it - costing lots of energy. The constant change
of rules what's allowed and what not in the pandemic really drained
me. Rather give me a more restricted set of rules and keep it for
longer, I can live with that way better than having it change every few
days or weeks.

Family and friends having a hard time.

People were needing me in many different ways. We went through
lots of ups and downs. Having to solve a lot of things remotely with
people who are not used to work that way is a challenge in itself.
Solving problems I never had to solve before while conveying that
knowledge at the same time took a lot of energy from my side.

My personal projects and endeavors came to a full stop.

At first I tried to make time for them nonetheless, then I realized I had
to stop whatever I could. The last years I took on a lot and I'm aware
of that. At the same time, my personal projects served as a sort of
boundary for work, any hours outside working hours were simply
reserved for other things already which helped me to keep these
boundaries. They also gave me a lot of energy and allowed me to
learn a lot of different things. Yet they had to go - during the past
months I simply didn't know anymore how to ever manage that load
otherwise. Slowly, I am now taking up a bit of public speaking again,
yet mostly around existing sessions with the least effort possible.

Crossing my own boundaries for self-care way too many times.

I failed to keep up my personal goals to do things only for myself (like
games, sports or reading). Feeling guilty here as well and trying not
to.

Way too many private messages and communication.

While I heard many people struggling with the reduced connections
during the pandemic, I so often wished for a lot less. I am usually
receiving around 40 to 50 private emails every day, with around 10 I
really need to respond to. Usually I'd be fine with that, I learned to get
them out of the way quickly whenever I can. Also I'm happy when
people are reaching out! Yet in above situation over the last half year
these messages were way too many! Hence, seeing any kind of new
email or social media notification immediately made me cringe and
increased my stress levels.

If I've ever felt burned out or getting real close to it, it was over the
last months. A really scary place to be that I wanted to get out of as
soon as possible. So I did work on finding my own way out. Oh yeah,
this came on top - yet I felt this would be my saver. I tried a lot of
things, yet here are strategies that indeed helped me on the long run
in my specific context and situation. They mostly resolve around
setting boundaries and spreading the load by enabling people to
help out.

Take breaks. Really

I need to take breaks even if I feel I don't have the time for them.
Sometimes just getting away from the table helps, like when making
myself a new tea even though I didn't need one yet.

Take time to reflect and think.

Sit down and reflect on what worked in times that resembled the
current one, like back when I was working on big teams. The past
months I continued reflecting and taking note of my thoughts in a
journal. In hindsight this helped me a lot to unload myself of
emotions or thoughts as well as to clear up my thinking. I had
discovered over the last years that writing helps my thinking, so
journaling is a great way for me to get my thoughts straight. If you
wonder, I mostly just take bullet points, as little as needed, and
sometimes thoughts are just flowing and filling up the white space.

Reduce the load in progress.

Making principles like "stop starting, start finishing" very explicit again
so people start looking around if they could help out someone else
before starting something new, or just not start something new not
to increase our work in progress even further. Cut down what you're
working on, and then cut down even more.

Remember you are not alone.

As shared, I'm a people pleaser and this often drives my behavior. I
am using an "allower message" as antidote, so whenever I perceive
being a failure (meaning I cannot please all people), I remind myself
of a specific message to ground myself again. "Please yourself first"
worked well for me last year. This year I changed it to "I am not alone".
This reframing allowed me to break out of my solo overwork behavior
(that helped no one), reach out to others earlier, and accepting their
help better.

Refrain from solo work.

My current team is not yet familiar with ensembling, yet open for
pairing. So I paired a LOT. To the point where I committed to testing
only together with other people - if we didn't find time together, well
this thing did not get done. Giving myself permission to use that time
to finish other things instead, and not to use off hours to test
something. I deliberately went slow here so we all could go fast in the
future, together. When things are valuable to us, we need to own them
together. Sharing knowledge is one thing, sharing activities is key.

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

ISSUE 02/2021
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

ISSUE 02/2021
PEOPLE

11TEA-TIME WITH TESTERS ISSUE #02/2021

In the last three months, I have been interviewing multiple QA Leads and Managers about whether it is necessary to have a tech degree to have
a successful QA career.

The reason behind my question was the fact that I have changed my career to tech in my 30s from being a lawyer. I did a coding bootcamp and
then easily found a job as a front-end developer/QA. I found out that I like the QA profession better so have been following that path for now.
But since there are other people who might want to change their career to tech as well here are the results of my QA interviews:

DO YOU NEED A TECH
DEGREE TO SUCCEED AS A
TESTER?

Accept what you cannot change.

We don't have everything in our hands. Accepting this can be hard, yet
many times I can only change how I cope with what comes.

Be okay with being not okay and focus on finding a way back to okay.

As soon as possible. In the end it boils down to that. I cannot be of any
help to others, especially on the long run, if I don't take care of myself.
Remember the oxygen mask and why we need to put it on ourselves first.

Take time to socialize and have a good time with people.

With my new team starting to grow together, I drew a lot of energy from
any social moment we had, great conversations as well as having fun
playing a game together. I desperately need the bonding and building
these relationships on more than just work topics.

Celebrate achievements.

I sometimes really need to acknowledge what I managed to do and allow
myself to feel not only overwhelmed but also take in good energy from
these achievements. The trick is: even if I don't feel like it, celebrate
nonetheless. With the responses the good feelings come along. Looking
back I'm thankful I did and can now feel more proud than at that point
in time.

With all that, after half a year, I finally feel I'm in a better place again.
Most of the topics on my desk that had absolute dates attached are
done, people around me are finally enabled to help out, and I have
capacity again to deal with what's still there while remembering not to
take on too many new ones at a time. The rest can wait, there's a time
coming for that.

Huge kudos and gratitude to my new team - I really appreciate you for
stepping up big time, feeling responsible for the whole product and
team, for more than your own area of expertise. For being ready to take
over unfamiliar things outside your comfort zone. For sharing the load
and helping each other. For learning every day with each other. For
experimenting. For really having my back when I went on vacation or
spoke at a conference. For listening. For sending me on vacation early. I
know some of you feel you're just doing your work - yet let me make this
clear again: yes, you are doing your work, and I appreciate you for doing
it well.

Huge kudos to so many people of our lovely communities - thank you all
for listening to me in this time or for bearing with me canceling
appointments, not accepting pairing requests anymore, and not being
there for a lot of things. I am coming back to all the lovely community
stuff, yet I need to remember to use my energies wisely and look for
synergies where I can.

Huge kudos to my friends for reaching out, and especially to my best
friend and sister Marlene Guggenberger - thank you for honoring me as
first listener of your first novels (which are amazing, so people who
understand German should definitely check them out!). I loved the live
reading as the story progressed, it was the time off my head that I
needed on many of these days and hence a real life saver for me! Not
taken for granted.

The one most helpful thing I've learned to prevent a situation as
described above worked also as the way out of it.

Dear future me. I am not alone.

ISSUE 01/2021
PEOPLE

ISSUE 02/2021
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

https://www.linkedin.com/in/marlene-guggenberger-0735a9122/
https://www.bod.de/buchshop/catalogsearch/result/index/?bod_issue=Die+Abenteuer+der+K%C3%ADolesh-WG&q=Die+Abenteuer+der+K%C3%ADolesh-WG#products
https://www.bod.de/buchshop/catalogsearch/result/index/?bod_issue=Die+Abenteuer+der+K%C3%ADolesh-WG&q=Die+Abenteuer+der+K%C3%ADolesh-WG#products

Attitude is more than education

All of the interviewed QA Leads/Managers agreed that QA candidates’ attitude towards the job is much more important than having a tech education.
However, this might be slightly different based on the country. For example, in Canada you might need to have a tech degree to get a QA job. The
reason behind it is the fact that QAs in Canada are more of QE – quality engineers expected to be able to program as well. In contrast, in Europe it
is rather easy to get a QA job even if you don’t have tech degree. The reason behind it is the lack of skilled people in Europe (now mainly due to
Covid and limited immigration programs) and the vast amount of available work.

Technical skills can be learned

Yes, everybody agreed that technical skills can be learned. People just need to be willing to learn new things. That means, if you say at the interview
for a QA position that you don’t like learning or feel like you have learned everything yet, you will probably not get the job. You will need to have
some aptitude for tech as well as curiosity. Being curious will help you in your QA (and really any other) career immensely.

Interviewers can tell whether you will be able to learn technical skills

Most interviewers will test your technical skills. This can include hypothetical question about how to test apps you use daily or actual software
testing. Either way, the interviewer wants to know your thought process more than whether you can solve a certain problem. It helps if you practice
this skill in advance so that you are not surprised.

Interviewers can tell whether you will be able to learn technical skills

Most interviewers will test your technical skills. This can include hypothetical question about how to test apps you use daily or actual software
testing. Either way, the interviewer wants to know your thought process more than whether you can solve a certain problem. It helps if you practice
this skill in advance so that you are not surprised.

No need for software testing certification

Most interviewers agreed that having a software testing certification does not make you a great software tester. However, having a professional
certification for example can show your determination to become a QA. It was also interesting to read that QA Leads/Managers who came from rather
conservative countries recommended to get a certification. On the other hand, QA Leads/Managers from less conservative countries or with more of
an open-minded background (for example psychology) believed certifications are rather useless.

Things not to say at the interview

Last, but not least, it was interesting to find out what the QA Leads/Managers thought as a no-no at an interview. As expected, they did not like when
candidates were cocky and felt that they do not need to learn anything new. Some of the QA Leads/Managers were also of the opinion that not
asking questions at an interview or thinking of software testing only as a tech entry job made a bad impression on them.

In conclusion it was great to find out that tech degree is not necessary for entering the tech industry as a QA Engineer/Software Tester. It is much
more important to love learning new things and be curious than having diplomas and certifications. And that is a great news for people changing
careers in their 30s to tech.

HELENA H.

–
Helena is a lawyer and fire acrobatic performer turned QA who enjoys learning new things. She
also loves helping other people to achieve their dreams through her blog youintechnology.com.

ISSUE 01/2021
PEOPLE

ISSUE 02/2021
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

https://youintechnology.com/

I recently came across an article from Adam
Piskorek about the way Google tests its software.

While I was already familiar with the book How
Google Tests Software (by James Whittaker, Jason
Arbon et al, 2012), Adam’s article introduced
another newer book about how Google
approaches software engineering more generally,
Software Engineering at Google: Lessons Learned
from Programming Over Time (by Titus Winters,
Tom Manshreck & Hyrum Wright, 2020).

The following quote in Adam’s article is lifted
from this newer book and made me want to dive
deeper into the book’s broader content around
testing*:

Attempting to assess product quality by

asking humans to manually interact with

every feature just doesn’t scale. When it

comes to testing, there is one clean

answer: automation.

Chapter 11 (Testing Overview), p210 (Adam
Bender)

I was stunned by this quote from the book. It felt
like they were saying that development simply
goes too quickly for adequate testing to be
performed and also that automation is seen as
the silver bullet to moving as fast as they desire
while maintaining quality, without those pesky
slow humans interacting with the software
they’re pushing out.

But, in the interests of fairness, I decided to study
the four main chapters of the book devoted to
testing to more fully understand how they arrived
at the conclusion in this quote – Chapter 11 which
offers an overview of the testing approach at
Google, chapter 12 devoted to unit testing,
chapter 13 on test doubles and chapter 14 on
“Larger Testing”. The book is, perhaps
unsurprisingly, available to read freely on Google
Books.

I didn’t find anything too controversial in chapter
12, rather mostly sensible advice around unit
testing. The following quote from this chapter is
worth noting, though, as it highlights that
“testing” generally means automated checks in
their world view:

After preventing bugs, the most important

purpose of a test is to improve engineers’

productivity. Compared to broader-scoped

tests, unit tests have many properties that

make them an excellent way to optimize

productivity.

Chapter 13 on test doubles was similarly
straightforward, covering the challenges of
mocking and giving decent advice around when
to opt for faking, stubbing and interaction
testing as approaches in this area. Chapter 14
dealt with the challenges of authoring tests of
greater scope and I again wasn’t too surprised
by what I read there.

It is chapter 11 of this book, Testing Overview
(written by Adam Bender), that contains the
most interesting content in my opinion and the
remainder of this blog post looks in detail at
this chapter.

The author says:

since the early 2000s, the software

industry’s approach to testing has

evolved dramatically to cope with the

size and complexity of modern software

systems. Central to that evolution has

been the practice of developer-driven,

automated testing.

I agree that the general industry approach to
testing has changed a great deal in the last
twenty years. These changes have been driven
in part by changes in technology and the ways
in which software is delivered to users. They’ve
also been driven to some extent by the desire
to cut cost and it seems to me that focusing
more on automation has been seen
(misguidedly) as a way to reduce the overall
cost of delivering software solutions. This focus
has led to a reduction in the investment in
humans to assess what we’re building and I
think we all too often experience the results of
that reduced level of investment.

Automated testing can prevent bugs from

escaping into the wild and affecting your

users. The later in the development cycle

a bug is caught, the more expensive it is;

exponentially so in many cases.

Given the perception of Google as a leader in IT,
I was very surprised to see this nonsense about
the cost of defects being regurgitated here. This
idea is “almost entirely anecdotal” according to
Laurent Bossavit in his excellent The Lep-
rechauns of Software Engineering book and he
has an entire chapter devoted to this particular
mythology. I would imagine that fixing bugs in
production for Google is actually inexpensive
given the ease with which they can go from
code change to delivery into the customer’s
hands.

LEE HAWKINS

–
In the IT industry since 1996 in both development and
testing roles, Lee has spent most of his career helping
Quest Software teams across the world to improve the
way they build, test and deliver software. He currently
helps teams and organizations to improve their
testing and quality practices through his software
testing consultancy, Dr Lee Consulting.

Lee considers that his testing career really started in
2007 after attending Rapid Software Testing with
Michael Bolton. Lee was the co-founder of the TEAM
meetup group in Melbourne and co-organized the
Australian Testing Days 2016 conference. He was the
Program Chair for the CASTx18 testing conference in
Melbourne and also co-organized Testing in Context
Conference Australia 2019.

He is a co-founder of the EPIC TestAbility Academy, a
software testing training programme for young adults
on the autism spectrum. Lee is the author of An
Exploration of Testers, a book formed of contributions
from the worldwide testing community in which testers
share their testing, career and life lessons.
He is a frequent speaker at international testing
conferences and blogs on testing at Rockin’ And
Testing All Over The World. When not testing, Lee is an
avid follower of the UK rock band, Status Quo; hence
his Twitter handle @therockertester.

LinkedIn: https://www.linkedin.com/in/lee-hawkins-
3574148

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

IS TALKING
ABOUT
SCALING
HUMAN
TESTING
MISSING
THE POINT?

https://hvitis.dev/google-qa-testing-article-on-manual-and-automation-test-engineers-sdet
https://twitter.com/@hvitis_
https://twitter.com/@hvitis_
https://www.amazon.com.au/Google-Tests-Software-James-Whittaker/dp/0321803027/
https://www.amazon.com.au/Google-Tests-Software-James-Whittaker/dp/0321803027/
https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB/
https://www.amazon.com/Software-Engineering-Google-Lessons-Programming-ebook-dp-B0859PF5HB/dp/B0859PF5HB/
https://leanpub.com/leprechauns
https://leanpub.com/leprechauns
https://www.drleeconsulting.com.au
https://leanpub.com/anexplorationoftesters
https://leanpub.com/anexplorationoftesters
https://therockertester.wordpress.com
https://therockertester.wordpress.com

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Much ink has been spilled about the subject of

testing software, and for good reason: for such an

important practice, doing it well still seems to be a

mysterious craft to many.

I find the choice of words here particularly interesting,
describing testing as “a mysterious craft”. While I think of
software testing as a craft, I don’t think it’s mysterious although
my experience suggests that it’s very difficult to perform well.
I’m not sure whether the wording is a subtle dig at parts of the
testing industry in which testing is discussed in terms of it being
a craft (e.g. the context-driven testing community) or whether
they are genuinely trying to clear up some of the perceived
mystery by explaining in some detail how Google approaches
testing in this book.

The ability for humans to manually validate every

behavior in a system has been unable to keep pace

with the explosion of features and platforms in most

software. Imagine what it would take to manually

test all of the functionality of Google Search, like

finding flights, movie times, relevant images, and of

course web search results… Even if you can

determine how to solve that problem, you then need

to multiply that workload by every language,

country, and device Google Search must support, and

don’t forget to check for things like accessibility and

security. Attempting to assess product quality by

asking humans to manually interact with every

feature just doesn’t scale. When it comes to testing,

there is one clear answer: automation.

(note: bold emphasis is mine)

We then come to the source of the quote that first piqued my
interest. I find it interesting that they seem to be suggesting the
need to “test everything” and using that as a justification for

saying that using humans to interact with “everything” isn’t
scalable. I’d have liked to see some acknowledgement here that
the intent is not to attempt to test everything, but rather to make
skilled, risk-based judgements about what’s important to test in
a particular context for a particular mission (i.e. what are we
trying to find out about the system?). The subset of the entire
problem space that’s important to us is something we can
potentially still ask humans to interact with in valuable ways.
The “one clear answer” for testing being “automation” makes
little sense to me, given the well-documented shortcomings of
automated checks (some of which are acknowledged in this
same book) and the different information we should be looking
to gather from human interactions with the software compared
to that from algorithmic automated checks.

Unlike the QA processes of yore, in which rooms of

dedicated software testers pored over new versions of

a system, exercising every possible behavior, the

engineers who build systems today play an active and

integral role in writing and running automated tests

for their own code. Even in companies where QA is a

prominent organization, developer-written tests are

commonplace. At the speed and scale that today’s

systems are being developed, the only way to keep up

is by sharing the development of tests around the

entire engineering staff.

Of course, writing tests is different from writing good

tests. It can be quite difficult to train tens of

thousands of engineers to write good tests. We will

discuss what we have learned about writing good

tests in the chapters that follow.

I think it’s great that developers are more involved in testing
than they were in the days of yore. Well-written automated
checks provide some safety around changing product code and
help to prevent a skilled tester from wasting their time on known
“broken” builds. But, again, the only discussion that follows in
this particular book (as promised in the last sentence above) is
about automation and not skilled human testing.

Fast, high-quality releases

With a healthy automated test suite, teams can

release new versions of their application with

confidence. Many projects at Google release a new

version to production every day—even large projects

with hundreds of engineers and thousands of code

changes submitted every day. This would not be

possible without automated testing.

The ability to get code changes to production safely and quickly
is appealing and having good automated checks in place can
certainly help to increase the safety of doing so. “Confidence” is
an interesting choice of word to use around this (and is used
frequently in this book), though – the Oxford dictionary
definition of “confidence” is “a feeling or belief that one can have
faith in or rely on someone or something”, so the “healthy
automated test suite” referred to here appears to be one that
these engineers feel comfortable to rely on enough to say
whether new code should go to production or not.

The other interesting point here is about the need to release new
versions so frequently. While it makes sense to have deployment
pipelines and systems in place that enable releasing to
production to be smooth and uneventful, the desire to push out
changes to customers very frequently seems like an end in itself
these days. For most testers in most organizations, there is
probably no need or desire for such frequent production
changes so deciding testing strategy on the perceived need for
these frequent changes could lead to goal displacement – and
potentially take an important aspect of assessing those changes
(viz. human testers) out of the picture altogether.

If test flakiness continues to grows you will experience

something much worse than lost productivity: a loss of

confidence in the tests. It doesn’t take needing to

investigate many flakes before a team loses trust in

the test suite, After that happens, engineers will stop

reacting to test failures, eliminating any value the test

suite provided. Our experience suggests that as you

approach 1% flakiness, the tests begin to lose value. At

Google, our flaky rate hovers around 0.15%, which

implies thousands of flakes every day. We fight hard to

keep flakes in check, including actively investing

engineering hours to fix them.

It’s good to see this acknowledgement of the issues around
automated check stability and the propensity for unstable
checks to lead to a collapse in trust in the entire suite. I’m
interested to know how they go about categorizing failing checks
as “flaky” to be included in their overall 0.15% “flaky rate”, no
doubt there’s some additional human effort involved there too.

Just as we encourage tests of smaller size, at Google,

we also encourage engineers to write tests of narrower

scope. As a very rough guideline, we tend to aim to

have a mix of around 80% of our tests being narrow-

scoped unit tests that validate the majority of our

business logic; 15% medium-scoped integration tests

that validate the interactions between two or more

components; and 5% end-to-end tests that validate

the entire system. Figure 11-3 depicts how we can

visualize this as a pyramid.

It was inevitable during coverage of automation that some kind
of “test pyramid” would make an appearance! In this case, they
use the classic Mike Cohn automated test pyramid but I was
shocked to see them labelling the three different layers with
percentages based on test case count. By their own reasoning,
the tests in the different layers are of different scope (that’s why
they’re in different layers, right?!) so counting them against each
other really makes no sense at all.

”This description of what exploratory
testing is and what it’s best suited to
are completely unfamiliar to me, as a
practitioner of exploratory testing for

fifteen years or so.
I don’t treat the software “as a puzzle to be broken” and I’m not even sure what it

would mean to do so.

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Our recommended mix of tests is determined by our

two primary goals: engineering productivity and

product confidence. Favoring unit tests gives us high

confidence quickly, and early in the development

process. Larger tests act as sanity checks as the

product develops; they should not be viewed as a

primary method for catching bugs.

The concept of “confidence” being afforded by particular kinds of
checks arises again and it’s also clear that automated checks are
viewed as enablers of productivity.

Trying to answer the question “do we have enough

tests?” with a single number ignores a lot of context

and is unlikely to be useful. Code coverage can provide

some insight into untested code, but it is not a

substitute for thinking critically about how well your

system is tested.

It’s good to see context being mentioned and also the
shortcomings of focusing on coverage numbers alone. What I
didn’t really find anywhere in what I read in this book was the
critical thinking that would lead to an understanding that
humans interacting with what’s been built is also a necessary
part of assessing whether we’ve got what we wanted. The closest
they get to talking about humans experiencing the software in
earnest comes from their thoughts around “exploratory testing”:

Exploratory Testing is a fundamentally creative

endeavor in which someone treats the application

under test as a puzzle to be broken, maybe by

executing an unexpected set of steps or by inserting

unexpected data. When conducting an exploratory test,

the specific problems to be found are unknown at the

start. They are gradually uncovered by probing

commonly overlooked code paths or unusual

responses from the application. As with the detection

of security vulnerabilities, as soon as an exploratory

test discovers an issue, an automated test should be

added to prevent future regressions.

Using automated testing to cover well-understood

behaviors enables the expensive and qualitative

efforts of human testers to focus on the parts of your

products for which they can provide the most value –

and avoid boring them to tears in the process.

This description of what exploratory testing is and what it’s best
suited to are completely unfamiliar to me, as a practitioner of
exploratory testing for fifteen years or so. I don’t treat the
software “as a puzzle to be broken” and I’m not even sure what
it would mean to do so. It also doesn’t make sense to me to say
“the specific problems to be found are unknown at the start”,
surely this applies to any type of testing? If we already know what
the problems are, we wouldn’t need to test to discover them. My
exploratory testing efforts are not focused on “commonly
overlooked code paths” either, in fact I’m rarely interested in the
code but rather the behaviour of the software experienced by the
end user. Given that “exploratory testing” as an approach has
been formally defined for such a long time (and refined over that
time), it concerns me to see such a different notion being
labelled as “exploratory testing” in this book.

TL;DRs

Automated testing is foundational to enabling

software to change.

For tests to scale, they must be automated.

A balanced test suite is necessary for maintaining

healthy test coverage.

“If you liked it, you should have put a test on it.”

Changing the testing culture in organizations takes

time.

In wrapping up chapter 11 of the book, the focus is again on
automated checks with essentially no mention of human testing.
The scaling issue is highlighted here also, but thinking solely in
terms of scale is missing the point, I think.

The chapters of this book devoted to ‘testing” in some way cover
a lot of ground, but the vast majority of that journey is devoted
to automated checks of various kinds. Given Google’s reputation
and perceived leadership status in IT, I was really surprised to
see mention of the “cost of change curve” and the test
automation pyramid, but not surprised by the lack of focus on
human exploratory testing.

Circling back to that triggering quote I saw in Adam’s blog
(“Attempting to assess product quality by asking humans to
manually interact with every feature just doesn’t scale”), I didn’t
find an explanation of how they do in fact assess product quality
– at least in the chapters I read. I was encouraged that they used
the term “assess” rather than “measure” when talking about
quality (on which James Bach wrote the excellent blog post,
Assess Quality, Don’t Measure It), but I only read about their
various approaches to using automated checks to build
“confidence”, etc. rather than how they actually assess the
quality of what they’re building.

I think it’s also important to consider your own context before taking Google’s ideas as a model for your own organization. The vast
majority of testers don’t operate in organizations of Google’s scale and so don’t need to copy their solutions to these scaling problems.
It seems we’re very fond of taking models, processes, methodologies, etc. from one organization and trying to copy the practices in an
entirely different one (the widespread adoption of the so-called “Spotify model” is a perfect example of this problem).

Context is incredibly important and, in this particular case, I’d encourage anyone reading about Google’s approach to testing to be
mindful of how different their scale is and not use the argument from the original quote that inspired this post to argue against the
need for humans to assess the quality of the software we build.

* It would be remiss of me not to mention a brilliant response to this same quote from Michael Bolton – in the form of his 47-part Twitter
thread (yes, 47!).

https://www.satisfice.com/blog/archives/487091
https://twitter.com/michaelbolton/status/1379820945125281806

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

22 23TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Coaching
Last year I went through a nine
day training to become an ICF
Coach. During that course I had
many great insights. One of them
relates to the Coach in the
context of Software
Development. A few times I’ve
labeled myself Test Coach or
Quality Coach but I struggled a
bit with those titles as well. I just
felt they didn’t really do justice
to my work. In the context of
coaching a coach is an expert on
the process of coaching and is
someone who facilitates
learning.

“A coach is an expert on the
process of coaching and is
someone who facilitates
learning. “

The client is the expert but the
coach helps the client to unlock
their potential to maximize their
own performance. A skilled
coach knows that the individual
has the answer to their own
problems.

A coaching approach
Why I struggled with titles like
Test Coach became very obvious
during my coach training. I was
presented with the following
model, “The flower”, created by

Polhage & Lundberg, who also
run the training (the model is
originally described in Swedish
and this one has been visually
modified by me). They
differentiate between the coach

as a profession and having a
coaching approach. We can
always apply a coaching
approach whether it’s in our
daily life or at work.

The flower petals represents
several roles which we might
step into during our daily life or
at work. The Coach is one of
these roles (and the one I was in
training for).

You can move between these
roles and decide who to be in
different situations. As an
example, sometimes you
need to take decisions based
on your responsibilities
which makes you the
Decision maker. The empty
petal is left for you to decide
what to put in there. Your
flower might have many more
petals.

No matter what profession or
role you have you can always
apply a coaching approach.
This means how you act and
relate to the values of
coaching.

The root system represents
eight characteristics to
consider for constructive
communication, which are
used in a coaching approach.

I quickly realized why I have
never been very fond of the
title Test Coach. It doesn’t
fully reflect what I do or who
I am. I am a subject matter
expert in testing trying to
help an organization, a team
or an individual to improve
their testing by guiding them
and showing what to do, how
they can do it and why.

What title you carry is not as important as the approach you choose.

Are you really a Test
Coach?

”I am a subject matter
expert

in testing trying to help an organization, a team or

an individual to improve their testing by guiding

them and showing what to do, how they can do it

and why.

For many years we have seen
different kinds of coaches
appearing within software
development. As more and more
companies strive to become
agile, various types of roles are
becoming obsolete or
transformed into something
different. The most prominent
one seems to be Agile Coach. In
the software testing domain it is
the Test Coach or the Quality
Coach.

The transformation and changes
in expectations of a role have in
my experience caused some
identity crisis within the testing
profession. Even though there is

a need for testing many
companies choose to remove
the tester as a role. (This post is
however not about testers so I
will not continue down that
road).

As for myself I’ve been struggling
to put a label on the work that I
do. For those who know me I am
not a big fan of titles and labels,
although they can be helpful in
some contexts. My work for the
last few years have focused on
transformation and how testing
needs to be interlaced with
development. Many of the
companies I’ve worked with do
not even have testers.

MARIA KEDEMO
"Black Koi Consulting"

–
Maria is a generalist with a
deep knowledge in software

testing and agile development.

She has been working in
software development for over
twenty years in many different
roles and industries. Since 2018
she has her own company Black

Koi Consulting.

What she appreciates the most
in each and every assignment

she’s had is the learning
opportunities. Maria loves

sharing her experiences and
helping others to improve. She

has spoken and organized
workshops at many national

and international conferences.
Occasionally she shares her

thoughts on
mkedemo.wordpress.com

http://www.polhagelundberg.se/kurser_page/diplomerad-coach-icf/
http://www.polhagelundberg.se/kurser_page/diplomerad-coach-icf/
http://www.polhagelundberg.se/kurser_page/diplomerad-coach-icf/

ISSUE 02/2021
PEOPLE

ISSUE 02/2021
PEOPLE

24 25TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

But I am also a Decision Maker, a Teacher, an Inspirer and a
Mentor (for those who choose me to mentor them). I shift a lot
in between all of these. One role I have never used at work is the
Coach. However I often apply a coaching approach. This is an
approach where I ask questions, where I use my curiosity to
understand where the team or individual is right now and where
I display my courage to challenge and ask “uncomfortable”
questions. Focusing on what works and what moves us forward
is also part of what I apply in my daily job whether my title is
Project Manager, Test Coach or Scrum Master.

The only time I have been the Coach and only a coach is when I
am a professional Coach in an agreement with a client.

Coaching in software testing

I recently had a short assignment where I was asked to coach a
tester. She needed someone to talk to regarding her own journey
where she was leading a change in her organization. In the
beginning I found myself struggling with who to be. Biased by my
recent experiences as a Professional Coach I started off in that
role but quickly understood that my client needed something
different. The focus was more related to guidance around the
change she was implementing at work rather than her own
journey. Sometimes it was hard to separate her own growth from
the approach to testing that she was implementing.

Something that is very important is the agreement that you come
up with before starting the sessions. The purpose of that
agreement is to build trust and set expectations. Though this
situation was a bit new for both myself and my client we decided
to keep an open dialogue along the way to make sure she got
value from our sessions.

My learning experience here is that it is not as black and white.
What title you carry is not as important as the approach you
choose.

During these sessions I used a coaching approach – actively
listening, asking questions, driving my client to find her own
solutions based on where she and her team are right now. In the
cases where she wanted me to share my experience and
thoughts, I did that as well.

What are your thoughts regarding coaches in Software
Development/Testing?

References

Polhage & Lundberg

International Coaching Federation

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

http://www.polhagelundberg.se/
https://coachingfederation.org/
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com

ALAN PAGE
–

Alan has been improving software quality
since 1993 and is currently a Senior
Director of Engineering at Unity
Technologies. Previous to joining Unity in
2017, Alan spent 22 years at Microsoft
working on projects spanning the
company – including a two-year position
as Microsoft’s Director of Test Excellence.

Alan was the lead author of the book
“How We Test Software at Microsoft”,
contributed chapters for “Beautiful
Testing”, and “Experiences of Test
Automation: Case Studies of Software Test
Automation”. His latest ebook (which is a
few years old, but still relevant) is a
collection of essays on test automation
called “The A Word: Under the Covers of
Test Automation”, and is available on
leanpub.

quality. Sometimes, but not
always, the ‘accelerant’ here is
the activity (and output) of
testing.

Speaking of which (Modern
Testing), could you tell our
readers more about it? Where
did the idea come from? What
made you develop it further?
Why is it calledModern Testing?

Years ago, my podcast partner
Brent Jensen and I were
beginning to see some changes
in the way software was
developed. As teams moved to
Agile, we were seeing teams
improve quality and delivery
with fewer test specialists, and
we were seeing some of those
teams see success without

Eventually we came up with a set
of Principles to describe what we
were talking about. They’re
based on what we were seeing
as well as some of the books we
were reading and that we found
helpful (e.g. The Lean Startup by
Eric Ries).

The very first time I spoke about
the modern testing principles in
public, I was afraid people would
get scared, or I thought at the
very least they would disagree. I
was surprised that a bit of the
opposite happened when
several people approached me
and told me I had just given a
name to the way their team
worked. Since then, dozens, if
not hundreds of people have
told me the same thing.

Let me ask the most important
question before we proceed. Do
you like testing? Why if yes and
why not if no?

Of course I like testing. I do it all
the time. I’m a discerner, so I
evaluate, judge, and question
things constantly. While on the
surface, I do a lot of things that
aren’t really “traditional” testing
anymore (meaning I don’t spend
significant time exploratory
testing or writing testing tools), I
apply my hunger for knowledge
in asking the right questions in
order to help coach teams
towards delivering better quality.

In the second principle of
Modern Testing, we tried to
capture this aspect of helping -
or accelerating a team's ability to
ship more quickly, and with high

dedicated testers. We saw teams
use data and monitoring to
accelerate their delivery of
quality software.

We also saw teams making
mistakes as they moved down
this path.

We began our podcast as a way
to help testers and teams
navigate the changes we were
seeing. Eventually, we began to
refer to it as “Modern Testing” -
even though it’s not really about
testing, and it’s not really that
modern. We just called it that to
differentiate it from more
“traditional” methods where
testing was done late, and often
by a separate - and sometimes
isolated team.

IN
TE

R
V
IE
W

Where is testing
profession heading to?
What does it take to
get the Devs do
testing? How do we
measure the success
of Modern Testing?
Let’s ask Alan Page!

and currently lead teams that
deliver Unity’s service infrastruc-
ture, developer tools, reliability
engineering, documentation,
and quality coaching. Quite a
variety of roles, but all stuff that
leads to customer’s having a
quality experience using any of
our app sdks or services.

It’s a pleasure meeting you
once again (virtually this time),
Alan. How have you been and
what are you up to?

Like most people, I’ve been
spending a lot of time at home
over the past fifteen months. My
dog, Terra, has been pretty happy
with the situation, and has kept
me company during a lot of long
meetings on Zoom. I’ve been at
Unity for over four years now,

ISSUE 02/2021
OVER A CUP OF TEA WITH ALAN PAGE

ISSUE 02/2021
OVER A CUP OF TEA WITH ALAN PAGE

26 27TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

https://leanpub.com/TheAWord/

You have been a musician too and have been working in the
engineering field. What is easier? Composing music that people
would love or building software that people would use happily?

When I studied composition, I studied the history of a lot of
composers, including a lot of the more avant-garde 20th century
composers. John Cage wrote a lot of great music that I like a lot, but
he’s probably most famous for his 4’33”, which is 4 minutes and 33
seconds of silence, where the performers are instructed not to play
their instruments during the entirety of the works’ three movements.
You could argue, “that’s not music!”, but Cage’s intent - like a lot of the
other avant-garde artists of the time was that whether it’s a musical
score, a painting, or whatever - the art is the audience’s reaction to the
medium. If the audience chooses to fidget in their seat, clear their
throat, or yell obscenities and leave, they’ve had a reaction, and, in a
sense, art has been made.

What does this have to do with the question? Well, I’d say that
composing is more difficult. For most of the software I work on these
days, the feedback loop from idea to customer feedback is pretty
quick. Iterative and adaptive software development give us a big
advantage in making software that people use happily. There are
opportunities for a little of that same style feedback in composing
music - I often would write something and then convince an ensemble
to play it for me and offer some feedback - but usually around
orchestration or idiomatic traits of the instruments - e.g. “that part in
the middle felt awkward to play”, or “I feel like the trumpet overpowers
the flute in the coda”. That’s all great feedback that helped me
improve compositions, but ultimately, those musicians aren’t the ones
who ultimately need to react to my art. It’s much harder to get a room
full of music enthusiasts to come to iteration after iteration of a piece
of music and give me quantitative feedback on improving it.

They say culture eats strategy for breakfast. Do you think organi-
zations’ businessmodels (or revenuemodels) eat testing culture for
breakfast too?

I’m pretty sure the “they” in this case was Peter Drucker - who meant
that the way your org works (the culture) will have far more influence
on the outcome than strategy (or tools, for that matter).

I don’t know if the same is true for business models and testing
culture. In fact, I could argue that a culture of quality (which includes
more than just testing) has a significant impact on business and
revenue goals. It’s the people that execute the strategy and processes
- and the way people work that drives business revenue - not the
other way around.

There are a lot of references to the cost of quality, but I believe that a
good approach to quality and testing is a business advantage. When
the entire team is focused on testing and quality, products ship more
quickly, and require less re-work - making them cheaper to build in
the long run. Furthermore, the tight feedback loops (which come from
having the ability to update more often), give you a much better
chance of solving your customers' problems in a way they enjoy.

You have been in the industry for a long time and have been in
senior positions too. When it comes to making a trade-off, why is
that it often happens at the cost of quality and then naturally at the
cost of software testing?

As I mentioned in my previous answer, I don’t think testing has to be
a cost. I agree that it is often a cost though - especially when testing
is done mostly at the end of the project or by a team isolated from the
team developing the software.

I think teams choose to cut on testing because they way they’ve
planned for it is expensive. I think if the whole team is involved in
testing as a forethought then it’s difficult (or impossible) to cut costs
by sacrificing testing. It’s just when testing is bolted on late, or
approached as a separate phase that it gets expensive and more easy
to cut.

With all the new tech and tools at our disposal, do you think the
software testing industry is inclining a lot towards the
“engineering” aspect of it and ignoring the “craftsmanship” part?
How do you suggest we find the right balance between the two?

Time for my obligatory Robert Pirsig reference. In Zen and the Art of
Motorcycle Maintenance, Pirsig says (paraphrased) that care and
quality are two sides of the same coin. If you look at the companies
who are successful with software right now, most of them care a lot
about their customers, and how their software is made. Assuming that
“craftsmanship” and “care” are the same thing, there’s definitely room
(and necessity) for a balance, but I think what’s needed is much more
of a blend than a balance.

Tech and tools definitely play their part. The tools teams use for code
analysis and security analysis help teams get code correctness right
much more often. On the other end of the spectrum, observability
toolsets are making it easier for teams to understand how their
software is used in production. Some of the automation tools are
making it easier for the whole team to create stable and valuable tests
quickly - giving the team time to spend time on deeper testing or
analysis. The “tech” is making it easier for teams to put care into the
software they deliver.

You have been a strong promoter of “whole team testing” especially
the “developer testing” idea. Though I have some strong dis-
agreements especially with the myth of mindset part, looking at
your accomplishments it seems the idea worked very well for you.
What are some critical elements or pre-conditions in your
experience that must be present/fulfilled to succeed with
developer testing?

I suppose I need to lead by saying that it’s worked well for me with
hundreds of developers and at two different companies.

With that out of the way, the most critical element is accountability. I
frequently see someone speak out against developer testing by saying
that developers don’t want to test, or don’t feel like testing is their job,
or don’t feel like they can do testing. On the teams I work with, I don’t
give them a choice. I treat every development lead as I would have
treated a test lead years ago. I tell them that they are responsible and
accountable for testing and quality of the software they deliver and
give them enough information to get started, and an offer of help and
advice any time they need it.

I - or a few test experts in my team offer coaching and consulting to
help them improve their testing ideas. Frequently, we’ll ask them to
write test plans (which we happily critique), or brainstorm on test
ideas for a new feature.

In the beginning, most developers learning testing are pretty similar
to any new tester. They have a lot of unconscious incompetence in
regards to testing, and don’t think a lot about the testing they need to
do. Sometimes they make mistakes, but they learn from those
mistakes and get better. As a lot of us did when learning testing, they
eventually get to a stage where they realize there’s more to learn
about testing than they can ever learn, but by that time, they’ve
realized that continuous learning is the key to their success.

In short, tell them that they’re accountable for testing and quality, and
then give them enough help to be successful.

For organizations or industries where the
idea of good-enough testing can be suicidal,
do you think developer testing can still
succeed there? What do such industries and
organizations need to do differently to
achieve that?

I think every developer - regardless of
industry - should perform testing. They
should create thorough unit tests at a
minimum, but typically larger scale tests as
well.

I could argue that the bar for “good-enough”
testing changes with context - but maybe
you’re trying to get my opinion if dedicated
testing professionals are still needed on
software where errors may cause lives or
massive amounts of loss. That answer
depends on a lot more context, but I’ll put it
this way. Whether you are making an 8-bit
mobile game for children, or a software
engine control for a lunar lander, your goal is
to make sure that you are identifying and
mitigating risk to your customers' success.
The risk with the game is low, so developer
testing is more than sufficient. For the lunar
lander, the business should determine
whether developer testing is enough. I don’t
know those developers, and I don’t work in
that business, but my strong hunch is that
they’d need a few more sets of eyes with
critical thinking, systems thinking and some
domain expertise to get to a level of risk the
business is comfortable with.

Most of us work on software with a risk factor
somewhere between those two examples.
Like in those examples, our context
(developer experience, risk factors, business
goals, etc.) all dictate how we want to
approach software testing and quality.

One of the principles of Modern Testing
mentions that under certain contexts, teams
may work without any dedicated tester. Are
there any contexts where you think testers
must be involved in teams?

This is answered partially, at least, in the
previous question. But - this is a good place
to point out that blindly removing testers
from a team because “some company did it
and it worked” is a really bad idea. If you don’t
have a culture that supports developer
testing, or if the developers don’t have the
testing knowledge to properly assess and
mitigate risk through testing, your team
absolutely needs testers.

However - I also believe that with the proper
level of training and quality culture that there
are few industries or projects where
dedicated testers would be required.

Typically in tech organizations, the quality is
regarded as product quality and
engineering quality. That apparently
explains programming teams’ inclination
towards engineering quality. More often
than not, this also results in the
programming team not feeling responsible
for product quality as such. How do teams
solve this problem if there are no dedicated

testers who are often the connecting link
between both aspects of quality?

I feel like this is a bit of a strawman. In a
vacuum, I agree - developers tend to focus on
engineering-facing quality, because it’s in
their face. Compiler warnings, static analysis,
code coverage, velocity and other
measurements of developer quality are built
in to so many of the tools and processes used
by teams, it is certainly easy for them to focus
there.

The previous question mentions the seventh
Modern Testing Principle. It’s often misunder-
stood, so let’s take a closer look.

We expand testing abilities and knowhow
across the team; understanding that this may
reduce (or eliminate) the need for a dedicated
testing specialist.

This principle is documenting what we’ve
seen in many software organizations (note:
the Modern Testing Principles are
documenting what we’re already seeing; not
what we want to happen, or think should
happen). What we’ve seen is that as
development teams embrace more and more
aspects of testing, that they may get to a point
where they don’t need dedicated testing
specialists anymore. They don’t get rid of
testers for the sake of getting rid of testers -
they just find that they can reach the levels of
quality they are striving for without a
dedicated tester. Most often, the testers who
helped them get to this stage remain on the
team in other roles. Often, they’ll move into a
new role, but occasionally move back into a
testing or quality role if or when needed.

ISSUE 02/2021
OVER A CUP OF TEA WITH ALAN PAGE

ISSUE 02/2021
OVER A CUP OF TEA WITH ALAN PAGE

28 29TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

”The concept of Modern testing exists so that

we can help testers navigate
changes happening across the

industry.
I guess a measure of its success would be for organizations to understand better how

testing changes as they move to a world of quicker releases where quality is based on near

real-time customer feedback.

https://bit.ly/QCTGuide
https://www.ted.com/talks/elizabeth_gilbert_your_elusive_creative_genius

Oh Alan, I would have liked to be wrong about my experiences which
made me ask the previous question. More often that not, I met Devs/
architects/Engineering leads who always shrugged things off
blaming it all on the “product” team. Anyway, what contribution do
you expect from testers in the team especially after the team
switches to the whole team testing idea?

I will assume you’re talking about an embedded tester on a team who
have (or state they have), “whole-team testing”. In this case, I like for the
testers to drive the test strategy and planning, and pair with developers
to write test strategies, test plans, or test charters for their components.
They should have a heavy hand in defining what done” looks like. Given
that testers are often the best systems thinkers on the team, they can
also drive improvements through facilitating retrospectives and making
sure that the team takes opportunities to learn from any setbacks they
encounter.

Of course, they can (and should) do some testing too and use whatever
they find to help refine and improve the team’s test planning in the
future.

I could be wrong but people who are not a fan of investing much in
testing often argue that “customers don’t care about testing”. Do you
think customers care about development either or the tech stack/
tools we use or the best programming practices we follow or how
much automation we have in place for that matter? As long as they
get the quality product (or anything that solves their problem) at an
affordable price in the minimum possible time, I guess they care
about nothing mentioned above. Is it really because testing does not
produce a production code, it becomes the natural victim of cost-
saving strategies?

I don’t think it matters whether you’re a fan of investing in testing or
not - it’s a fact that customers don’t care about testing. They don’t care
what kinds of testing you did, they don’t care which tests passed, and
they don’t care about code coverage or static analysis.

They don’t even want software. They want their problems solved easily
and intuitively.

In modern agile teams these days, testers report directly to the
engineering lead/managers who often know nothing much about
testing (since they worked only as programmers and there was
hardly any whole team testing happening back then). This often
results in testers not getting the required support/guidance or even
buy-in for their ideas at times. With your experience of leading
engineering teams (with and without testers), what would be your
advice to such managers?

I think it’s the responsibility of those testers to help those managers -
and their teams learn more about testing. I don’t remember where I
first heard this, but something I say often is that you can change your
manager, or you can change your manager. Meaning, of course, that you
can help your manager understand and learn more about the testing
and quality side of the business - or, you can find a new manager who’s
less dense.

I think leadership and influence are essential skills for testers on Agile
teams, and influencing the way your team develops and ships software
is a core skill set for the modern tester.

How do we measure the success of Modern Testing?

It’s never something we really thought about - but as I’ve stated before,
the concept of Modern testing exists so that we can help testers
navigate changes happening across the industry. I guess a measure of
success would be for organizations to understand better how testing
changes as they move to a world of quicker releases where quality is
based on near real-time customer feedback.

What books would you recommend testers to read?

Like a lot of testers, I own a huge stack of Jerry Weinberg’s books. All of
those have some value for testers. I’m most partial to The Secrets of
Consulting.

I think testers should understand how shipping more often and
learning are correlated with software quality, and for that, I highly
recommend Accelerate by Nicole Forsgren et. al. and The Lean Startup
by Eric Ries.

For systems thinking and the theory of constraints (which are important
aspects of shipping quality software), I recommend The Goal by Eli
Goldratt, or The Phoenix Project by Gene Kim.

Your message to our readers would be?

There’s a lot of change happening in the way software is delivered. As
a tester, you could easily find a way to keep doing exactly what you’re
doing, or you could choose to adapt and change and grow along with
the industry. With Modern Testing, we’re just trying to help people in the
latter path navigate the changes more easily.

You can be the butterfly, or you can be the wind.

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

ISSUE 02/2021
OVER A CUP OF TEA WITH ALAN PAGE

30 31TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

mailto:contact@teatimewithtesters.com

ANDREW JANUARY
–

Andrew January is a Senior Test Engineer at Simply
Business.

He began his career in software testing in 2010. Since
then he has worked at several London tech companies,
coaching agile teams in the ways of testing and leading
testing communities of practice. Outside of testing he
has an interest in building Python applications for
hobby projects.

You can find Andrew on Linkedin (https://
www.linkedin.com/in/andrewjanuary/), Github (https://
github.com/AndrewJanuary) and Twitter (https://
twitter.com/AndrewJanuary)

One of the immediate benefits RST
brought to our organisation was a
new perspective on testing
strategies. The Heuristic Test
Strategy Model encouraged us to
review and challenge our process of
creating strategies. Prior to being
introduced to this model most of
our testers were already familiar
with many of the common test
techniques it mentions. They could
easily articulate what these
techniques were and how they
would use them to test a product.
However what they were going to
focus their testing on and the
reasons why they would do this
were often less clear.

The Product Elements and Quality
Criteria introduced in the HTSM
became a powerful tool for framing
our thinking around testing and
helping us clearly define our
reasoning. Specific tools such as
Product Coverage Outlines and Risk
Lists allowed us to capture these
thought processes. Our strategies
were no longer just conceptual and
general, they were lightweight
documents specific to the context of
our products.

Risky Business

As testers we frequently talk about
our work in the context of risks. The
terms ‘risk based testing’ or ‘risk
focused testing’ have become
commonplace in the testing
community. Whilst not being unique
to RST, a core aspect of the
methodology is risk analysis.

We found that the Heuristic Risk-
Based Testing approach could be
applied to our existing software
products with very little overhead.
Prior knowledge of statistical or
quantitative analysis methods to
identify and communicate risks
weren’t required.

Through experimenting with HRBT,
we realised the importance of the
social process involved in risk
analysis. Discussing risks as a
cohort of testers was exciting and a
great way to share knowledge.
However, at times it could become
an echo chamber of testers
opinions and ideas.~

Pe
op
le

AN EXPERIENCE
REPORT ON R.S.T.

In early 2019 one of the Engineering
Managers in my organization encouraged
me to attend the Rapid Software Testing
Applied online course. Initially, I was
skeptical about how beneficial a remote
course on testing methodology might be for
me. I had several years of experience
working in testing roles and I was quite
comfortable with the way we were
approaching testing in my current product
team. I wasn’t sure that there was much
more for me to learn or things that would
change my opinions on testing and the roles
of testers. I was quite wrong in these
assumptions.

By the end of 2019 myself and several
colleagues were enthusiastically presenting
a business case to management to advocate
for further RST training within our organi-
sation. In this article I’ll highlight some of
my experiences of the applications of the
RST methodology, the challenges it’s helped
to overcome and how I’ve seen it benefit
even very experienced testers.

Improving Strategies

“Your strategy contains the reasoning
behind the testing that you do.” (Kaner,
Bach and Pettichord, 2002, p. 236)

There is a well established expectation
that testers should be experts in the
creation of test strategies for the
products they work on. It’s still listed as a
(if not the) key responsibility for the
majority of testing related job spec-
ifications. However it can be challenging
for testers to define what the process of
creating a strategy should actually look
like in a practical sense. Is it just defining
tests in advance of performing them? Is it
deciding what tools and automation
frameworks should be used?

32 33TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

~
Pr
oc
es
se
s

https://developsense.com/resources/pcos.pdf

“Risk communication and risk management efforts are destined to fail
unless they are structured as a two-way process. Each side, expert and
public, has something valid to contribute.” (Slovic, 1987, p.285)

In order to make our risk analysis and risk based testing really effective
we needed to involve more diverse perspectives outside of testing
roles. Collaborative exercises such as the RST inspired Risk Storming
have helped to enable this. It’s now common in our organisation for
testers to host risk analysis sessions for their product teams and
stakeholders. Our discussions around product risks now involve more
people who can actually help identify, rationalise and mitigate those
risks. An additional benefit we’ve noticed is that these discussions
provide opportunities for testers to subtly introduce or reiterate
concepts such as Quality Criteria and Heuristics to our teams.

Jumping into the Unknown

Our organisation went through a rapid phase of growth during 2019. We
hired lots of new engineers, rapidly formed new teams and developed
new ways of working. As a result our testers occasionally needed to
support multiple product teams, each with their own unique context
and level of testing maturity.

The challenges of this situation prompted us to experiment with the
Test Jumper role described by James Bach. This role proposes ways in
which testers can add lasting value to teams, without needing to be
embedded long term for the full lifecycle of a project or product. When
combined with newly acquired knowledge of RST our testers were able
to succeed in these high pressure temporary roles, despite working in
the context of unfamiliar products, domains and technologies.

Continuous Learning and Community

In the two years since we first began to adopt the RST methodology the
context of our organisation has continued to change. As a result we've
found that we’ve frequently had to revisit the RST course materials,
either to introduce it to new people, to revise our understanding or to
improve how we are using it.

At the same time we’ve noticed more voices in the global community
advocating for context driven and heuristic based approaches to
testing. Conor Fitzgerald’s talk at Test Bash Brighton 2019 highlights this
and also hints at a growing interest amongst testers in the wider topics
of cognitive science and psychology.

As the trends for adopting microservices architectures and DevOps
methodologies continue, the expectations of testing roles are
changing. There is a pressure on testers to provide value whilst not
impacting the release cadence of product teams. Clokie describes the
wider consequences this can have.

“The difficulty for testers is identifying what their role is, when testing
is expected to be a part of everything.” (Clokie, 2017, p.8)

The techniques offered by RST alone are not a direct solution to this
challenge. However, the critical mindset it encourages and the shared
language it provides can help testers to make lasting improvements in
an organisation.

References

Kaner, C., Bach, J. and Pettichord, B., 2002. Lessons learned in software
testing. New York: Wiley.

Bach, J. , 2020. The Heuristic Test Strategy Model v5.7.5.

https://www.satisfice.com/download/heuristic-test-strategy-model

Bolton, M. , 2020. Examples of Product Coverage Outlines. https://
developsense.com/resources/pcos.pdf

Slovic, P., 1987. Perception of risk. Science, 236(4799), pp.280-285. https:/
/doi.org/10.1126/science.3563507

Bach, J. , 1999. Heuristic Risk-Based Testing. Software Testing & Quality
Engineering, 23-28. http://www.satisfice.com/articles/hrbt.pdf

Gehlen, M. and Van Daele, B., 2020. Risk Storming.https://
riskstormingonline.com

Bach, J. , 2014. Test Jumpers: One Vision of Agile Testing https://
www.satisfice.com/blog/archives/1372

Fitzgerald, C., 2019. The Surprising Benefits of Exploring Other
Disciplines and Industries.https://www.ministryoftesting.com/dojo/
series/testbash-brighton-2019/lessons/the-surprising-benefits-of-
exploring-other-disciplines-and-industries-conor-fitzgerald

Clokie, K., 2017. A Practical Guide to Testing in DevOps. [ebook] Lean
Publishing. Available at: <https://leanpub.com/testingindevops>
[Accessed 10 February 2021].

What is Charter Driven Session Based
Exploratory Testing?

Exploratory Testing

There have been a few attempts to define
exploratory testing. To begin with I suggest
that all testing is exploratory and thus
exploratory testing is just another word for
testing.

I started using a definition from Cem Kaner in
the mid-1990s to distinguish pre-scripted
testing from exploratory testing.

Cem Kaner taught me that exploratory testing
could be viewed as concurrent test design,
test execution and test related learning which
included planning and refocusing based on
what we learn as we test.

Cem Kaner eventually held a couple of small
peer workshops about exploratory testing.
Eventually Cem Kaner post the following
description of exploratory testing on his blog
entitled: “On the craft and community of
software testing.”

“Exploratory software testing is a style of
software testing that emphasizes the
personal freedom and responsibility of the
individual tester to continually optimize the
value of her work by treating test-related
learning, test design, test execution, and test
result interpretation as mutually supportive
activities that run in parallel throughout the
project.”

When I implement an exploratory testing
framework, I try to use the following process
steps:

SEBTE: A SIMPLE EFFECTIVE
EXPERIENCE-BASED TEST
ESTIMATION - PART 2

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

34 35TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

https://riskstormingonline.com/
https://www.satisfice.com/blog/archives/1372
https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.satisfice.com/download/heuristic-test-strategy-model
https://doi.org/10.1126/science.3563507
https://doi.org/10.1126/science.3563507
https://riskstormingonline.com/
https://riskstormingonline.com/
https://www.satisfice.com/blog/archives/1372
https://www.satisfice.com/blog/archives/1372
https://www.ministryoftesting.com/dojo/series/testbash-brighton-2019/lessons/the-surprising-benefits-of-exploring-other-disciplines-and-industries-conor-fitzgerald
https://www.ministryoftesting.com/dojo/series/testbash-brighton-2019/lessons/the-surprising-benefits-of-exploring-other-disciplines-and-industries-conor-fitzgerald
https://www.ministryoftesting.com/dojo/series/testbash-brighton-2019/lessons/the-surprising-benefits-of-exploring-other-disciplines-and-industries-conor-fitzgerald
https://leanpub.com/testingindevops

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

36 37TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

ISSUE 02/2021
PROCESSES

36 37TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Charter Driven Exploratory Test Framework

The first step is a kickoff meeting. The tester will be exploring. A
collaborator will be commissioning the exploration. The collaborator
can be a programmer as is more common when I implement CDSBET
in an Agile team. The collaborator can be a test-lead as is more
common when I implement CDSBET in a traditional or structured
software development life cycle such as Waterfall or Rational Unified
Process or V-Models.

Kick Off

The tester reviews the charter with the person commissioning the
testing. We make sure that the scope and depth of the charter are
discussed and agreed to. It is important at this time to also agree on
the size of the upcoming session of testing in advance. I like to
encourage the tester to discuss which variables, factors, conditions or
data sources may be relevant.

Preparation

The tester gather whatever resource, data, tools or equipment are
required for the upcoming session of testing. I never indicate a length
for the preparation since it varies dramatically and it is really up to the
team to manage and try to minimize this step. The tester will need
healthy environments with appropriate data to full fill the charter.

Run

This is a time boxed session. I ask testers to implement this step with
the cell phone, email, social networking and collaboration software
turned off. I ask the tester to focus 100% of their attention of the
session of testing. The tester will design and execute tests trying to
learn about the charter. The tester will keep a record of decisions
made, of tests attempted and of observations. The tester will use many
diverse tools and technologies to complete this step. The step is
always time boxed. A typical session is about 90 minutes long. Some
sessions are short between 15 and 30 minutes. Some sessions are long
between ½ and 2 days. Long sessions may be used for non-functional
test charters. I do not expect all testing to be completed in one
session. After the session the tester will review findings and decide
whether it is necessary to invest in an additional session or perhaps to
move onto a different charter instead.

Completion

The tester gathers their findings. The tester closed open files. The
tester reports any bugs in bug tracking tools as required by the project
team’s workflow. The tester relinquishes the environment. Note that
the tester must be able to reset the environment to a predicatabe state
so very often at the completion step the testing will create virtual
images of the test environment and data.

Review

The tester reviews their findings with the person who commissioned
the testing. IN agile teams this is often the developer. In the review
meeting all findings are reviewed and decisions are made on how to
act on the finding In essence the review step is culling test findings and
turing them into action. Test results are fed back to the person who
commissioned the testing and also to any stakeholder would benefit
from knowledge of the findings. This is a call for action. I recommend
the review meeting take place on the same day as the session of
testing. Some of my customers to the review immediately after the
session of testing. Some of my customers review multiple sessions
from the same day by the same tester at the same time.

The key decision made it – should we do another session on the same
charter or should we move onto something else.

Follow Up

The team acts based on the finding of the tester.

The tester acts based on the feedback from the person who commis-
sioned the work and any other stakeholder involved. This list will vary
from charter to charter.

Charters

Note that charters derive from test ideas. One test idea can map to
many charters. Multiple test ideas can map to one charter or there can
also be a one to one mapping between test ideas and test charters.

A test charter is a mission statement for testing. It is a goal.

Chartering in 1803

The Lewis and Clark Charter to Explore

Mandated by President Thomas Jefferson

“The object of your mission is to explore the Missouri River, and such
principal streams of it, as,by its course and communication with the
waters of the Pasific Ocean, wether the Columbia, Oregan, or any other
river, may offer the most direct water-communication across the
continent, for the purposes of commerce.

On an Agile team a charter statement can be the “title” of a testing
task. In my practical experience charters can be expressed in 160 or
fewer characters. This number dates to my earlier days using CRT
terminals. The CRT terminals had 80 columns and 24 rows. I could
always describe a charter in two lines of less thus the rule of thumb
a charter can be expressed in 160 or fewer characters of text.

Session Notes

There are many ways that exploratory testers can express their
findings. A charter can be represented by a task in a workflow
management system, for example a Jira ticket. Each session
associated with that charter would need to be a sibling object. In a
session object the tester would include their findings, session notes,
screen shots, screen videos with audio commentary, spreadsheets,
data records, virtual images of system under test, pointers to bug
descriptions and commentary from developers, product owners,
teammates, and other interested project stakeholders. Collecting and
recording findings should be a natural part of the testing workflow.

Session notes are like medical notes on a patient chart or a
professional engineer logbook. This is a record of the testing done
describing decisions made and trials attempted. The session notes
do not need to include analysis or assessment, generally session
notes focus on recording facts.

Text Files

In most session notes the tester puts a timestamp before each note
and uses short bullet lists to describe test findings. Session notes are
often recorded in simple text files but there are many variations.

Document Files

I have customers who use Microsoft Word and SnagIt (TechSmith) to
keep session notes. The word document contains a chain of screen
shots created by SnagIt. Microsoft Word macros ensure timestamps
and document format is always consistent and reference-able.

Note taking tools like Rapid Reporter.

Rapid Reporter is a free tool to help testers record notes during a test
session. The notes recorded automatically include a time stamp. Text,
screen shots, rtf files can be embedded in the notes which are very
professionally rendered as clean html tables.

Mind Maps

Many testers choose mind mapping tools such as XMind or FreeMind
to capture visual representation of notes. Mind maps can include
images, text, links to other objects and relationships between objects.

It is considered a good practice to keep track to time testing, start
time, end time, timestamps during testing.

Many testers choose to include information in their session notes
about their use of time: set up, on charter testing, off charter
investigation, bug reporting.

When testing in a regulated environment consistent session notes
can be used to demonstrate compliance to regulatory standards.

Some Other Test Estimation Techniques

There are many different test estimation techniques which may be
relevant depending on your project context. As the EPA suggests -
your mileage will vary. It is important to be aware of the many
different approaches which can be applied.

ROB SABOURIN
–

Rob has more than thirty-nine years of management experience leading
teams of software development professionals.

A highly-respected member of the software engineering community, Rob
has managed, trained, mentored, and coached thousands of top
professionals in the field. He frequently speaks at conferences and writes
on software engineering, SQA, testing, management, and
internationalization.

Rob authored I am a Bug! the popular software testing children’s book. He
works as an adjunct professor of software engineering at McGill University;
and serves as the principal consultant (and president/janitor) of
AmiBug.Com, Inc. Contact Rob atrsabourin@amibug.com

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

ISSUE 02/2021
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Test Estimation Technique Description

Ad Hoc I have used Ad Hoc estimation techniques when confronted with testing
projects with loosely defined constraints. No clear goals. No clear
quality perspective. Requirement turbulence. New or emerging
technologies.

With Ad Hoc techniques I always start with a guess. The key point to
remember is to re-estimate frequently as you learn more about the
project. With time the estimate will converge if the project converges.

Work Breakdown Structure I use work breakdown on projects in which I can clearly organize testing
into separately managed levels. For each level I define test objectives.
For each test objective I define testing activities. For each testing
activity I identify tasks that can be done by suitably skilled team
members. Each task has pre-conditions and deliverables.
Dependencies between tasks are understood. The granularity of a task
is generally less than the reporting period of the project.

Programming Ratio I have used tester programmer ratios to help me budget for equipment
and office space. I have never used tester programmer ratios to
estimate testing effort on a project. The idea is that I have a problem
such as “How many square meters of office space will I need for testers
in two years?” Since I have no idea which project is going to take place
what I might do is inquire about how much space is being used by
programmers and use a ratio to estimate the space required for testing.
The estimate will be wrong, but it is probably better than nothing.

Wideband Delphi Wideband Delphi estimation techniques involve a team of test, domain
and technology experts who are provided the same source information
and then asked to individually estimate the effort required to test a
project. The individual estimates are then brought together in a
facilitated team meeting. By studying the differences between the
estimates, the team gains insights into the real work required to test
the product. Individuals re-estimate and re-aggregate the results a few
times until they converge on an acceptable estimate.

Planning Poker Sizing requirements using story points is increasingly popular among
my customers. A story point is a synthetic unit of size which blends
notions of complexity and scope combining all the work a team is
expected to do to fulfill the requirement. With experience, teams learn
the relationship between size, in story points, and actual effort, in
person hours. Productivity is often measured as story points per unit of
time, which is metaphorically known as the team’s velocity. As
productivity increases, the effort required to complete the same story is
expected to decrease. As the team’s process improves their velocity
increases. Mike Cohn published an interesting team approach to story
point estimation, called planning poker. Planning poker cards have
numbers on them between zero and one hundred distributed sort of
like Fibonacci numbers. Each card represents the size of a story. Team
members vote using the cards to define the size of each story during
grooming, refinement, or estimation sessions. Team members advocate
low and high estimates. They iterate to converge on an acceptable team
estimate. The team approach assumes that the group has recent
experience implementing similar requirements.

ISSUE 02/2021
PROCESSES

ISSUE 01/2017
PLACE YOUR CATEGORY HERE

38 39SHIFT MAGAZINE ISSUE #01/2017 TEA-TIME WITH TESTERS ISSUE #02/2021

Test Estimation Technique Description

Re-estimation Cone of Uncertainty I continuously revise my estimates as I learn more about the product
being developed and testing. I consider reality as it is uncovered. What
are the real technical changes to the code? What is the real work being
done by the user? What is the real environment the software is being
used in? I revise my estimates and as work continues, I find the
estimates converge.

Other Techniques In engineering and project management there are many estimation
techniques commonly used. As I learn new techniques, I seek
opportunities to see how they may fit in the software testing domain.

Example Spreadsheet Available to Readers

Please contact the author, Robert Sabourin, via email at robsab@gmail.com to request a copy of an example spreadsheet illustrating how to use
SEBTE.

References:

A guide to the project management body of knowledge (PMBOK guide). (2018). Exton: Project Management Institute.

McConnell, S. (2006). Software estimation: Demystifying the Black Art. Redmond, WA: Microsoft Press.

Humphrey, W. S. (1997). Introduction to the personal software process. Reading, MA: Addison-Wesley.

Sabourin, R. (2020). Charting the Course. Coming up with Great Test Ideas Just in Time. Montreal, QC: AmiBug.Com, Inc.

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

40 41TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

40 41TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

In this fast-changing world, you can ask
yourself, what are the skills that I should have
to be able to make a difference with the
colleagues around me? Is it being an expert
in test automation? Or able to read all kinds
of different code languages? At least you
know that the technology you learn today can
be gone tomorrow. For example; how much
time will it take to learn a new programming
language? Probably you can learn the new
language quite fast, just as many other
people have done. So if you look at all kinds
of hard skills; these are just abilities that can
be acquired and enhanced through practice,
repetition and education. Does it really
surprise you that with these hard skills, you
can’t distinguish yourself so are you really
prepared for the challenges of the 21st
century? The challenges of this century have
much more to do with the interhuman skills.
As technology is already taken over our daily
routines, how can you make a difference?
Look at people around you in your organi-
zation. The kind of people that are successful,
in the long run, are appreciated, valued and
nice people. These people are using their soft
skills! And with the soft skills you are able to
make a difference. This is not just something

that we made up. In general there is a lot of
attention to define the right skills, to become
“future proof”. One of the models that is used
to define the skill set for the future, uses the
model of the 4 C’s which stands for
communication, critical thinking, creativity
and collaboration.

We will elaborate on these 4 C’s in this article
below and we were wondering if these skills
are also applicable to make a difference as a
software tester? We, Emna Ayadi and Ard
Kramer started investigating this question.
They came up with the idea to ask two
questions to software testers all around the
world: did they already apply these skills at
this moment and how are they going to apply
the skills in the future?.

How did we make the book (applying the
skills)?

We created a website where testers could
share their thoughts and ideas. They could
submit with stories per one of the 4 C’s and
we notified our network by sharing our ideas
on Twitter and LinkedIn. The reactions were
quite overwhelming and we received 243

submissions from all around the world: from
Canada to New Zealand and Argentina to
Sweden. And as we said before the submis-
sions were as well in English as in French..

For us the hard labour started: the editing.
This meant that we had to look for a logical
order of the stories and to put everything well
readable in a book. Emna contributed with
her sketch-notes to visualize the content
(and after reading the stories we learned that
testers had the common opinion that
visualization is a very important way of
communication with each other). In the
paragraph below we will give you some
elaboration on the 4 C’s from a testing point
of view and we shared some quotes of
contributors.

STORY OF A BOOK ON
TESTING SKILLS

https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
http://21stskills4testers.online/

What can you find in the book: Tips from authors per skill

Critical Thinking

It’s the ability to look at problems in deeper and different ways by evaluating the possibility of failure also, finding gaps between expectations and
reality. The goal here to find the unknown unknown by having an analytical mind and linking learning across your testing steps. James Bach says
that

“Testing is an infinite process of comparing the invisible to the ambiguous in order to avoid the unthinkable happening to the anonymous.”

“In the future, as applications/systems become more complex, automating them will be of the same wavelength. Thus, critical thinking will be
essential for a QE to keep up with technology practices. Aside from the variety of software available to be developed, there are a number of
automation tools being available to the public, some let you code, some make it easier. Regardless of which tool, like a QE, your critical thinking
will be important not only in problem-solving but also in maximizing these tools to improve your productivity and efficiency” Gerald Habal (from
the Philippines)

Communication

Communication is the set of interactions with others that transmit any information. Sharing your opinions regarding the software you are testing,
be curious asking questions within your team and proposing your ideas or solutions.

“My challenge in the future for my team, and testers worldwide, will be to speak up, raise the risks early, and never assume. Ask clarifying
questions to ensure that you understand the purpose of the product. Talk with the stakeholders. Find out what they expect, and how they expect
to use the product. Speed to market is driving teams to deliver faster, with shorter sprints. This will only continue to be aggressive. Being an
effective communicator on the team will be critical for testers in the future.” Mike Lyles (from the USA)

Collaboration

Collaboration is the act of working or thinking together to achieve a
goal. Collaboration can be done with two or more people or organi-
zations that have a common goal to achieve. Testing is not a single step
in the process, it’s a whole team task shared between all the
development team and business side. In fact teams of people have a
collective intelligence independent from the individual one and
greater than the total of these parts.

“Being experienced, I see “Collaboration” in the future as a very
important skill. Something that makes me very happy is to be an
inspiration for other professionals. Always try to be better,
collaborating with others and giving peace of mind so that they
collaborate with you too and everyone is a winner!” Tatiana Ribeiro
Nunes (from Brazil)

Creativity

Creativity is the ability of an individual or group to imagine or construct
and implement a new concept or object or to discover an original
solution to a problem.

The ability to come up with new and useful ideas while exploring the
software. Innovation is the successful implementation of creative
ideas, this includes both incremental and radical change in systems
and products to deliver better quality.

“Being creative to me is mostly about idea generation and
visualization. Finding new ways to approach and model our test
approaches - there’smore to testing than following agile and v-model
approaches. There’s more to testing than testing software
development projects.” Jesper Ottosen (from Denmark)

The definition that we derived in the conclusion

As we stated the book is a billagual book, it starts with stories in
English and are divided in four chapter: per chapter a C will be covered
and it contains two paragraphs: the first paragraph is about how the
contributors already apply the skills and the second chapter how they
are going to apply the skills in the future.

We also had some contributions that covered all the 4 C’s: we have put
them together in the last and fifth chapter. The same division in
chapters is used for the second part of the book, which are the same
stories but this time written in French.

For every story in both the French and English contributions, we looked
at one or more keywords to provide the reader an overview. The
keywords in the index helped us to visualize the topics that were used
the most. With this overview we were able to create a kind of definition
of the The tester of the 21st century:

“He or she is an open-minded tester, who values diversity because he/
she wants to look at problems and challenges from different
perspectives. The tester is aware of assumptions and tries to make
those assumptions clear and does this by listening and by asking
questions and for feedback if he/she understands what is said. The
overview that is created can be at best visualized If you want to get the
maximum out of working together, he/she knows that discussion is
important, but that a discussion needs an environment where we can
trust each other so we are able to learn and to improve.”

But probably if you read the book, you can come up with more
definitions or inspiration to create a profile for a future proof software
tester. For that we challenge you to read the book and share your ideas
or your perspective.

Definitely other people are interested in your thoughts so if you share
them on social media using #21stskills4testers other people will get
inspired by your thoughts just as we did this by composing this book.

We can imagine that you are quite curious what all these testers have
written down in the book. There is an easy way to find out. You will find
our book at Leanpub (https://leanpub.com/_21stskills4testers) where
you can obtain the book for free (or pay as much as you want) and
again, don’t forget to share your thoughts too, about your experience
while applying the 4 C’s in your world! Let us know by using
#21stskills4testers

ARD KRAMER

Ard is a software tester from the Netherlands. He works at
OrangeCrest. He calls himself a Qualisopher which stands

for “someone who loves truth and wisdom and at the
same time is decisive to improve man and his

environment”. This means he is interested in the world
around us, to see what he can learn and can apply in

software testing. His dream is to participate, as a
qualisopher, in all kinds of projects. Projects which add

value to our community: he wants to inspire other people
by cooperation, fun, and empathy, and hopefully some

light in someone’s life. .

ISSUE 01/2021
PROCESSES

ISSUE 02/2021
PROCESSES

42 43TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

EMNA AYADI
–

Emna Ayadi is a passionate software tester and detail
oriented who loves to analyse root cause, test, collaborate
with diverse people and investigate issues. She has five

years of experience on different projects combined
between testing and coaching roles. She appreciates

delivering workshops about testing for her team and to
the local community to make them aware about different
trends in software testing and Ministry of Testing meetup

organizer. Outside of work, traveling is her favorite
pastime but when everyone is working .

https://leanpub.com/_21stskills4testers

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

44 45TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Last year when I was working on creating the #TestFlix e-book with
Sandeep Garg, we used to have a lot of candid discussions around
Quality, Testing & Life in general. Sandeep told me about Jerry Weinberg
during one such discussion. It was the first time I got to know about Jerry
Weinberg. I started with reading his quotes, followed by some of his
popular books like Secrets of Consulting & General System Design
Thinking (still in progress :D).

A couple of months back I stumbled upon his book on Testing during a
Happy Book Reading Club Session, i.e., Perfect Software & Other Illusions
about Testing, which was released in 2008. At first, I thought that it might
be outdated as we are in a technological era where things become
irrelevant in months. Having an experience of Jerry Weinberg’s books, I
knew that there might be some good stories and incidents in this book.
I decided to give this a read to enjoy the old stories and get a feel of the
old days’ testing issue(s).

I was enjoying the stories, incidents, and jerry’s style of writing in this e-
book until I came across a section of the book where Jerry talked about
some Common Testing Mistakes. When I read that list, I felt all these are
still the day-to-day problems for testers and/or testing.

I shared this post on LinkedIn that day and went to sleep.

The next day when I woke up, my phone was filled with LinkedIn
notifications (Thanks to Michael Bolton for sharing this post and helping
boost my post reach), and I understood that what resonated with me
last night also resonates with a lot of testers out there. The post got 100
re-shares and was read by a great number of Testers, Developers,
Managers, Consultants, etc. The comments on the post affirmed that
these Common Testing Mistakes are still very common and highly
relevant.

Over the last 2-3 decades, we have all seen the evolution of software
testing tools, resources, processes, testing methodologies, and a lot of
things. However, after witnessing 30+ years of software testing journey
as an industry, if the mistakes are still the same then it posts a very
serious question in front of us, i.e. Are we really evolving? and if not,
then why not? I feel it’s a lot because of getting caught up in the same
old traps and ignorant behavior towards reality.

Here, I would like to elaborate on each of these Common Testing
Mistakes, Traps, and Ignored Reality:

1. Thinking that locating errors can be scheduled

The only way we could know how long it would take to locate bugs would
be to know where they are. If we know that, we wouldn't have to locate
them at all.

Traps:

• Thinking of testing as a mechanical activity rather than a cognitive
activity.

• Thinking that CI/CD/CT would eliminate the need for dedicated
testing periods.

• Thinking that Green Automated Test Runs is equal to a quality
product.

• Thinking that Automation will solve all our problems.

Reality:

• Testing is inherently exploratory.

• Scheduling locating errors is like Scheduling the arrest of
criminals. NOT Possible for the majority of cases. Both need
dedicated investigation, analysis, and evaluation.

• Testing is driven by Heuristics, which are fallible ways of solving a
problem. They may fail too.

2. Not considering the time lost to task-switching

Task-switching can be beneficial, as we've seen, but like anything else, it
has a cost. Each task switch loses a bit of time, so if you're switching
among about five tasks, you may be accomplishing nothing. Most people
react to that situation by simply dropping some of the tasks altogether,
which can be dangerous.

Traps:

• Thinking of Multitasking as a productivity skill.

• Thinking of testing as a passive activity that can be clubbed with
another activity.

• Accepting and acting on all the tasks as and when they around .

• Not planning your work.

Reality:

• If you multitask, you are bound to regret it, sooner or later.

• Responsible Testing requires a focused effort.

• Software engineering is a systematic application of engineering
approaches to the development of software.

• If you fail to plan, then you plan to fail!

•

3. Treating testing as a low-priority task that can be interrupted for
just about any reason.

Testing requires concentration if it's to be done reliably.

Traps:

• Thinking that anyone can do testing.

• Thinking of testing as checking.

• Measuring testing progress with the number of bugs.

• Thinking of testing as ONLY Verification.

Reality:

• Yes, just like cooking, anyone can do testing to some degree. But
not everyone can do responsible testing.

• Quality is a multi-dimensional concept.

• The value of one bug could be sometimes greater than 50 other
bugs. Bug count says NOTHING!

• Testing is NOT Verification, Testing includes Verification!COMMON TESTING
MISTAKES - ARE WE REALLY
EVOLVING?

https://www.linkedin.com/posts/rahul-parwal_testing-mistakes-illusions-activity-6786756851204706304-B8YY

ISSUE 01/2021
PROCESSES

ISSUE 02/2021
PROCESSES

46 47TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Reality:

• During Testing, we only control some inputs and observe some
outputs (results).

• Often the non-trivial seeming details like platform, runtime,
supported libraries versions are not mentioned or ignored. Do you
really know everything about your test system? Think again!

•

10. Confusing testing with "creating and executing test cases".

Much of the testers' work is not captured or encapsulated within the
confines of an identifiable test case. Consider thinking instead in terms
of test activities.

Trap:

• Thinking that Testing = Creating & executing test cases.

• Thinking of Testing to be revolving around test cases.

Reality:

• Testing is much more than test cases. Testing ≠ Test Cases.

• Good Testing involves many tasks like research about products,
bug hunting, analyzing specifications, creating data sets, creating
reusable tests, creating checklists, research failures, writing
persuasive reports, etc.

•

11. Demanding process overhaul in your company

If you work in an organization that thinks it's the testers' job alone to
pinpoint and locate bugs or fetch coffee and donuts for the developers,
you may now be tempted to confront your boss with a crass, revolution-
ary attitude. Even if you're interested in increasing respect for testers in
your organization, you're not going to change the environment with rude
demands. You might say to your boss, "I read that a tester is someone
who tries different methods in order to make things work. I've come to
suspect our testers could do better work if some things were different
here. I'd love to have some time to discuss these things with you."

Trap:

• Thinking that changes could be brought overnight.

• Thinking that new tools will solve all old problems.

• Trying to solve people’s problems with technical tools.

• Looking for rational logic over reasonable logic.

Reality:

• Marvin’s First Great Secret: Ninety percent of all illness cures itself
- with absolutely no intervention from the doctor. Deal gently with
systems that should be able to cure themselves.

• Most people can successfully absorb 10 percent into their
psychological category of “no problem”. Anything more would be
embarrassing if you succeeded.

• No matter what or how they are saying, it’s always a people’s
problem.

• If logic always worked, nobody would need consultants (or
consultation). Consultants often come across contradictions.

After writing a lot about all the traps and reality, I would also like to
share some references and must learn things based on my experience
on how we can avoid these testing mistakes in our professional life:

• Learn and Master the Testing Foundations (Reference: BBST
Foundations)

• Learn about Heuristics & Mental Models and why they matter
(Reference: James Bach TTT Tribecast)

• Practice Time-Bound Charter Based Exploratory Testing (Reference:
Explore It)

• Understand the importance of mindset for focused and good
software testing (Reference: Blogpost on Mind, Matter, Testing and
The Cargo Cult by Lalit Bhamare).

• Know that Testing is NOT Testcases (Reference: James Bach CAST
2014 Keynote)

• Learn and practice Bug Advocacy Skills (Reference: BBST Bug
Advocacy)

• Learn about Consulting and some of its secrets (Reference: Secrets
of Consulting)

• Learn Influential Writing (Reference: Blog post on Coaching testers
how to email and influence stakeholders by Pradeep
Soundrarajan)

These topics and references are some of the most useful resources
which have helped me to avoid many of the common testing mistakes
and succeed as a professional tester. I hope that this would help you too
in some way. If you feel there are more resources, which should be
added to this list, please share your thoughts and feedback with me
@parwalrahul.

All the best for your quality journey!

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

46 47TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

4. Demanding that testers pinpoint every failure.

Testers can help developers with this job if their time has been
scheduled for it, but it is ultimately a developer’s responsibility. At least
that's what I've seen work best in the long run.

Traps:

• Thinking that testers should become developers and help pinpoint
every failure.

• Thinking of problems as definite issues (Ex: True or False).

• Thinking that testers are mostly free and don’t do anything else
apart from test execution.

Reality:

• Testing & Development mindset are totally different. Testers are
good at thinking about hypothetical issues (what if?) instead of
Imperative thinking (do this!).

• Most problems are beyond the definite boundaries of Yes and No.
They require human judgment and deeper investigation. Single
observation can have multiple interpretations.

• Testing is NOT EQUAL to Test Execution. It involves a lot of other
work like designing tests, preparing test data, studying and
understanding requirements, writing bugs, tracking bugs,
evaluating customer issues, etc.

5. Demanding that testers locate every fault.

This is totally a developer's job because developers have the needed
skills. Testers generally don't have these skills, though, at times, they
may have useful hints.

Trap:

• Thinking that all faults are straightforward.

• Many organizations fake such claims to customers while billing
testers under the name of Full Stack, T Shaped, or Star Testers.

Reality:

• Most faults hide behind the multiple layers of abstractions of the
software. They need an understanding of the different layers and
knowledge regarding the flow and design of the software.

• If it sounds too good to be true, it’s probably NOT true.

•

6. Repairing without retesting.

Repairs done in a hurry are highly likely to make things worse. If you're
not in a hurry, you might be careful enough with the repairs not to need
retesting, but if you're not in a hurry, why not retest?

Trap:

• Thinking that repairs have been done diligently and the testing
phase can be bypassed.

• Developer Optimism

• Overconfidence on Unit Tests.

• Thinking that one more round of Testing might again destruct the
product.

Reality:

• Most of the last moment fixes end up leaving side effects in the
system.

• Over-optimism disillusions the reality!

• Unit tests are just small fact checks and nothing more.

• Testing never destroys anything except the illusions of
overconfidence.

•

7. Ignoring cross-connections

Commonly, the actions of programmers drive the need for testing, so
that testing and programming are bound together. For instance, if
programmers deliver code to testers late or in sub-par condition, then
you'll have to adjust test expectations.

Trap:

• Thinking of testing as an independent activity.

• Thinking of testing as fixed and defined.

• Ignoring the cost of bug analysis, investigation, advocacy, and
retesting.

Reality:

• Testing is as much part of software development as development
is. It’s NOT independent.

• Testing is inherently exploratory and continuously unfolds in
newer dimensions over time.

• Side activities around testing often take more time than test
execution.

•

8. Paying insufficient attention to testability

Code that is designed and built to be testable can greatly reduce the
time and effort associated with all aspects of testing.

Trap:

• Thinking that a magic framework would fix all testing challenges.

• Thinking that tools will amplify software testability.

Reality:

• The secret ingredient behind a good testing solution is a testable
code.

• If testability is negative, tools would only amplify the negativity.

9. Insisting that all bugs be "reproducible"

Intermittent bugs need to be pursued with great vigor, not used as an
excuse to delay testing or repairing. Use what information you have, and
don't waste testers' time with unreasonable demands.

Trap:

• Thinking that each problem should be a result of some controlled
parameters/configuration.

• Thinking that test system and reference system are equivalently
configured.

RAHUL PARWAL
–

Rahul is a Software Engineer by education and works
with ifm engineering pvt. ltd., India. He is a Software

Tester by trade, Programmer by practice, and a Mythology
lover by heart. Rahul is a firm believer of Right Education

and an ardent advocate of Open-Source mentality.
His latest ebook is available at leanpub.com/

presentationheuristics
Twitter twitter.com/parwalrahul

LinkedIn: linkedin.com/in/rahul-parwal
Testing Blog: testingtitbits.blogspot.com

.

http://www.testingeducation.org/BBST/foundations/
http://www.testingeducation.org/BBST/foundations/
https://youtu.be/vFsM-slJoeY
https://www.amazon.in/Explore-Elisabeth-Hendrickson/dp/1937785025
https://www.talesoftesting.com/blog/mind-matter-testing-and-the-cargo-cult
https://www.talesoftesting.com/blog/mind-matter-testing-and-the-cargo-cult
https://youtu.be/JLVP_Z5AoyM
https://youtu.be/JLVP_Z5AoyM
http://www.testingeducation.org/BBST/bugadvocacy/
http://www.testingeducation.org/BBST/bugadvocacy/
https://www.amazon.in/Secrets-Consulting-Giving-Getting-Successfully-ebook/dp/B004J35LHQ/ref=sr_1_1?dchild=1&keywords=secrets+of+consulting&qid=1621221520&s=books&sr=1-1
https://www.amazon.in/Secrets-Consulting-Giving-Getting-Successfully-ebook/dp/B004J35LHQ/ref=sr_1_1?dchild=1&keywords=secrets+of+consulting&qid=1621221520&s=books&sr=1-1
http://testertested.blogspot.com/2011/03/coaching-testers-how-to-email-and.html
http://testertested.blogspot.com/2011/03/coaching-testers-how-to-email-and.html
http://testertested.blogspot.com/2011/03/coaching-testers-how-to-email-and.html

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

48 49TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of
time.

Over the last ten years, Tea-time
with Testers has published
articles that did not only serve
the purpose back then but are
pretty much relevant even today.

With the launch of our brand
new website, our team is working
hard to bring all such articles
back to surface and make them
easily accessible for everyone.

We plan to continue doing that
for more articles, interviews and
also for the recent issues we
have published.

Visit our website
www.teatimewithtesters.com
and read these articles.

Let us know how are they
helping you and even share with
your friends and colleagues.

If you think we could add more
articles from our previous
editions, do not hesitate to let us
know.

Enjoy the feast!

https://www.teatimewithtesters.com

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PLACE YOUR CATEGORY HERE

50 51TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

HOW TO
EFFECTIVELY
TEST

QA has always been a specialized
job, though not many people believe
so, but it is for sure and has been
proven all these years. The best of
the developers cannot test and
either they leave critical scenarios,
or they leave testing the integration
scenarios. To supplement the
process and to ensure quality QA has
been an utmost need of the hour
these days for the products. All the
QA in the world is specialized and to
prove it we will see how challenging
it is to make sure the chatbot works
perfectly as it requires a lot of
understanding on how a chatbot
works its internals, various stack,
algorithms, etc., and then generate
scenarios to test the same.

However, if you do not know all that
is mentioned above you can now see
what’s coming next, to develop an
understanding of what things are
required to make sure the chatbot is
effectively tested. My expertise lies in
automation and there are some
questions which I will ask at the end
of this article to make the reader
think as to how we can achieve such
things as they do not exist in the
tools and are simple things that
ensure maximum quality.

In today’s chatbot QA most of the
testing is a black box and is manual
in the industry which the testers test
the:

Tedious conversation flow of the
users

Test small talk scenarios like Do
you like people? or Do you know a
joke?

Fallback checks if the chatbot can
handle what it cannot handle

Integrations with APIs, Databases,
Voice-based services, etc.

Moreover, the testers do not even
know how the model works as the
model engineers develop the
underlying model and there is no
further monitoring done by the QA.
There is an analytics tool available to
monitor but it needs technical
expertise for the QA and QA needs to
understand the internals.

The result 90% of the time the bot
breaks and no one understands
when it will break, most of the time
the bot is stuck.

”What’s the deal with
Chatbots?

Soumya Mukherjee shares useful insights and tips to do

it right. Read on to knowmore…

THE
CHATBOT

~
Pr
od
uc
ts

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

52 53TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Before looking into the remediation let’s see some more issues that
face in doing the chatbot QA.

• One of the key issues is about continuous story creation as and
when the bots are evolving. The bots are meant to converse like
humans and there are limitations in QA to create or gather human
behavioral data

• There are no tools to manage the story coverage which means
that the testers do not even recognize that the stories are being
missed and it keep on testing on the redundant data set

• The training data may not correspond to the new stories (end to
end user chat sequence with the bot) which lead to the stale data
being used each time. Most of the times the production data is
never used to train the models leading to inaccurate results and
faltering of the bot

• Most of the automation tools only offer record and playback and
they keep on testing the same set of stories making it a pesticide
paradox challenge which makes the bot always fail for the newer
set of data and scenarios.

• In most cases, the stories are written in a text file and no
automation tool can read through the existing story list and bring
that intelligence into the tool.

• There is a common problem in QA which is the absence of a
central dashboard to to check. From a chatbot context there is no
generic dashboard that can trap the:

• Intent matching

• Check slots if they are filled as part of Entity testing

• Entity validation

• Check the confidence score of the model as when a test is
executed

• Confusion matrix which records the values of precision,
recall, and F1-score

• There is no easy way to reset the bot and if that is stuck it is stuck
during the conversation

• Multilingual bot QA is a challenge and companies have to build
two separate bots most of the times

• Folks who dig deeper also find that higher the confidence score
in all circumstances the bot is going to predict the same thing for
multiple intents, and it will always predict with the one with the
highest confidence score.

So, the question is how to make sure that the bot never breaks? Here
are some ways to test your bot effectively:

• It is highly important to refresh the training data with the
production data. If this is not done, then the bot will always be
training on stale and out of context data for the evolving
scenarios

• The QA needs to always create scenarios containing the happy
path, contextual questions, digressions, domain-specific
questions & stateless conversations

• QA needs to verify whether the entities are mapped for the
scenarios. For example, if the scenario for school fees is
considered the entities get wrongly mapped for bus fee or
tuition fee, or any other fees

• Automated tests mostly API should consume all the stories and
run them each time as part of the regression testing. The stories
can be consumed from either directly from the stories file
(Stories.md file in Rasa) or a repository where it is stored

• Story coverage visualization should always be part of the
execution, which effectively shows how we are progressing with
the testing and whether the tests can reach 100% story coverage.
Although there are no story coverage tools available a graph
database like neo4j can be implemented to store the stories and
then the nodes can be traversed each time to run the stories
against the BOT.

• Most of the companies do not use Bot emulation platform for
manual testing but tools like RasaX, BotFront can be used to
visualize the execution even when the bot is in development

• One of the things which is very important, and which is to check
the model accuracy with each conversation and then create a
pattern to understand the rise and fall of the model along with:

• Confidence score

• Confusion Matrix including precision, recall, and f1-score

• Cumulative accuracy profile

• Cross-Validation results

• Exhaustive testing which checks bot resiliency is required to be
part of the QA plan

• Integration checks with external database, services and most
importantly all the webhooks are required to the part of the QA
plan as well

• Fault tolerance testing by performing performance testing to
verify bot response times, session management is required to be
done. Most of the times during large volumes the bot response
increased to a non-acceptance level and the session gets
overridden which makes the entire bot infrastructure collapsed

• In case of live assistance, the handshaking and transfer of the
flow needed to be checked as well

• One of the important aspects which the QA neglects is to
perform various types of security testing. It has been seen that
bots during a security assessment revealed a lot of information
about user data that needs to be checked. Hence a level of
security analysis on the APIs is needed to be performed along
with that typing speed check, punctuations, and typo errors
need to be checked.

Along with the above, there are a few other KPIs that are required to be tracked which are:

• Activity volume

• Bounce rate

• Retention rate

• Open sessions count

• Session times (conversation lengths)

• Switching of multiple stories in times of large conversations

• Goal completion rate

• User feedback (will be helpful for sentiment analysis as well)

• Fallback rate (confusion rate, reset rate, and the human takeover rate)

I am now sure that you would concur that chatbot testing requires much more effort to make it a specialized QA practice. With the set of standard
practices, you can do much more effective testing on chatbots. In the later articles on this series, I will also discuss how you can make a story
coverage tool for the chatbot and also, I would discuss some fancy automation tools which are there in the market and how it can be used to
“EFFECTIVELY” drive your test automation for the “CHATBOT”.

If you have any questions, feel free to reach out to me on Twitter (@QASoumya) or LinkedIn.com/in/mukherjeesoumya

SOUMYA MUKHERJEE
–
A passionate tester but a developer at heart. Having extensive
experience of a decade and a half, doing smart automation with
various tools and tech stack, developed products for QA, running
large QA transformation programs, applied machine learning
concepts in QA, reduced cycle time for organizations with effective
use of resources, and passionate working in applied reliability
engineering. Love to help others, solve complex problems, and
passionate to share experience & success stories with folks. Authored
books on selenium published by Tata McGraw-Hill’s & Amazon.

A father of a lovely daughter.

There is probably no area of our lives these
days not touched in some way by machine
learning. Applications cover such wide areas
as translation, speech recognition,
forecasting, fraud detection, search engines,
medical diagnosis, the financial markets, DNA
sequencing and weather prediction for
agriculture. The breadth of its potential
applications is almost as large as the breadth
of information technology itself. For this
reason and others testers will be expected to
have more (at least) conceptual knowledge of
machine learning in the future.

This is an essay and tutorial-based version of
a talk on Machine Learning I did for Sydney
Testers Meetup Group in March 2021. I am a
strong believer that, while machine learning
and AI does require some undergraduate
level computer science and mathematics
capability to understand well, it is not beyond
the capacity of most testers to learn enough
to get to a point to at least conversing with
data scientists and being “on the same page”.
In this regard I have tried to write an article
that allows testers to understand the basic
concepts.

What is Machine Learning?
“The use and development of computer
systems that are able to learn and adapt
without following explicit instructions, by
using algorithms and statistical models to
analyse and draw inferences from patterns in
data…”

Definition from Oxford University Press/
Lexico

The difference between Machine Learning
(ML) and other algorithmic methods in
computer science is the idea of an
application using historical or example data
to optimise its actions in some way without
instruction. Often some sort of specified
inputs and outputs are provided and a
program asked to find relationships between
them, however it is not obligatory and there
are ML approaches where the computer
develops its own relationships, sometimes
with a stated overall goal and some limited
feedback.

One point to be made is that Machine
Learning and Artificial Intelligence, whilst
usually considered synonymous in the
media, are actually different things with some
overlap. Machine Learning bases much of
itself on statistics, an area not considered a
part of AI, while AI includes areas not
considered part of ML, such as expert
systems and inductive logic.

The Machine Learning Timeline
Since it has its roots in the history of
statistics, ML can be said to date back to long
before the dawn of modern computers,
however most people treat ML as having
started in the 1950s. Below is a timeline of
important events in ML.

• 1805 - Adrien-Marie Legendre develops
the Least Squares Method and thus
Linear Regression

• 1951 - Marvin Minsky and Dean Edmonds
create the first “neural network”
machine. Evelyn Fix and Joseph Hodges
create the k-Nearest Neighbour
Algorithm

• 1957 - Frank Rosenblatt invents the
Perceptron, the basis for all modern
neural networks

• 1959 Arthur Samuel coins the term
“Machine Learning” for the first time

• 1970-1982 - Backpropagation and the
precursors to Convolutional Neural
Networks and Hopfield Networks
developed

• 1997 - IBM Deep Blue beats Gary
Kasparov at Chess

• 2012 - Andrew Ng and Google Brain
develop Neural Network to detect cats
from unlabelled YouTube images

• 2016 - Google’s AlphaGo beats a
professional human player at Go for the
first time

MACHINE
LEARNING FOR
TESTERS - PART 1

Are you starting to see Machine Learning and AI more and more as a necessary or

useful skill in job requirements and bewildered by it? Want to know more but don't

know where to start?

Grab your starter kit by Paul Maxwell-Walters

The Machine Learning Pipeline
Machine Learning in most places should be considered a process of data retrieval and manipulation. Then
“features” (data variables) that can be modelled are extracted, filtered and put into a structure with metadata and
parameters known as a “Model”.

This is used to generate some sort of predictive output or classify some data, which is then compared to an
expected output. In the case of differences the model parameters are amended and optimised (a process known
as “training” or “learning”) and the process repeated until the model output matches the expected output
adequately.

Being a specialised field, the terms of ML should be introduced now since they will be referred to during this essay.
They are not difficult to understand at a high level.

• Supervised Learning - Computer given specified inputs and outputs and find relationships between inputs
and outputs.

• Unsupervised Learning - No labelled outputs given, computer has to come up with its own relationships from
the input data.

• Reinforcement Learning - Computer reacts with a dynamic environment in which it must perform a certain
goal. Given “rewards” as feedback, which it has to maximise.

• Model - weights and parameters used by the computer to represent an assumption about the relationship
between input and output data.

• Training - Comparing the model to the output and then optimising it to reduce errors.

• Feature - Some variable defined in the input data (i.e. size, colour, age etc.)

In addition to the above, ML can be usually broken down into three types.

Classification - Estimating which category something belongs to based on a dataset of data already labelled into
categories (i.e. classifying animals into dogs, cats, rabbits etc).

PAUL MAXWELL-WALTERS
–
A British software tester based in Sydney,
Australia with about 10 years of experience
testing in agriculture, financial services,
digital media and energy consultancy. Paul
is a co-chair and social media officer at the
Sydney Testers Meetup Group, along with
having spoken at several conferences in
Australia.

Paul blogs on issues in IT and testing at
http://testingrants.blogspot.com.au and
tweets on testing and IT matters at
@TestingRants.

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

54 55TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

http://testingrants.blogspot.com.au

Regression - Estimating the relationship between an input variable and an output variable

Clustering - (Unsupervised) Grouping items into groups with similar properties, without labelled data to learn from.

On Attribution and the use of Mathematics
It is not possible in my view to write an overview of machine learning that is adequately explanatory without mathematics, so I have had to include
some equations. Some knowledge of algebra and calculus will prove useful when reading this. However I have tried to keep them to a minimum.

For the images and equations in my examples I have often used Wikipedia. This is because they have either public or creative commons attribution.
Where no mention was made it is taken from Shervine Amidi’s Stanford Super ML Cheatsheet https://stanford.edu/~shervine/.

In all other cases I have included attribution as appropriate.

Machine Learning Techniques
Regression

Regression is a technique where one has some sort of numerical input and output data and fits a trendline or curve to it.

Linear Regression - The Most Basic ML Approach

(images, equations and example taken from https://en.wikipedia.org/wiki/Simple_linear_regression)

The most basic technique is Linear (Ordinary Least Squares) Regression, taught in most school statistics classes.

Consider a series of x,y points on a 2 dimensional plane that we wish to model using a straight line.

Consider a one dimensional model (where alpha is the intercept
across the y axis and beta is the gradient of the trendline) -

..or if we expand to a number of data points i and include the random
error term ε

Find the optimum gradient β and y-axis intercept α such that ε is a
minimum.

In order to find the minimum we need to solve for optimised gradient
β and y-axis intercept α -

A famous example of this is that of Height vs Mass for a sample of
American women.

In my original talk I demonstrated this calculated on an Excel
spreadsheet as follows,

This results in a regression equation that describes the Heights vs.
Weight data as - y = 61.272x - 39.062

Non-Linear Regression

(Image and Equations from https://en.wikipedia.org/wiki/
Ordinary_least_squares)

Maybe we decide that the linear regression trend is best described as
a curve.

We can apply a curve trendline by using a quadratic function with a
new term h2 for height.

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

56 57TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

https://stanford.edu/~shervine/
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

58 59TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

!Which a statistical package can be used to reveal the following -

In this way we can extend a linear regression approach to finding
non-linear (polynomial) data relationships.

Logistic Regression

Regression can be used for binary classification (i.e. between two
classes) if a non-linear separation function (known as the logistic or
sigmoid function) is used.

This is trained using a statistical technique called the Maximum
Likelihood estimation. It is used for classifying loan customers to
those likely to default, categorising voters by political party etc.

The results is a binary output where the probability “p(i)” of True/
False, Will Default/Will Not Default, Spam / Not Spam is a logistic
function where z is the linear sum of data points multiplied by
weights along with a bias beta 0).

Clustering

Clustering is an unsupervised learning technique where a computer
categorises a set of disparate data points into “clusters” related to
some property the data has. It is commonly used in image
recognition, computer science and astronomy.

K-Means Clustering

The most common of these, k-means clustering, calculates the mean
between points and optimises this until the mean between points
converges. It thus classifies the data into a number k clusters

By Weston Pace, https://en.wikipedia.org/wiki/K-means_clustering

A famous example of this is the (k=3) “Mouse” dataset.

By Chire, https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

Classification

Classification is a supervised learning process of categorising some
data into predetermined sub-populations based on some feature of
that data. These could be binary (i.e. spam/not spam), real valued
(i.e. length) or categorical (i.e. colour, blood type, type of voter).

Decision Trees

The most intuitive classification method is the decision tree.

.

The classic example of this taught at undergraduate level is that of
restaurant customers. Because of this, I used data and images
attributed to Alan Blair’s AI course at UNSW. In this case, we classify
them into whether they are likely to have to wait to be served or not.

The above table can be delineated into a tree-like structure known
as a Decision Tree where each node is a possible option represented
in the data above.

In order that anyone traversing the tree can get to a solution quickly
we need to choose and split attributes in such a way that the tree is
as small as possible. In this vein, attributes that split data as fully as
possible into sets of one type or another are seen to be more
“informative” and “orderly”. The measure of lack of order in a tree is
called “entropy” and our aim is to reduce it at every step.

Splitting by “patrons”, since it produces two branches with data of
just one category, results in lower entropy than for Type.

PART 2
IN

NEXT
ISSUE

https://By Weston Pace, https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

ISSUE 02/2021
PRODUCTS

ISSUE 02/2021
PRODUCTS

60 61TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

Nowadays more and more test activities are being automated,
especially when it comes to executing the test cases and checking the
results in the system under test. But what about the development of
the test cases, the test case design? Are the test cases still developed
in a structured way with a certain test coverage based on a well-
considered risk? And is the impact on the test cases clear after a
change in the test basis? And what about the Shift-left testing
approach if we are mainly focusing on automating the test execution
and checks? I think, with Model Based Testing (MBT) we already can
answer many of these questions. In this blog I would like to give my
vision and introduce the testing approach early Model Based Testing
(eMBT).

Model Based Testing

It is well known that Model Based Testing (MBT) has many advantages
over other test approaches and that MBT offers a solution to automate
the developing of test cases. Very important, because in the present
there is no time anymore to manually set up the test cases and work
them out using the traditional and formal test specification
techniques. Despite the limited time, the goal remains unchanged;
develop test cases with a certain test coverage in a structured way for
the purpose of test execution.

If we, as testers, want to keep up with the ever-faster development
cycles and still want to deliver the same test quality, we also need to
automate the preparation of the test cases in the preparation phase.
So, it is nice that MBT can help us to automatically generate the test
cases from a model. And with any changes to the test basis, the
maintenance is minimal. Only the model has to be updated and the
test cases can be automatically generated again and again.

Shift-left test approach

Furthermore, MBT fits within the Shift-left test approach, which means
that the test activities must start earlier in the Software Development
Life Cycle (SDLC). By applying MBT you prepare a model in the test
preparation phase and then derive the test cases from that model.
With this you Shift all test activity (s) to the left. By start testing earlier,
we ultimately ensure that we can provide feedback earlier and that we
discover any bugs earlier in the process. Ultimately, any bug we find
earlier is cheaper to fix, as also described in the well-known "Law of
Boehm".

The question we must ask ourselves now is whether we will start our
testing activities early enough, even if we use a Shift-left test approach
and / or MBT. Especially when we realize that about 35% of all bugs in
production can be traced back to the requirements. To avoid these
bugs, we will therefore have to start testing the requirements (static
test)! Ultimately, the requirements are also the basis for developing
and testing the desired software. So, we need to make sure that this
foundation is complete and clear and all stakeholders have the same
understanding of it before we even start writing the first lines of code
and testing it. Otherwise, we know for sure that the first bugs in the
code will be introduced soon.

*Aditi Kulkarni, Global Assets Engineering Lead, Accenture – Software Intelligence
Conference 2021. (According to their data based on 1000 projects)

Early Model Based Testing (eMBT)

As described above, MBT fits perfectly within the Shift-left test
approach. However, MBT is often started too late or used in a way
without the approach of testing the requirements, but purely to
generate automated (executable) test cases. We will therefore have to
apply MBT in a specific way, at the earliest possible stage. I call this test
approach early Model Based Testing, eMBT for short. By applying eMBT
you will break down the requirements at the earliest possible stage by
modeling them by means of a so-called eMBT-model. Such an eMBT-
model has a high level of abstraction and by drawing it up you will
quickly encounter ambiguities, contradictions, open ends, questions,
etc. that you can then discuss with the stakeholders. When drawing up
an eMBT-model, as a tester you will think differently about the
requirements, and you will think more as the final customer. You are
currently testing the requirements in an exploratory-like way and
already give meaningful and early feedback, namely feedback on the
basis. In addition, an eMBT-model is a user-friendly visual
representation of the desired situation and is readable for all
stakeholders. So not a technical and difficult to read model, as we
often encounter within MBT. The user-friendly visual representation of
an eMBT-model stimulates the communication and collaboration
between all stakeholders with the aim of achieving a shared
understanding of what needs to be built and therefore also tested.

Tooling

The eMBT approach does require a tool that supports this approach.
For example, the tool must offer the possibility to draw a model with a
high level of abstraction, the eMBT-model. This not only increases the
readability of the model, but by drawing the eMBT-model you, as a
tester, are also forced to think about both the happy and non-happy
flow. Furthermore, the tool should offer the possibility to include the
questions and comments you have, in the model itself.

Example

Below an example of a type of eMBT-model, based on the following
requirements.

As you can see in the figure above, the eMBT-model is based on the
principles of a flowchart, but with some specific conditions. This
eMBT-model is not only easy to set up, but also clearly readable for
everyone. Only three relevant nodes (action / status, decision and
result) are used and furthermore, all questions / uncertainties etc.
can be included directly in the eMBT-model via a separate node
(balloon). As soon as all questions have been answered, all
uncertainties have been removed and all stakeholders have the same
understanding of what needs to be built, the eMBT-model is ready and
the test cases can be generated automatically based on a pre-
selected test coverage. These test cases then can be performed
manually or being automated for the automated test.

To summarize

More and more automation is being done within the test process,
especially when it comes to test execution and checks. But what about
developing the test cases? Are we still doing this in a structured way
and should we not automate this in order to keep up with the short
development cycles? This is possible with Model Based Testing (MBT).
MBT is now a well-known and proven test approach that offers many
advantages over other test approaches. In addition, MBT fits within the
Shift-left test approach because you can use MBT early in the process.
However, we often see that technical models are used to derive the
test cases and that the preparation of the model is started too late
and therefore not used as a static test on the requirements. The
technical model also does not stimulate the communication between
the stakeholders, which is precisely so important at the start of the
process.

early Model Based Testing (eMBT) can be the solution for this. eMBT is
a software testing approach which starts at the very beginning of the
SDLC with early feedback as an important goal. It supports a lot of
important parts within the test process, such as collaboration,
exploratory, study the requirements, determine risks, communication
about the test basis and test object, determine test coverage, test case
design and modeling. By using the right eMBT approach and tooling to
start testing the requirements at the right time, unnecessary bugs are
discovered at a very early stage. In addition, with this eMBT approach
we quickly achieve a shared understanding of what needs to be built
and tested, even before a line of code is written. If the requirements

are clear and complete for all stakeholders, with one click you can
automatically generate the test cases.

In the next figure an addition to the well-known test pyramid with the
eMBT approach, in which testing starts with the (automated) testing of
the requirements, the bottom layer.

If you would like to know more about the approach of early Model
Based Testing (eMBT) or about eMBT tooling, please let me know.

SILVIO CACACE
–
Silvio Cacace is an experienced and
passionate test professional with more
than 26 years of practical experience. He
has experience in manual testing and test
automation within both traditional and
Agile development processes and is the
Founder of the Agile testing method APT®
& DTM and the early based Model Based
Testing tool DTM tool and TestCompass®
https://www.linkedin.com/company/
testcompass (www.compass-
testservices.com)

SHIFT-LEFT MET EARLY
MODEL BASED TESTING

ISSUE 02/2021
COMMUNITY

ISSUE 02/2021
COMMUNITY

62 63TEA-TIME WITH TESTERS ISSUE #02/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

COMMUNITY
On the 5th and 6th of June, The Test Tribe Community hosted FailQonf, a Conference dedicated to cover Failure Stories with Lessons around
Software Testing and Quality.

FailQonf had a stellar Speaker Lineup deliver 18 Talks, an Expert Panel, a Fireside Chat, and an open space Failebration session.

FailQonf had close to 1200 Registrations and around 800 attendees from over 55 countries. It received a pouring love from all the attendees and
the Average Event Rating of 4.84/5 and Average Session Ratings of 4.87/5 reflected the same.

If that's not enough, FailQonf Speakers were also interviewed before the Conference over many interesting questions. You can read them all,
here- thetesttribe.com/tag/failqonf/

And, of course, you can re-live the FailQonf experience via this Roundup post - https://www.thetesttribe.com/failqonf-event-roundup/

FailQonf.
Story of Failebration by

The Test Tribe.

https://www.thetesttribe.com/failqonf-event-roundup/
http://thetesttribe.com/tag/failqonf/
https://www.thetesttribe.com/failqonf-event-roundup/

ISSUE 01/2017
PLACE YOUR CATEGORY HERE

ISSUE 01/2021
PROCESSES

64 65TEA-TIME WITH TESTERS ISSUE #01/2021 SHIFT MAGAZINE ISSUE #01/2017

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 03/2021
WILL YOU WAIT LIKE A CHILD ON CHRISTMAS?

MACHINE LEARNING FOR TESTERS - PART 2
Learn more about Machine Learning and Testing in this exclusive series. Paul has a lot more under his hat to
share with us all. Hang in tight….

TEST CASE IS DEAD. LONG LIVE TEST CASE.
“For some time now and in light of my various readings, I have the feeling that the concept of test cases is
evolving. Sometimes I feel like it’s seen as a ball dragged underfoot, sometimes like the Holy Grail,
sometimes it just doesn't exist. So what is the test case in today's software world?” .. Hear more from
Benjamin Butel in this interesting article.

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. Stay tuned for
more…

02

01

03

TEA-TIME WITH TESTERS ISSUE #02/2021
65

mailto:editor@teatimewithtesters.com

TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

