
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Testing and
people…
We need to talk about testing

Page 06

Do not automate test cases

Page 16

Guiding principles for choosing

a test framework

Page 34

WAKING TESTERS UP SINCE 2011 ISSUE #03/2021



TEA-TIME WITH TESTERS ISSUE #03/2021
3

EDITORIAL BY LALIT

INTERVIEW: 28-32
A CUP OF TEA WITH
ANUJ MAGAZINE

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

COMMUNITY
WITH LOVE
FOR TESTERS
BY TESTERS
OF TESTERS

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 1 1

1 3 – 1 4

1 6 – 2 1

2 2 – 2 6

WE NEED TO TALK ABOUT TESTING
Why don’t we just automate all the testing? Is test coverage a useful metric?
What does it mean to “shift testing left”? When and where should we be
testing? How much is enough testing?

TEACHING A SOFTWARE TESTING CLASS -
A FIVE-YEAR REPORT
What follows is an update from an article I wrote on teaching a software
testing class that was originally published in the May / June 2016 issue of
Tea Time With Testers magazine.

DO NOT AUTOMATE TEST CASES
How directly automating test cases leads to unwieldy and bloated
automation suits that provide little or no value.

TEA AND TESTING WITH JERRY WEINBERG
Software Subcultures - Part 1

TESTING
AND
THE
PEOPLE!

TEA-TIME WITH
TESTERS
06 28 34 42 50



A NEXT GENERATION
MAGAZINE

FULL OF CONTENT AND
TIPS FOR TESTERS

3 4 – 3 8GUIDING PRINCIPLES FOR CHOOSING A
TEST FRAMEWORK
Test tool (or framework) comparisons, and the actual choice of a tool, can be
a “painful” and overblown exercise in modern tech organizations.

MACHINE LEARNING FOR TESTERS: PART 2
There is probably no area of our lives these days not touched in some way
by machine learning. Applications cover such wide areas as translation,
speech recognition, forecasting, fraud detection, search engines, medical
diagnosis, the financial markets, DNA sequencing and weather prediction for
agriculture.

CAST 2021: AN EXPERIENCE REPORT

On Monday 8th November I flew from London to Atlanta on one of the first
flights permitted after the US opened up again. There were television crews
crawling all over Heathrow airport, flight attendants waving the Stars and
Stripes, and even someone in a Statue of Liberty costume. That was quite a
thrill.

JERRY WEINBERG TESTING EXCELLENCE
AWARDS - 2021 ANNOUNCEMENTS

Tea-time with Testers is immensely pleased to make this announcement. This is
something we have been wanting to do for quite some years and we are glad
that we are finally doing it.

We are delighted to make yet another contribution to the testing community.
And this time it is software testing awards.

TEA-TIME WITH
TESTERS

4 2 – 4 9

5 0 – 5 1

5 2 – 5 7

We kept on waiting for things to change, and we hardly realized how an entire year passed
just like that.

What an interesting year 2021 has been, right? “What was so interesting about it, Lalit?”, you
may ask.

Well, when remote working became not optional, I was a bit skeptical about connecting with
people and having interactions which I always loved. I was under impression that I was going
far away from the people and community but now that I am looking back, the opposite has
happened. I presented at multiple conferences across different geographical locations, I got
to interact with people from geographies and cultures I was never exposed to before. I got to
know about interesting people (and their work) from various disciplines other than software
testing.

Oh, and not only that but I accomplished multiple private projects and I finished reading the
books I always struggled to find time for. I changed my job and joined an amazing team of
very talented colleagues at Accenture Interactive. What a ride this year has been, indeed!

However, there is another kind of change I noticed happening this year and that makes 2021
more interesting for me. The change of perception about testing among testers and non-
testers alike has been worth noticing. The rise of various testing tools and frameworks,
community forums, conferences, discussions, and debates moved away from blindly
automating checks and more towards investing in testing to create value. All of it has been
music to my ears.

My personal favorites of the year have been ideas and opinion pieces about testing written
by people from different disciplines in software. We are republishing one of such worthy
articles in this issue. I would like to thank and congratulate Dan North for penning it down
and his deep reflections. Though I do not agree with everything that he says, it is still a
worthy article that everyone in the software field should read and ponder upon, especially
the non-testing people.

Speaking of people and testing now brings me to our most important announcement of the
year. Yes, as promised, we are announcing the winners of the “Jerry Weinberg Testing
Excellence Awards” in this issue. We have started these awards to make a difference, to give
recognition to worthy testers, and their work. I invite you to join us in congratulating these
people and celebrating their contribution to the craft.

Another year has come to an end, and we are excited about 2022 as we’ll bring more exciting
things for our readers.

On that note, I wish you a great new year 2022! Rock on!

Testing, people and change!

TEA-TIME WITH TESTERS ISSUE #03/2021
5

LALITKUMAR BHAMARE
Chief Editor “Tea-time with Testers”
–
Manager - Accenture Interactive
Director - Association for Software Testing
International Keynote speaker.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedIn

https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT-Dec-2020.pdf
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/


DANIEL TERHORST-NORTH

–
Daniel Terhorst-North uses his deep technical and
operational knowledge to help business and
technology leaders to optimise digital product
organisations.

He puts people first and finds simple, pragmatic
solutions to business and technical problems, often
using lean and agile techniques. With thirty years of
experience in IT, Daniel is a frequent speaker at
technology and business conferences worldwide. The
originator of Behaviour-Driven Development (BDD) and
Deliberate Discovery, Daniel has published feature
articles in numerous software and business
publications, and contributed to The RSpec Book:
Behaviour Driven Development with RSpec, Cucumber,
and Friends and 97 Things Every Programmer Should
Know: Collective Wisdom from the Experts.

He occasionally blogs at https://dannorth.net/blog.

The purpose of testing

“What could possibly go wrong?”

Whenever we change software —
adding a new feature, changing or
replacing a feature, making “under-
the-hood” changes to improve things
— we incur risk. For any change, there
is a non-zero likelihood that we
cause a Bad Thing to happen.

This is true not only of the code itself
but of its build system, its path to
deployment, its operating environ-
ment, its integration points, and any
other direct or indirect
dependencies.

There are many types of Bad Things
that can happen. Here are a few:

Functional correctness: It doesn’t
produce the results we expect.

Reliability: It mostly shows correct
answers but sometimes it doesn’t.

Usability: Sure it works but it is
inconsistent and frustrating to use.

Accessibility: Like usability, but
exclusionary and probably illegal.

Predictability: It has random spikes
in resources such as memory, I/O, or
CPU usage, or occasionally hangs for
a noticeable amount of time.

Security: It works as designed but it
exposes security vulnerabilities.

Compliance: It works but it doesn’t
handle personal information
correctly, say.

Observability: It mostly works, but
when it doesn’t it is hard to identify
why.

For each type of Bad Thing, there is a
person or role who cares about that
thing, who we call a stakeholder.
These people represent the different
dimensions of risk, or dimensions of
quality, in our endeavours.

Why do we test?

With this in mind, I propose the
following statement:

The purpose of testing is to increase
confidence for stakeholders through
evidence.

There are three elements to this
statement:

1. Stakeholders are anyone who is
affected, directly or indirectly,
through the work we do. UX specialist
Marc McNeill uses the lovely phrase
“people whose lives we touch”. This is
broader than the customers or end
users of a product or service, and
stakeholders are more than one-
dimensional, siloed individuals; they
are collaborators who contribute
from different perspectives.

2. Increasing confidence, technically
reducing uncertainty, is about
understanding the things that the
stakeholder cares about, and how the
work we are doing — or are about to
embark on — might impact those
things. How can we help this
stakeholder sleep better at night?

3. Evidence is incontrovertible
information or data. Stakeholders
shouldn’t have to depend on your
assurance or guarantee, or to rely on
your reputation. They deserve cold,
hard evidence.

We can describe the process of
reducing uncertainty as assurance,
and the things that a stakeholder
cares about as (their criteria for)
quality, so we are talking about
quality assurance, which is another
popular term for the discipline of
testing.1 In our case, we are insisting
that we ground this assurance in
evidence rather than in blind faith or
theatrics.

Consequently, there are three
“superpowers” that I associate with a
testing mindset:

1. Empathy: the ability to get inside a
stakeholder’s head, see the world
from their perspective, understand
their causes for concern.

Or how programmers and testers can work
together for a happy and fulfilling life.

~
Pe

op
le

WE NEED TO TALK
ABOUT TESTING

Why don’t we just automate all the testing?
Is test coverage a useful metric? What does
it mean to “shift testing left”? When and
where should we be testing? How much is
enough testing?

Over the years I have discussed these and
similar questions many times, with
programmers and testers and various other
folks. These are important topics and they
are often shrouded in confusion, misunder-
standing, and tribalism. I have heard from
both camps that programmers should /
should not be writing tests, are / are not
qualified, do / do not even understand
testing, and so on.

We usually end up in a better place than
where we started, so in this article I want to
share some of the discussions we have so
that you can have them too.

Much of the confusion stems from a lack of
understanding of the purpose of testing,
including, ironically, with many testers that
I meet, so we don’t even have a shared

frame of reference.

To create this frame I want to look at a
couple of topics, namely:

• What testing is and what it isn’t

• Why TDD (and BDD) is only
tangentially about testing

From here I will address each of these
opening questions and discuss how
testers and programmers can collaborate
for a happy life.

I hope this will cause you to reassess the
discipline and the domain of testing,
whatever your role, and to engage with it
as the first-class work that it is.

It is a long read, so grab a cup of tea and
let’s get started.

6 7TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

~
Pe

op
le



ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Letʼs talk about testing

Why don’t we just automate all
the testing?

This is where that enormous
inadvertent damage I
mentioned manifests itself.
Before agile methods came to
prominence, during the 1990s,
testing was a structured activity
that started with test planning,
which happened at the
beginning of the project, at the
same time as the requirements
were being written. A key activity
at this stage was impact
analysis: understanding what
was changing and the various
ways this might cause Bad
Things.

Now I am not advocating to
returning to the Dark Ages of
software delivery, but I do
believe we threw the testing
baby out with the big up-front
bathwater.

Over the next few years, a new
mindset took hold which went
something like this:

1. Agile software teams are
primarily made up of
programmers, with an SME or
analyst (later product owner) to
provide domain information
and set scope.

2. We programmers are using
TDD, or “test-first” programming
or similar, so we are writing unit
tests as we go along.

3. By programming in this way
we produce enough tests to be
confident in our code.

4. Our unit tests are fast, so we
can run them all every time we
make a change. We even have a
mantra: “Run all the tests, all the
time.”

5. This means we don’t need to
do impact analysis for each
change. If any functionality is
affected anywhere, we will find
out as soon as we run our
comprehensive unit test suites.

6. We only need testers to mop
up after us; to do the testing
that is too expensive to
automate, or which changes too
often to be worth it. We will call
this manual testing.

7. As we get better at writing
automated tests, we will need
fewer and fewer manual testers.

8. Testers will need to retrain as
automated testers if they are
smart enough — kind of second-
class programmers who are only

good enough to write auto-
mated tests. The others can
press buttons. So the hierarchy
is programmers > automated
testers > manual testers.

9. We can outsource most of this
low-value testing and treat it as
a commoditised background
activity.

10. Our test coverage metrics
show how awesome we are at
testing. We’ve got this!

There is so much wrong with this
thinking that it is worth taking
some time to unpack.

1. [Agile software teams…]
Programming is only one part of
the value chain of digital
product development. The fact
that the people in “the team”
are mostly programmers masks
the wider cast involved directly
or indirectly in value creation.

2. […writing unit tests…]
Programmers think they are
writing unit tests. They are not;
they are writing simple code
examples to guide design.
Typically these are single-
sample tests of functionality, of

what the code does, rather than
any of the more subtle
dimensions of security,
accessibility, compliance, etc.,
unless the feature is specifically
for one of those stakeholders,
and even then all the others will
be sidelined.

These code examples were
never designed as tests, but as
guides. For instance, as a
programmer I may write a “test”
with a single value to check a
calculation, and maybe one
more to triangulate for a more
complex case. Then I declare
victory. With a testing mindset I
will think about edge cases,
small or large values, huge
negative values, values close to
plus/minus zero or other key
transitions, missing or invalid
values, calling things out of
sequence, and various other
devious inspections.2

There is no reason a
programmer can’t adopt this
test thinking, but usually we
have already moved on to the
next thing due to delivery
pressures.

2. Scepticism: the ability to doubt the work you are doing even while you
are doing it. This is especially hard for a programmer: our ego and
confirmation bias are always there. This scepticism aligns with the
Scientific Method, in which we try to falsify a hypothesis, not to “prove”
it.

3. Ingenuity: the ability and determination to do whatever it takes to give
that peace of mind to your stakeholder — or to discover they were right
to be sceptical in the first place! Testing is non-linear, non-obvious, and
often emergent. Poking around in a database; sniffing packets on a
network; injecting a service proxy to record interactions; tracking eye
movements; hacking DNS; writing code that breaks other code; nothing
is off limits to a good tester.

If and only if…

From this definition, it follows that

You are testing if and only if you are increasing confidence for
stakeholders through evidence.

Test thinking includes making architectural or design choices that
prevent entire classes of defects, or replacing a hand-rolled UI with a
constrained set of robust, hardened, well-documented widgets that have
well-understood behavioural characteristics. These are preventative
measures that negate certain types of risk: no one downstream has to
check for these kinds of errors, because no stakeholders will ever get
those unpleasant surprises.

Test thinking means that while you are designing a new feature, you are
making time to think about all the different stakeholders who might be
interested in this change, and what kind of things they might worry
about, and assuming they are probably right.

Conversely, if you are doing work that doesn’t manifestly increase
confidence for at least one class of stakeholder through tangible
evidence then you are not testing, whatever else you may be doing! From
a testing perspective, at best you are going over an already-trodden
path, at worst you are engaging in test theatre — activities that give the
illusion of testing while generating no useful information.

In the context of a digital product, the most common form of surfacing
this evidence is hands-on testing, either manually by interacting with
the system, or through designing, writing, and running automated tests.
Designing and writing good automated tests deserves its own section,
but before I get into that we need to talk about TDD, because this is a
primary source of confusion.

Test-Driven Development - a sidebar

Test-driven development, or TDD, is a method of programming where the
programmer writes small, executable code examples to guide the design
of an API or code feature. This approach is a great way to take small,
deliberate steps, and to focus only on what is necessary to get the
example code working. It tends to produce narrow interfaces and well-
structured, navigable code, as long as the programmer remembers to
refactor and tidy up as each new example starts to work.

The confusion arises because these code examples can be used post
hoc as tests to prevent the programmer from introducing any obvious
regressions as the codebase evolves, so early practitioners of this style
of example-guided programming called it “test-driven development”,
and this term entered the mainstream through Kent Beck’s seminal agile
classic Extreme Programming Explained, and in later writing by him and
others.

While they give useful feedback to the programmer, these executable
examples don’t necessarily make good tests — I will expand on this
below — and anyway, experienced TDDers will usually write as few of
these as they can get away with! As Kent Beck says, a programmer
doesn’t get paid to write tests, they get paid to write code that works.

This confusion was my primary motivation for creating Behaviour-Driven
Development: I was coaching teams in TDD and we would get mired in all
the questions at the top of this article, which it turns out have nothing
to do with the practice of TDD. So I formulated a way to describe TDD
without using the word “test” at all, and I found that it gave me much
better traction and adoption of TDD within teams.

I believe this misuse of terminology, coupled with the belief that most
testing is just test theatre, has led the agile movement to inadvertently
inflict enormous damage on the discipline of software testing over the
last couple of decades.

I appreciate this is a controversial opinion so I will elaborate below. It
isn’t all negative: the world of testing has benefited enormously from the
influence of automated build and deployment; running those
“programmer tests” which are better than no feedback at all; working in
smaller chunks to drive down delivery time and feedback delay. The
culture of “testing in production” typified by emerging movements like
chaos engineering are exciting too, but that is still a young discipline.

But the purpose and essence of testing, and the role of its practitioners,
has been diluted by the invasive species of “automated tests”. Even the
infamous automation testing pyramid is usually almost entirely about
functionality rather than any of the cross-cutting safety concerns like
security or compliance, or about operability or observability
characteristics.

To summarise: TDD, BDD, ATDD, and related methods categorically do
not replace testing, whatever their names may suggest. They are
primarily design and development techniques.

So now we know that testing is about providing evidence for
stakeholders, and that even if you religiously follow TDD then you are
only testing superficially at best, we can return to our opening questions.

“ … the belief that

most testing is just test theatre, has led

the agile movement to inadvertently

inflict enormous damage on the discipline

of software testing over the last couple of

decades.

https://stackoverflow.com/a/153565/632259
https://dannorth.net/introducing-bdd
https://dannorth.net/introducing-bdd


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

A programmer can’t be thinking like all the stakeholders all the time
or they would never get any work done! But this test thinking should
be happening continually, with testers embedded in development
teams and elsewhere along the value chain.

How much is enough testing?

Any activity that changes a system incurs risk — the possibility of Bad
Things — along many dimensions; we saw some of them earlier.
Depending on the type of change and the context, the onus is on us
to create suitable levels of confidence through evidence.

This suggests that the “amount” of testing isn’t a linear quantity. We
need to consider “enough” along those same dimensions too. What is
the size of the change? What is the potential impact if something bad
happens? What are the implications of this for security, usability, and
so on? How could we do this differently to change the risk profile?

When we think about “enough” testing, it can lead to constructive
discussions about alternatives with different implications. These are
almost always trade-offs; it is rare that one solution is objectively
“better” along all dimensions than another. Although it is fair to say
that a simpler, smaller change is usually less risky than a larger, more
complicated one.

Concluding thoughts

As a programmer, I have spent a good chunk of my 30-year career,
probably the last two decades, thinking about how testing and testers
fit into software development. I have never been comfortable with the
positioning of testing and testers in agile software development, and
it has taken me a long time to structure and articulate these thoughts.
Early hints of this article appear in my BDDx keynote from 2016, and I
decided to write it some time in late 2018.

I am not a professional tester. I have written this from the perspective
of an agile programmer who these days works within and across
teams, and who has had the privilege of meeting and working with
some amazing testers over the years.

I believe the purpose and principles of testing can mesh well with
agile delivery methods, and the fact that they generally don’t is more
a historical quirk than a systemic inevitability. If we stay on this path,
we will continue side-lining testing and testers, and miss out on the
opportunity of genuine high-performing teams.

We can write better quality software faster, and more sustainably, by
reintroducing some of these ideas, and enjoy the rare win-win-win of
“better, faster, cheaper.”

Mentions and Footnotes:

Thanks to Maaike Brinkhof, Aslam Khan, Tom Roden, Anna Urbaniak
for their review feedback, and to Liz Keogh and Paul Shepheard for
their earlier thoughts.

1. Purists will argue that there is a difference between quality
assurance and testing. While researching this article, I read several
sources that claimed to differentiate these terms, and each had
narrow — and conflicting! — definitions of testing, and used the term
“quality assurance” to describe what I am talking about in this article.
Many testers I speak with would like to get rid of the term Quality
Assurance altogether!

2. There is another style of automated test called a property-based or
generative test, where a single test can produce thousands or
millions of pseudorandom samples, but that is beyond the scope of
this discussion. They are cool though!

3. […confident in our code…] A programmer’s confidence in their own
code is a notoriously poor indicator of quality. The person who does
the work is by definition the person most likely to be confident in it.
If I didn’t think it was right, I would have written different code. All
kinds of cognitive biases are at play here: confirmation bias,
fundamental attribution error, Dunning-Kruger, to name a few.

Navigating all this is the bare minimum for a programmer to start
thinking like a tester. We are starting from a position of assumed
success rather than assumed failure. My default mode is to seek
evidence to “prove myself right” rather than to destroy my illusions,
and when I find it, to stop.

4. […run them all…] This starts out true, but without diligent and
disciplined attention to detail, a several-second build becomes a
several-minute build becomes a half-hour build. Add the automated
provisioning and tear-down of environments, sanitising and loading
of test data, contention for build and deployment resources,
underpowered development environments, and many other factors,
and the dream of “run all the tests all the time” becomes a distant
memory.

At that point we have to decide which subsets of tests we run at
which stage — and introduce ever more stages to try to shorten
intermediate feedback loops while increasing overall lead time to
production — and enter the murky world of test suite management.

5. […impact analysis…] Some tools can take an impact-led approach,
by re-running failed tests first, or by using static analysis to figure
out which tests may be most useful. But the skill and discipline of
impact analysis remains both a necessary and a dying art.

6. […testers to mop up…] By this stage you can guess where this is
going. We need testers to help us think about testing! The axis of
automated vs. manual is one of the least interesting to obsess about.
Understanding risk and its potential impact along multiple
dimensions, and surfacing that all-important information, is a full-
time discipline in its own right.

7. […fewer manual testers…] I tend to agree with this(!). But what an
agile programmer thinks of as “writing automated tests” is nothing
like the skill and discipline of writing good automated tests. This
often comes as a surprise to the programmer.

8. [retrain as automated testers] While programming skills can be
useful for a tester, I don’t recognise the roles of automated tester or
manual tester. Automation is one of many useful tools in a good
tester’s tool belt.

9. […outsource…] And herein lies the rub! Recognising risk, under-
standing impact, getting inside stakeholders' heads — which often
involves building relationships with key individuals or groups — and
squirrelling around surfacing evidence, these are not activities or
capabilities that it is prudent to outsource. If you have an
“outsourced testing function”, even if it is to another team in the
same organisation, the chances are they are engaged in testing
theatre, and not doing anything to reduce risk or increase
confidence.

10. […test coverage metrics…] I will talk about test coverage next. We
are, sadly, not awesome at testing.

This mindset isn’t universal, and many teams have a healthy and
comprehensive approach to testing, but it is widespread, and the
idea of “manual” vs. “automated” testers is near-ubiquitous, from
recruiting to certification to entire career paths.

So to answer the question, why don’t we automate all the testing?
We should write automated tests when they can help surface
evidence, especially for something we are likely to do again and
again, and we should do this from a testing perspective rather than
a programmer guidepost perspective.

We may also write tools to help with other testing activities, for
instance to retrieve test results from a database or remote service,
or to preprocess test data into a usable form.

A human being is doing much more than pressing buttons when they
interact with a computer system, and the insights and feedback they
can produce make hands-on testing a valuable ongoing activity.

Is test coverage a useful metric?

No. Yes. Sometimes. It depends. “Test coverage” is shorthand for
“code covered by running automated tests”. The multiple quality
dimensions thing applies here too. Which stakeholders are we
providing evidence for through this particular test? How does this
inform their confidence? The fact that some code exercised some
other code tells me that at best we gained some evidence for at least
one stakeholder.

For example, executing a code path to check for correctness (does it
produce the right answers?) tells me nothing about security
vulnerabilities, or whether it breaches regulations. And running a
test that only checks the same single value every time it runs isn’t
that assuring in any case.

One thing test coverage can reveal is code that has no automated
tests at all! A lack of coverage tells us that code is not being checked
by automated tests. But even that is not necessarily a concern if we
know that we are verifying the code in other ways. For instance, a
user interface that developers and testers see many times each day
is unlikely to have a glaring layout error on it, even though there is
no automated test to confirm this.

What does it mean to “shift testing left”?

I used to think shifting left meant starting all these testing activities
earlier in the process, but I realise it is more than that: it means
doing different things. Shifting left on testing means thinking about
architecture and design differently, considering different
stakeholders early and continually. Which in turn means shifting left
on security, accessibility, and all the other dimensions of quality that
we should care about. So shifting left on testing motivates all kinds
of assurance activities, which can stop us over-investing in a
solution that was never going to work. It is like TDD on steroids.

As an unintended consequence, we can remove much of the
traditional work that testers would have to do downstream when
they only have late sight of the product. Again, we aren’t doing that
work earlier, we are setting ourselves up to never need it at all!

When and where should we be testing?

This is the corollary to shifting left. The obvious answer is: as early
as possible and as often as is practical; wherever in the development
cycle we can start surfacing evidence to give assurance.
Programmers should be thinking like testers at least some of the
time, and testers can help them with this.

There is a fallacy that a feature should be “done” or “fully baked”
before we can test it, but this is easily debunked. We can assess what
data is being accessed, where from, in what way, for how long, and
for what purposes. We can assess lightweight UI sketches for
consistency or accessibility.

From this we can have an opinion about security, privacy,
compliance. How much data comes back each time? What are some
worst-case scenarios for data volumes or values, or screen update
times? This can give us insights into reliability, robustness, and
resilience.

https://skillsmatter.com/skillscasts/8633-bdd-is-not-about-testing


What follows is an update from an article I wrote on teaching a software testing class that was originally published in the May / June 2016 issue
of Tea Time With Testers magazine. It’s been 5 years since then, and I thought it might be interesting to provide a retrospective along with a peek
into what lies ahead. In short, some things have truly changed for the better, but sadly, some things have not. I’ll cover both, along with a positive
outlook for the future along with a call for your feedback.

Some background. I teach Computer Science courses on a part-time basis at Metropolitan State University located in St. Paul, MN (USA). In my
earlier article, I wrote about my experiences teaching my first college level class devoted solely to software testing. On the surface, one might
reasonably question the significance of such a class or what makes that experience any different than any teaching other class? I would have
thought the same as well, but I faced several interesting challenges that I believe would not have been the case if I were to teach some other
area of study, such as programming. databases, networking, and the like.

TEACHING A SOFTWARE
TESTING CLASS -
A FIVE-YEAR UPDATE

ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

CELEBRATING
THE EXCELLENCE IN

TESTING.
READ ON TO SEE THE
WINNERS FOR 2021

https://teatimewithtesters.com/wp-content/uploads/2021/01/TTwT_May_Jun_2016.pdf


For starters, senior faculty members expressed sincere concerns that such a course “would never fly.” I was prepared for this and brought to light
that testing skills are now a critical expectation for new hires and that effective testing is critical to a successful agile managed initiative. The course
was ultimately approved, but I am pleased to report that what began as a one-time special topics course has since been fully integrated into our
curriculum as an upper-level elective. I have also been told that plans are underway to integrate more software testing into our other courses. As
a final testament of my successes, I have also been asked to teach a graduate level course. I’ll expand on all of this later in the article.

My next challenge was content. In this respect, my goals have not changed. I continue to emphasize the pragmatic, and focus on basic concepts
such as soft skills, static testing, black box testing, white box testing, and test planning. I also include a couple of classes on Test Driven
Development (TDD) with jUnit and Mockito. Since then, I have been able to incorporate a couple of classes on Behavior Driven Development (BDD)
and Cucumber. What is interesting is that software testing is no different than any other area of Computer Science study. Our field is constantly
changing, and if we are to succeed as a practice, we need to keep ourselves current. Sadly, it is my experience that many do not, and they resist or
remain bitter over the future. Se la vie.

Finally, there was the challenge of selecting an appropriate text. Most computer science courses have an abundance of texts to choose from, but
to this day, I have still not found a single college level text that addresses the topics I teach, so I must still resort to several professional grade
books. It makes more work for me, but fortunately, the TDD and BDD books come with sample code and exercises.

Metropolitan State is a fully accredited university with a wonderful faculty and solid reputation, but it wasn’t until recently that I realized just how
unique it is to offer a software testing class. For my full-time job, I was recently asked to deliver a short presentation on testing to some of our
college interns. These were students in their mid to senior years of study, and many of them are pursuing Computer Science degrees. These were
very bright individuals, and they were carefully screened and selected from some very prestigious schools. Not one of them knew if their schools
offered a course in software testing. I later verified none of their programs do. Worse yet, not one student was even aware that software testing
was included in any of their programming courses. Finally, they fared rather poorly when identifying tests cases for the classic triangle problem:
http://www.testing-challenges.org/Weinberg-Myers+Triangle+Problem.

Granted, my sample size is limited, but nonetheless alarming. If academia is to prepare its graduates to succeed, software testing needs to be
treated with the same level of rigor as other core competencies, and pragmatic and current textbooks are desperately needed. As a practitioner
with over 40 years’ experience along with over 15 years’ experience as a part-time educator, I just might be able to make a small but hopefully
meaningful contribution. I am envisioning I will get such an opportunity in the upcoming graduate level testing course I mentioned earlier. My plan
is to first fast-track most of the content from the undergraduate course. Nothing new here, but it has become apparent that to effectively drive
change and raise the bar, the next crop of thought leaders should at least be exposed to systems thinking, change management, and organizational
dynamics.

Obviously, there’s enough content in each of these topics to easily consume a course on their own, or even their own area of study, so I must set
realistic expectations. Fortunately, thanks to Gerald Weinberg, I have a good foundation to start with. I plan to work in some content from his four
volume Software Quality Management series. I will also offer each of these topics as team projects.

I will consider my efforts a success if I can at least raise awareness. Of course, time will tell if I am successful or not, but one of my most personal
and gratifying experiences are when students write to me telling me how my courses have helped them in their studies and / or career, and they

Other students have told me they introduced BDD practices into their organizations, and others have decided to pursue graduate studies. Yes, this
is nirvana, but I call this out to confirm the significance of providing a solid grounding in software testing.

In closing, I am about to retire from a long and rewarding career, but I will be staying on as a part-time contractor, and of course, same for teaching.
I’ll end my retrospective with hopes and concerns for the future. Who knows, maybe in another five years I’ll have some exciting news to report.
Till then, I’d love to hear from you! If you are a student or recent college graduate, I’d be interested to know how you learned about software testing
and what interested you in pursuing it in your career. For you veterans, are you feeling your new hires are adequately trained? If not, what skills do
they lack and how are you filling in the gaps? Finally, if there are any educators out there, I’d be interested to know if you currently include or at
least plan to include software testing in your coursework and what texts you are using.

ISSUE 01/2021
PEOPLE

ISSUE 03/2021
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

DAVID LEVITT

–
Mr. Levitt is a passionate software engineer and educator. He’s held lead roles as a programmer and tester, and he has successful track record of
driving change – at least some of the time. He holds a BS and MS in Computer Science and an Advanced Certificate in Software Engineering.

He can be reached via LinkedIn - Dave Levitt or david.levitt@metrostate.edu

https://www.testing-challenges.org/Weinberg-Myers+Triangle+Problem
https://www.linkedin.com/in/davidlevitt-2789452/


It is a common practice to use test cases as a
backlog for test automation. QAs develop test
cases from user stories as part of normal testing,
then automate those tests. Each iteration, more
stories are tested, more test cases are auto-
mated, and the suite of automated tests grows
larger. Engineering leaders push metrics like
“percentage of test cases automated” and
congratulate people on that high number. Some
teams even employ specialized “automation
engineers” whose sole job is to take test cases
and automate them.

Unfortunately, automating test cases and
pushing percentage-of-tests-automated metrics
is a quality engineering anti-pattern and
inevitably leads to bloated and hard to maintain
test suites that provide little value. While
automation is critical for agile delivery, this
overly simplistic “automation factory” mentality
is not a healthy approach to test automation.

In this article we will show why automation
factories are misguided, and describe a better
approach to automation development that
ensures test automation sustains and
accelerates delivery velocity.

The Costs and Benefits of Test
Automation

To understand why automating existing test
cases is so problematic, we need to step back
and review a bit of automation theory.
Specifically, we need to dig into the automation
costs and benefits, look at the expected value-
over-time of automated tests, then look at how
the expected value changes with different types
of tests. We can then look at how automating
test cases using a simple automation factory
approach would impact overall test suites.

All automated tests have two types of costs: an
initial cost to develop, and the ongoing cost of
maintenance. Tests are expected to have some
benefit: the difference between the time to
execute the test manually, and the (assumed)
much quicker automated check. While there are
other intangible benefits (it’s more fun, it
teaches valuable skills, etc.) we do not need to
consider those here.

While this is a massive oversimplification of test
automation, it does capture the critical aspects
for our purposes — every automated test of
every type has both a cost and a benefit, and
both are important. As automation experts we
are trying to maximize the benefits and minimize
the costs.

Here are some things that affect the cost of the
test:

• The existence (or lack) of a test
framework into which the test will be
added

• The cleanliness of the existing test
framework and suite

• The ease of and ability to setup test state
(eg test data)

• The availability of an acceptable test
oracle

• The volatility of the interfaces or features
the test will interact with

• The stability of the environment against
which the test will run

• The technical skill of the QAs expected to
create and maintain the automation

Here is a partial list of things that could affect
the amount of benefit we derive from an
automated test:

• How often the test is expected to run
(every commit, daily, per release, etc.)

• How long the test will be a valid check of
the SUT.

• How expensive (in time, or otherwise) it is
to validate the same test manually

• How error prone the test is to run
manually

Both these lists are incomplete, and
experienced quality engineers are probably
screaming “But what about… xyz!!” Fortunately,
an exhaustive list isn’t necessary to show that
every test has a litany of factors that
contribute to both the expected costs and
benefits.

We’ve already established that automation
costs can be split between upfront
development and ongoing maintenance costs.
The benefits also have a time dimension: value
from the automated test isn’t realized
immediately, it’s accumulated over the
lifespan of the test.

So the full account of the value isn’t final when
it’s created, but rather something that changes
over time. If we graphed this value-over-time
for a generic automated test, it would look
something like this:

The most oversimplified analysis of test automation you will
ever see.

BLAKE NORRISH

–
Blake Norrish has been building and testing software
for his entire professional career. After twelve years as
a test architect at Expedia and five years consulting at
Thoughtworks, he joined Slalom Build where he is now
Senior Director of Quality Engineering.

Follow him on Medium or connect on LinkedIn.

ISSUE 03/2021
PEOPLE

ISSUE 02/2021
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

DO
NOT
AUTOMATE
TEST
CASES
HOW DIRECTLY AUTOMATING TEST CASES
LEADS TO UNWIELDY AND BLOATED
AUTOMATION SUITS THAT PROVIDE LITTLE
OR NO VALUE.

https://medium.com/slalom-build/the-regression-death-spiral-18f88b9fb030
https://discovery.ucl.ac.uk/id/eprint/1471263/1/06963470.pdf
https://discovery.ucl.ac.uk/id/eprint/1471263/1/06963470.pdf
https://medium.com/@blakenorrish
https://www.linkedin.com/in/blake-norrish/


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

This graph shows a test that initially has a net-negative value:
the initial development costs outweigh the benefits in time
saved. However, the time saved eventually overcomes the initial
cost as well as ongoing maintenance costs to provide positive
value. Every test goes through some lifecycle like this based on
all the variables listed above.

Depending on initial development costs, maintenance costs,
and benefits derived, the test may break even and provide
positive value much sooner, or possibly never break even:

The above graph describes a test that was initially providing
some value (after initial development, the line slopes up), but
then later stops providing value. Perhaps this test stopped
being run, or was so flaky that nobody trusted it, or the feature
it tested was sunset. Regardless of the reasons, the graph tells
us that we would have been better off never automating the
test in the first place.

This is the key point: that the value of automated tests is
impacted by many variables, and depending on these variables,
automated tests can have either a positive or negative lifetime
value in terms of overall time saved.

The Many Types of Automated Tests

Next, let’s consider what the value-over-time graphs would look
like for different types of automated tests. By types of tests, we
mean everything from small, code-level unit tests, slightly
larger “social” unit tests, even larger component tests, higher
level integration tests, tests that bypass the UI and hit APIs
directly, tests that mock the APIs and exercise just the UI, E2E
tests that span the full tech stack, etc.

It’s important to note that in complex, modern software there
are many, many possible types of automated tests; there are an
almost unlimited number of ways you can decompose the
system into pieces and attempt to isolate just this piece or that
piece. Each of these isolations represents a possible test type.

An exploration of every type of automated test that could
conceivably be created against a non-trivial architecture is
beyond the scope of this article, but I’d recommend the
Practical Test Pyramid and Test Strategies for a Microservice
Architecture as good primers. To keep this post succinct, we will
only consider the two extremes: the small unit test and the
large, full end-to-end (E2E) test.

What would the cost/benefit equation and the graph of the
value-over-time look like for a unit test? Some unique
characteristics of unit tests:

• Unit tests can usually be written in a matter of minutes, if
not seconds

• Unit tests are (or should be) immune to external state.
Meaning they set up mocks, doubles, stubs, etc. to
deterministically control the execution path.

• Unit tests can be executed in milliseconds, suites of unit
tests in seconds.

• Unit tests will likely be executed thousands of times a day,
not only within a CI/CD pipeline for every commit, but also
locally by each developer as code is written.

• Even with 100% coverage, unit tests cannot prove the
application actually works as expected, and only validate
an incredibly small (usually singular) thing.

Given this assessment, the value-over-time graph of a unit test
is probably very different from our generic graph: it has almost
no up-front cost, minimal maintenance, and while it is executed
all the time, each incremental execution actually provides only
a very small amount of value.

The graph would probably look something like:

What about the largest of all automated tests, the E2E? What
would the value-over-time graph look like for it?

Some key points about E2E tests:

• E2E tests (by definition) are impacted by the most state
and thus require the most setup and test data control.

• E2E tests are executed against a full environment. Often
parts of this environment are shared.

• E2E tests often include many (dozens, even hundreds) of
serial steps.

• E2E tests are the slowest of all tests, possibly running for
minutes.

• E2E tests usually have to drive functionality through a user
interface.

• E2E tests are usually executed much later in a CI/CD
pipeline.

• E2E tests are the only type of automated tests that
demonstrate the application works as the customer would
use it.

Given these points, the value-over-time graph of the E2E would
be something like this:

This graph shows a significantly higher up-front cost, initially
sending the net value highly negative. However, the continued
execution of this test over time eventually allows it to break
even, then proceed into positive value.

Again, the expectation that this test will eventually provide
positive value is predicated on the assumptions made at the top
of this section, things like: how long the test will be used, how
often the test will be run, how much confidence we have in the
result of the test, how much the test will have to change when
underlying interfaces (like the UI) change, how stable the
environment we are executing against is, etc. Reaching break-
even is never guaranteed.

Where to Automate

The nature of E2E tests makes them costly to create and costly
to maintain. They necessarily rely on (or could be impacted by)
the most states across the most systems. They are more prone
to system timing, synchronization, network, or external
dependency issues. They usually drive some or all functionality
through a web browser, an interface designed to be consumed
by a human, not software. Because they are executed against a
full environment, it is more likely that these tests will have to
share part or all of this environment with other tests or users,
possibly leading to collisions and unexpected results.

All these reasons (and many more) make the large tests most
risky, and are only justified because of the complementary large
value they can provide: only E2E tests demonstrate the full
integrated system working together in a realistic manner.

There are many other types of tests to consider, and within
complex systems, it’s highly likely that a lower level type of test
could more directly test the functionality in question without
incurring the costs associated with higher level (larger) tests.

In other words: do not build an API test against a deployed
service instance to validate a piece of logic that could be
validated in a unit test. Do not build an E2E test for logic that
could be validated by directly calling a single API. Never bring in
more of the system than you have to, to demonstrate that
something is working. Identify the logic or behavior you need to
test and create a test that isolates exactly that behavior. Only
use higher level tests to test the actual integration of things, not
the logic within those things.

The huge, overarching point is that E2E tests are risky and are
rarely the best type of automation to test specific functionality.
To put this in terms of the value-over-time graph: always prefer
test types that give you the most immediate expected value with
the least cost, and be skeptical of large automation efforts only
justified by overly optimistic estimations of eventual time-
saving benefits.

This type of cost-benefit analysis is exactly the thinking that led
to the Automated Test Pyramid concept many years ago. The
pyramid advocates that, all things being equal, you generally
want much more small-fast-cheap tests and much less large-
slow-expensive tests.

Many types of tests. The actual names used for each test type vary significantly
between organizations.

While I won’t try to convince you that the shape of your suite
must always and exactly be a pyramid (Kent Dodds says it’s a
Trophy, James Bach prefers a Round Earth model, Justin Searls
says it’s just a distraction), I hope I did convince you that all test
automation carries risk, and ensuring tests are created at the
appropriate level helps mitigate and control this risk. A huge
part of the automator’s job (in collaboration with the rest of the
team!) is determining exactly which type of test is appropriate
and gives the highest likelihood of lifetime positive value.

Said in a different way: all automation should be treated as an
investment, specifically, a risky investment. Each type of
automated test represents a different type of risk, and we need
to manage overall risk and maximize the value of our
investment by continually evaluating the cost and benefits of
each type.

”All automation should be treated as an
investment, specifically, a risky investment.

Each type of automated test represents a
different type of risk, and we need to manage

overall risk and maximize the value of our
investment by continually evaluating the cost

and benefits of each type.

https://martinfowler.com/articles/practical-test-pyramid.html
https://www.martinfowler.com/articles/microservice-testing/
https://www.martinfowler.com/articles/microservice-testing/
https://martinfowler.com/bliki/TestPyramid.html
https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://www.satisfice.com/blog/archives/4947
https://twitter.com/searls/status/1393385209089990659


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Automation Factory and the Top Heavy Suite

Back to the automation factory!

If we think about user stories, acceptance criteria, and the test
cases that a quality assurance professional would create from
them, what type of automated test do you think these test cases
naturally map to? If we just blindly take test cases and automate
them, what type of test would typically be created?

With generally accepted Agile documentation techniques,
requirements are communicated to testers in higher level, user
centric language (often, we even call them user stories). Think
“Given-When-Then” stories and “As a... I want... so that...”
acceptance criteria.

A very hypothetical Agile user story… what type of tests would be created from this?

Even when stories are sliced horizontally and describe the
behavior of a specific component (e.g. an API of a REST service)
the requirements will be communicated in “user language” of
that component. Thus, the test cases created from this
documentation naturally map to the larger, more risky types of
test automation.

This is the root problem of the automation factory approach —
automating test cases inevitably over-emphasizes large, slow,
and expensive tests, because test cases are naturally written in
the language of the manual tester. They map to the exact type
of test that our value-over-time analysis told us to avoid!

All new functionality is tested with dev unit tests and new E2E tests, leading to a
top-heavy and hard to maintain test suite!

A second and sometimes just as powerful driver pushing
automators to incorrectly prefer large E2E tests over smaller
tests is that it is psychologically reassuring for non-technical
people (and, some technical people) to know that test cases
have been automated. For example, business leaders can
understand test cases because they describe application
functionality in language they are familiar with, and knowing
that these cases are automatically being checked, reassures
them that they won’t be getting 2am calls from angry customers.
They get far less reassurance knowing that the dev team has
90%+ unit coverage.

Thus, some people will push percent-of-tests-automated and
number-of-tests-automated metrics because it makes them feel
more comfortable with the state of testing, not because it is
actually a more effective or efficient method for automatically
checking system behavior. Pushing every test case to be
automated might make you feel safe, but will not create a
healthy automation suite.

Symptoms of the Automation Factory

Using the automation factory approach of test-cases-in,
automated-test-cases-out automation approach tends to lead
to some very problematic but unfortunately common symptoms:

• Test suites that take many hours to execute, or that can
only be run over night

• Automation teams whose sole purpose is to investigate
then triage the failures of the previous execution—which
consumes most of their time

• Test failures where the accepted mitigation is simply to
rerun the test until it works

• The removal of the suite from the CI/CD pipeline, or
demoting it to a non-blocking step

• Test suites where developers avoid or outright refuse to
run them because they don’t trust the results

• Suites with thousands of tests, spread across hundreds of
folders (or even different repos!), with duplicated tests,
commented tests, and tests nobody knows what they do or
how they got there

• Herculean efforts by automation engineers to manage the
bloated suite of tests, or to hide the complexity behind a
layer of gherkin (eg: Cucumber, etc.)

All of these symptoms are indicative of a test suite that is not
providing value to the team that owns them, which is
unfortunately common within development organizations. The
suffering teams commendably prioritized test automation
within their development process, but approached it with a
naïve automation factory mentality.

Healthy Automation

Ok, so how should you approach test automation to avoid the
bloated suite?

The need for automation covering new functionality should be
evaluated holistically by looking at automation options across
every type of test. You absolutely do not want to assume that
new functionality necessarily needs a new highest-level
automated E2E test. Instead, evaluate how the functionality
could most effectively and efficiently be covered over the full
set of all test types.

You don’t want to automate test cases, you want to automate
functionality. Functionality can be partially described by test
cases, but automating every discrete test case into its own
automated test, at the level the manual tester would perform it,
will never be effective or efficient.

In fact, the most effective way to test new functionality might
simply be to update an existing automated test, move the test
into a more appropriate test type, or even create an entirely new
test type. Don’t forget that as system functionality changes, you
should be looking to delete tests as much as you are looking to
add them!

While the type of test you need will be highly dependent on your
system architecture, acceptable risk profile, existing tooling, etc.
A generally healthy approach to automation changes would look
something like:

1. Add new tests at the lowest level possible.

2. Update existing tests to cover new functionality.

3. Remove any now-obsolete or redundant tests, or combine
tests.

4. Test the general case at a high level, then move
permutations of that test into smaller, lower types of test.

5. Add new, high level E2E tests only if absolutely necessary.

6. Introduce a new type of automated test if this functionality
cannot be covered by any existing type of test.

7. Modify the system architecture to enable a new type of
automated test.

8. Continually and critically evaluate the health of the full
suite of all test types with the full development team.

9. Point number 7 above deserves special attention as it is a
critical difference between healthy automation approaches
and automation factories.

As development teams, we must stop thinking about test
automation as something that is applied to software only after
that software has been built. Instead, automation should be
considered a critical part of the software development process
itself. Automation must be grown with software and the
requirement for automatability should drive system design and
architecture just as much as any other design requirement.
Approaching automation in this way will enable smaller, more
economical types of test automation unavailable to systems
built without consideration for automatability. Healthy
architecture is designed to be tested, and the role of the
automator is just as much to inform system designers of these
requirements as it to write automation after the system has
been built.

Understanding that all automation has a cost and those costs
create risk, that functionality should be tested with many
different types of automated tests, that the challenge of test
automation is leveraging these types of tests appropriately to
holistically create the most effective and efficient suite of
automation, and realizing that automatability is as important in
system design as any other requirement — this is the healthy
approach to test automation.

Creating automation factories and blindly automating all test
cases as new top-level automated tests is not.

References:

The internet has a ton of great material on healthy test
distribution, types of tests, test investment, and many of the
other subjects discussed in this article. Unfortunately, it’s
buried in a lot of fluff, uninformed speculation, and marketing
material. Here are some of my favorite resources on these
topics:

• The Practical Test Pyramid, Ham Vocker

• Testing Strategies for a Microservice Architecture, Toby
Clemson

• The Diverse and Fantastical Shapes of Testing, Martin
Fowler

• Write Tests. Not too Many. Mostly Integration, Kent C. Dodds

• The Testing Trophy and Test Classifications, Kent C. Dodds

• Testing Pyramid Ice-Cream Cones, Alister Scott

• Round Earth Test Strategy, James Bach

• Just Say No to more End-to-End Tests, Mike Wacker

• Testing vs Checking, Michael Bolton and James Bach

• The Regression Death Spiral, Blake Norrish (yes, me)

• Test Cases are not Testing, James Bach and Aaron Hodder

• The Oracle Problem in Software Testing, A survey IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING

Don’t assume new functionality needs new E2E Tests, consider all type of automation!

https://martinfowler.com/articles/practical-test-pyramid.html
https://www.martinfowler.com/articles/microservice-testing/
https://www.martinfowler.com/articles/microservice-testing/
https://www.martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/2021-test-shapes.html
https://martinfowler.com/articles/2021-test-shapes.html
https://kentcdodds.com/blog/write-tests
https://kentcdodds.com/blog/the-testing-trophy-and-testing-classifications
https://watirmelon.blog/testing-pyramids/
https://www.satisfice.com/blog/archives/4947
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
http://www.satisfice.com/blog/archives/856
https://medium.com/slalom-build/the-regression-death-spiral-18f88b9fb030
https://www.satisfice.com/download/test-cases-are-not-testing
https://discovery.ucl.ac.uk/id/eprint/1471263/1/06963470.pdf
https://discovery.ucl.ac.uk/id/eprint/1471263/1/06963470.pdf


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

22 23TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

"I have had discussion with
executives in hundreds of
different businesses and
industries. Regardless of the
nation, product, service, or
group I am never disappointed.
Someone always says: 'You have
to recognize that our business is
different.' Because they usually
see only their business, they
never realize how alike
businesses are. Certainly the
technology and the methods of
distribution can be very
different. But the people
involved—their motivations and
reactions—are the same." -
Philip B. Crosby

What Crosby says about
business in general is certainly
true for software businesses. In
this chapter, we'll introduce the
major groupings of software
patterns, or sub-cultures, and
relate them to Crosby's work
that he summarized in his
"Quality Management Maturity
Grid."

Applying Crosby's Ideas to
Software

Readers who have read "Quality
Is Free" will notice how
consonant our views of software
quality are to Crosby's views of
quality in general. In particular,
they will notice that we share
the view that the critical factor is
always "the people involved—

their motivations and reactions."
Even so, few people have had
much success in directly
applying Crosby's approach to
software engineering. That's
because, as we've said,

1. No two organizations are
exactly alike.

2. No two organizations are
entirely different.

We have changed Crosby's
approach to account for the
differences, so we need to

explain several areas in which
our approach to software
quality differs from Crosby's.

Conformance to requirements
is not enough

Crosby is very clear in defining
quality as "conformance to
requirements."

"If a Cadillac conforms to all the
requirements of a Cadillac, then

it is a quality car.

If a Pinto conforms to all the
requirements of a Pinto, then it
is a quality car."

That's an excellent definition as
long as the requirements are
correct. I'm not an expert in
manufacturing, so I can't say
how frequently manufacturing
requirements are clear and
correct.

Software Subcultures
- Part 1

”Quality is the ability to
consistently get what people

need. That means producing what
people will value and not produc-

ing what people won't value.
JERRY WEINBERG
October 27, 1933 – August 7, 2018
–
Gerald Marvin (Jerry) Weinberg was an American computer scientist, author and teacher of the psychology and anthropology of computer software development.
For more than 50 years, he worked on transforming software organizations. He is author or co-author of many articles and books, including The Psychology of Computer Programming.

His books cover all phases of the software life-cycle. They include Exploring Requirements, Rethinking Systems Analysis and Design, The Handbook of Walkthroughs, Design.
In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information Sciences, the 2000 Winner of The Stevens Award for Contributions to Software Engineering, and the 2010
SoftwareTest Professionals first annual Luminary Award.

For over eight years, Jerry authored a dedicated column in Tea-time with Testers under the name “Tea and Testing with Jerry Weinberg”. As a tribute to Jerry’s and to benefit next
generation of testers with his work, we are re-starting his column from this issue onwards.

To know more about Jerry and his work, please visit his official website http://geraldmweinberg.com/

Tea
and

Testing
with
Jerry

Weinberg

http://geraldmweinberg.com/


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

24 25TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

I am an expert in software engineering, however, and I can definitely
assert that software requirements are seldom even close to being
correct. If the customer wanted a Pinto and you built a car that
conformed to all the requirements of a Cadillac, that is not a quality
car.

Many writers on software quality have missed the point that
software development is not a manufacturing operation. It does
contain a manufacturing operation—the duplication of software
once developed. Indeed, some of my clients have successfully
applied Crosby's definitions and approach to making accurate
copies of completed software. Software duplication, however is
generally not one of the most difficult parts of software
development (Figure 2-1).

Figure 2-1.

Some of the processes in software development are manufacturing
operations and some resemble manufacturing in a few of their
aspects. These can definitely apply Crosby's approach to achieve
high quality.

In software development, therefore, we've had to generalize the
definition of quality:

Quality is value to some person(s).

Requirements are not an end in themselves, but a means to an
end—the end of providing value to some person(s). If requirements
correctly identify the important people and capture their true
values, this definition reduces precisely to Crosby's conformance to
requirements. In software work, however, we cannot assume this
ideal situation, so much of the development process is concerned
with more closely approaching the "true" requirements. Therefore,
much of what we need to understand about quality software
management concerns this parallel development of requirements
and software.

"Zero Defects" is not realistic in most projects

Because software development is only partly a manufacturing
process, Crosby's goal of "Zero Defects" is not realistic. It is realistic
for the manufacturing parts of the process, such as code
duplication and probably coding itself (once the design is accepted
as a true representation of the true requirements). And perhaps, in
ten or twenty years, it will be realistic for the design process itself,
at least the low-level design (Figure 2-1).

However, in 35 years of software building and consulting, I've never
seen anything approaching "Zero Defects" in requirements work. If
you examine those software projects that claim to be "Zero Defects,"
you will find that they always start with an accepted requirements
document, as in,

• Conversion of a program from one language to another, where
duplicating the behavior of the original program is taken as
the absolute requirement. There are now companies that can
consistently do such conversions on fixed schedules with fixed

prices—and "Zero Defects" guaranteed.

• Creating a program for a new environment, using a standard
requirement , as in the creation of a new COBOL compiler.

Thus, for the foreseeable future, most of us will have to manage
software development in a "dirty" environment, where
requirements cannot be assumed correct. To ignore this reality
would be to play the ostrich, not the quality software manager.

There is an "economics of quality"

Crosby says, "The third erroneous assumption is that there is an
'economics' of quality. …The second (most often offered excuse
managers offer for not doing anything) is that the economics of
quality won't allow them to do anything. What they mean is that
they can't afford to make it that good.…If they want to make certain
that they are using the least expensive process that will still do the
job, they should get deep into process certification and product
qualification."

Again, this assumes that there is a correct set of requirement to
start the process. If the requirements are correct, then it is not the
development manager's job to decide what is "gold plating" and
what is essential. The requirements answer all such questions once
and for all. If there is only one right way, there cannot be any
question of the "economics of quality." As Crosby correctly says,

"It is always cheaper to do things right the first time."

However, when the customers' values are not known, and even
worse when the customers are not known, then we don't know what
the "things" are. We may produce things right, but discover that they
are not the right things. That's why the requirements process can
produce or destroy value, and that's why there's an economics of
quality, in any software project that includes a requirements
process.

This "economics of requirements quality" certainly argues for
getting the requirements right in the first place. If you can do it,
then by all means take that approach. Where you cannot, however,
the politics/emotions of negotiating value (quality) will permeate
your project—and make it much harder.

Any pattern can be a success

In the examples of the previous chapter, we saw that even errors in
conformance to formal requirements don't necessarily destroy the
value of a software product, and that trying to meet every last
requirement can result in destroying value for a subset of the
customers. That's why the battle cry of so many software
development managers is

Don't touch the program! or even more conservative,

Don't touch the (software development) process!

Although this attitude is often ridiculed, it makes sense
economically. If the way you now produce and maintain software is
wholly satisfactory, don't work on changing it; work on maintaining
it. If your customers are happy, it would be foolish to change.

As we'll see, collapse (of a program or a process) is an ever-present
possibility for most software managers. If your customers are mildly
unhappy, then you're probably in the right pattern, but not doing it
as well as you could. Don't change your basic pattern, but improve
it by small, safe changes that don't risk collapse.

But if you're currently in the wrong pattern, then trying to improve
it by small changes is like creating ever more detailed maps for the
wrong trip. If you're supposed to go from Miami to Cleveland, then
detailed maps of the Los Angeles metropolitan area are not only
useless, they are distracting.

If your customers are unhappy, it will be fatal not to change. If
you're not in the appropriate pattern, then choose the pattern that
will give you the quality/cost you need and work within that pattern
to do it well.

Quality is the ability to consistently get what people need. That
means producing what people will value and not producing what
people won't value. Don't use a sledge- hammer to crack a peanut.
Don't use a nut-cracker to break up a wall. Choose the pattern that
will give you the quality/cost you need and work within that pattern
to do it consistently.

Working consistently is the essence of a pattern, or sub-culture.
Working consistently to give value to your customers is the essence
-of success. Therefore, any subculture can be a success.

"Maturity" is not the right word

It's very tempting, when writing about cultures, to slip into a
judgmental mode. For instance, it's hard for some people to believe
that any software subculture can be a success. Like the pigs in
Orwell's Animal Farm, they accept the words that say, "All animals
are created equal," then add, "…but some are more equal than
others." "Any software culture can be successful," they agree, "but
some are more successful than others."

Most often, this judgment slips in covertly. Crosby, for example,
describes five different patterns of quality management in his
"Quality Management Maturity Grid." The Grid is a strikingly useful
tool, but a better name would have been, simply, "Quality
Management Grid." The word "maturity" is a judgment, not a fact,
but an interpretation of facts. At the very least, it doesn't fit the
facts. Maturing normally goes in one direction, but Crosby gives
several examples of organizations "falling back, as in this quote:

"We were Enlightened (one of the "maturity" stages) for a couple of
years, then we got a new general manager who thinks quality is
expensive. We'll have to drop back a stage or two until he gets
enlightened."

In everyday language, "mature" means "having attained the normal
peak of natural growth and development." There's nothing
particularly "natural" in the progression through Crosby's stages.
Indeed, Crosby is at great pains to emphasize the vast amounts of
work involved to change from one stage to another.

Moreover, I have observed many software organizations that have
attained "the normal peak," in the sense that they are going to stay
right where they are unless something abnormal happens. They are
good enough, and investing in attaining another pattern would
serve no organizational purpose. As we've seen, cultural patterns
are not more or less mature, they are just more or less fitting. Of
course, some people have an emotional need for "perfection", and
they will impose this emotional need on everything they do. Their
comparisons have nothing to do with the organization's problems,
but with their own:

The quest for unjustified perfection is not mature, but infantile.

Hitler was quite clear on which was the "master race." His "Aryan"
race was supposed to represent the mature end product of all
human history, and that allowed Hitler to justify atrocities on "less
mature" cultures such as Gypsies, Catholics, Jews, Poles, Czechs, and
anyone else who got in their way. Many would-be reformers of
software engineering start their work by requiring their "targets" to
confess to their previous inferiority. These "little Hitlers" have not
been very successful.

Very few healthy people will make such a confession voluntarily,
and even concentrations camps didn't cause many people to
change their minds. This is not "just a matter of words." Words are
essential to any change project, because they give us models of the
world as it was, and as we hope it to be. So, if your goal is changing

an organization, start by dropping the comparisons, such as implied
in the loaded term "maturity."

Six Software Sub-Cultural Patterns

To my knowledge, Crosby was the first to have the idea of levels of
process maturity. He noticed that the (mostly) manufacturing
organizations with which he worked could be studied according to
the quality of their production. If he knew the quality of their
product, Crosby could make predictions about what practices,
attitudes, and understanding he would find inside the organization.

Crosby's observation was something we organization consultants
use all the time, an application of "Boulding's Backward Basis",
which says,

Things are the way they are because they got that way.

In other words, you can study products to learn about the processes
that produced them, in much the same way that archaeologists
study levels of technology from the remains they dig up from ruins.
Like the archaeologists, Crosby discovered that the various
processes that make up a technology don't merely occur in random
combinations, but in coherent patterns. Crosby named his five
patterns:

1. Uncertainty

2. Awakening

3. Enlightenment

4.Wisdom

5.Certainty

based largely on the management attitudes to be found in each.

In their article, "A Programming Process Study," Radice, et al.
adapted Crosby's "stratification by quality" scheme to software
development. In his book, Managing the Software Process , Watts
Humphrey picked up their work and identified five levels of
"process maturity" through which a software development
organization might grow.

These patterns were called:

1. Initial

2. Repeatable

3.Defined

4.Managed

5.Optimized

These names were more related to the types of processes found in
each pattern, rather than to the attitudes of management.

Other observers quickly noted the usefulness of Humphrey's
maturity levels. Bill Curtis, of MCC, for example, noticed that a
parallel classification could be made simply on the basis of the way
people were treated within the organization. He proposed a
"software human resource maturity model" with five levels.



ISSUE 02/2021
PEOPLE

ISSUE 03/2021
PEOPLE

26 27TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

1. Herded

2.Managed

3. Tailored

4. Institutionalized

5.Optimized

Our own work with organizations is
guided by the anthropological model
of "participant observation," so we
tend to observe what's happening at
the bottom levels, not just what
management is doing and saying. We
particularly look for the degree of
congruence between what is said
and what is done in different parts of
the organization. Classifying
organizations by their degree of
congruence, we can match them to
the other systems of patterns as
follows,

1.Oblivious: "We don't even know
that we're performing a
process."

2.Variable: "We do whatever we
feel like at the moment."

3.Routine: "We follow our
routines (except when we
panic)."

4.Steering: "We choose among
our routines by the results they
produce."

5.Anticipating: "We establish
routines based on our past
experience of them."

6.Congruent: "Everyone is
involved in improving
everything all the time."

This is the classification we'll use
throughout this article to describe
organizations.

To be continued…

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

PART 2
IN

NEXT
ISSUE

https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com
https://leanpub.com/b/thetesterslibrary/


ANUJ MAGAZINE
–

Anuj Magazine currently works at Walmart
Global Tech India and leads Strategic
Technology Programs. Prior to this, he
worked at Citrix and handled leadership
roles in a myriad of functions like Product
Management, Technical Operations,
Engineering, Security during his tenures.
He has also played different roles in
technology companies like McAfee and
Quark.

Anuj has 16 patent filings.

While we are discussing your
career and accomplishments,
please tell us how “testing”
helped you in your journey.

To put things in context, so far, I
have worked in the following
domains- Testing, Development,
Globalization and Security
Engineering, Technical
Operations, Product Man-
agement, Strategy.

My approach in entering and
mastering a new domain is
simple- start with a mastering
mindset, follow-up with building
relationships, then focus on
skills and mastery. (pretty much
in that order).

Software Testing was my first job
and I did it for sizable time in my
early/mid career so it has a

all the said dependencies were
met, then we will achieve what
we set out to do. Building an
impeccable strategy is an
iterative process. In the next
iteration, inspired by the inverse
thinking mental model, I
introduced the pre-mortem
process. In the pre-mortem
process, we collectively worked
to identify the failure points i.e.
covered all the angles why our
strategy would fail. This exercise
helped us pre-empt failures
even before they occurred.
Inversion principle, simply put
is, Avoiding stupidity works
better (in most situations) than
trying to be brilliant.

My application of Inversion
mindset is tied directly to
application of software testing
mindset, which I learned to
practice years ago.

My career has been career-path
agnostic in many ways as I have
worked to drift away from a
well-set path defined by
someone else. Growth is usually
discovered at a zone where the
comfort zone ends.

Beyond work, much of my time
is spent with family, which is the
first dimension of my life (work
being second). My hobbies and
interests form what I call the
third dimension of my life as
these have helped positively
augment and influence the
other two dimensions- Work
and Family life. My intent is to
pick-up a new hobby every year
and put in hard yards to master
it. I have pretty much managed
to do this in the last 14-15 years.

great influence in my career,
going by sheer volume of time
spent. I still try and test and
explore in my spare time. To me,
the key elements of testing
mindset includes- caring about
bringing the best for the
product (and for the company),
striving to bring clarity in
decision making, seeking the
truth, always striving to shorten
the feedback loop.

Let me give you an example of
how testing mindset helped me
in my recent role. We were
engaged in formalizing the
strategy for a crucial area. After
having put all the details-
including vision, mission, and
path to achieving the mission, i
felt something was missing. The
proposal that i had covered
mostly the linear scenarios i.e. if

IN
TE

R
V
IE
W

Failure Resume? What
are those? What makes
one an effective test
leader? How has testing
changed in recent
times?
Find it all in this
exclusive interview with
Anuj Magazine

Anuj, what a pleasure talking to you today after quite some years we
discussed testing last time. Looking at where you are today, a lot
seems to have changed. Would you like to briefly tell us what are
you up to lately?

On the work front, I currently work with Walmart Global Tech India
and lead Strategic Technology Programs. This role is primarily in the
Strategy domain, quite an open-ended job description which is
(currently) focused on building world class tech culture in the
organization. In the last 8-10 years, I have consciously worked to pivot
my career and been fortunate to have taken up the roles that I never
did before. It is discomforting to move away from your expertise every
2-3 years but I like it that way. The best perk for me is that I am not in
a rat race (of chasing next designation) anymore.

- INTERVIEWED BY LALIT BHAMARE

ISSUE 03/2021
OVER A CUP OF TEA WITH ANUJ MAGAZINE

ISSUE 03/2021
OVER A CUP OF TEA WITH ANUJ MAGAZINE

28 29TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021



If I am not wrong, you have also worked on the product side of
building software systems. Would you like to tell us how best
testers in a team can help product people, especially in the era of
DevOps?

Product profile is unique in a sense that it has intersection with
almost all the functions in the organizations. For testing specifically,
i have seen the following ways the value was added with testing-
product collaboration:

1. Present easy-to-consume information about product health
status. The keyword here is ‘easy to consume’. The truth about
product health shouldn't be hidden beneath multiple layers.
And testers should be upfront and candid about sharing the bad
news, if need be.

2. Testing functions can partner effectively in the value discovery
phase. A/B testing is usually done by product teams. Testers can
scale-up to understand the product discovery phase
requirements and set them up to partner with the product
teams.

3. Testing can partner with product team to help assess the field
feedback about a feature or a product, and play a role in
shortening the feedback loops- swiftier delivery of fixes and
experiences to the customers.

4. Testing can help facilitate a large-scale dogfooding programs to
test the features in-house before the product is launched fully.

These are just a few examples but the core idea is- If you do not limit
your thinking, testing can collaborate with almost any and every
function in the organization and add never-thought-of value. Having
an open mind is such an underrated growth hack.

I guess I would never stop mentioning your fantastic article that we
had published in one of our previous issues, Software Testing and
the art of staying Present. Does staying in present still matter for
testers when the speed of deliveries and deployments are always
pushing them to stay ahead of the game?

Thank you for the compliment and I am glad that you still remember
that article. I believe that staying in the present is more important
now than it has ever been.

We live in a consumption economy. The whole digital revolution
seems to be built on the premise to offer the contents (in the form of
news, updates from friends, images, videos etc.) to us as effortlessly
as possible. We now have smartphones that are 24x7 content
broadcasting machines. As a result of this, human beings are always
in content consumption mode. While access to information is good in
one way (it has made us more aware) but largely it has also robbed
conciseness from the day-to-day communication. The emails tend
now to be longer, verbal updates muddled up and our white-boards
more busier than they have ever been.

One of the pieces of writing that recently inspired me is a blog titled-
Create less, Consume more by Tanmay Vora. Sharing couple of pieces
of advice from this blog:

Consume mindfully by having right set of filters that help you decide
if something will *really* add value and increase your ability to
create. When you consume mindfully, less is actually more.

I believe in practicing the fine art of subtraction – we don’t need more
and more. We need less that is more- useful or helpful or enriching.
Being in the present expands our ability to create more and consume
mindfully.

You did a very impressive talk in the FailQonf. It was about the
Failure CV. Please tell our readers more about it and why it is
important?

Our CV or resume is such a fascinating document. All that we do in
that document is project how awesome we are, how well we have
done things, how fast we have progressed, how many things we have
accomplished but we rarely stop and ask ourselves how did we even
get to that point ? What are the things that we did that made us so
good ? How did we reach where we have?

We rarely talk about failures in our resumes. Name three
accomplishments you're proud of. I bet that didn't take you very long.
Now name three failures that you're proud of. You had to think harder,
right?

We live in an age that's supposed to celebrate failure. Fail early, fail
fast, treat failure as an asset. But how often do you actually brag
about your failures?

Including a Failure section in your resume helps fill that gap. But you
might wonder why it is essential to talk about failures when we can
get away with just talking about our successes in the interview
process. I have used Failure resumes for the last 7-8 years. And in this
period, I have worked in 3-4 different functions. With this experience,
i have observed the following benefits of being upfront about failures
in the resume:

1. It helped to build trust. Being seen as someone who is
comfortable with talking about failures makes you appear more
human. It helped traverse the challenge. of earning trust in less
time especially when you are in interview situations. The more
senior a role you are chasing, the more important role trust
plays.

2. It helped to conquer the fear of failure.

3. It helped build Self-awareness . I've learned about myself from
nearly all my failures, additionally, I've also learned not to take
success for granted.

4. In one of the organizations I worked for, ‘Courage’ was one of the
4 core values. With my failures listed in my resume, I presented
the proof of courage without me having to say a single word in
my defense.

My general experience has been that engineering managers and
leaders in organizations who get to decide about testing usually do
not have formal education or hands-on experience with testing as
such. This usually makes it hard for testers to feel understood and
even communicating the value of meaningful testing becomes
difficult. What would be your suggestion to change this scenario for
good? Who needs to change and how?

There are 2 lenses i choose to look at the situation you describe-

1. External forces lens

Speaking not only of Software testing, but in general for all the
functions, our industry has changed beyond recognition in the last 2
decades. Not just change, but the rate of change is unprecedented in
these times. These are some of the trends that i have seen that
continually tend to exert pressure on the software testing profession-

A. SMAC revolution- Social Mobile Analytics and Cloud trends has not
just had impact on our lives but also on the way Software engineering
is done. As an example, companies live Google and Amazon (and
many others) performs 1000s of releases every day. The shrinking of
release cycles has caused the role of testing to be reinvented.

B. AI/Data Science revolution- The advent AI
continues to be a threat to all the routine,
monotonous aspects of every job (not just
some parts of Software testing) on earth.

C. Small teams- WhatsApp Android team that
reached billion+ downloads for a large part
of it’s existence was handled by just 4.5
engineers (0.5 being a person who was
engaged in configuration management).
Businesses realize that with evolved release
processes/automation, more value can be
derived from less investments.

D. Delayering- Many organizations have cut
additional layers that were causing
inefficiency in communication and delivering
value. Again not just testing but all functions
have seen varying impact of delayering.

Likewise, there are many emerging trends (I
haven't even called out Covid specific shifts
but you get the drift here) that are putting a
lot of pressure on the way Software testing is
done. These trends have caused the value
perception from testing being changed
constantly. Leaders should be situationally
aware of these trends and represent the
value from testing appropriately. This is what
brings me to the next lens.

2. Value lens:

Again, this is a generic observation but more
often I have seen people not communicating
the value that testing brings to the decision
makers (who may not be from the testing
domain). It is more a communication
problem than a value problem. Leaders
should increasingly focus on not just
producing value but also how to package and
communicate the value. One can make a

great product but don't do enough hustling,
then it won’t sell. It is a high time we realize
that producing value and communicating
about the value (and convincing others)
need different skills and application.

Looking at your passion for sketch-noting, it
is evident that you have a great creative
talent. How does that creativity help you in
doing your work?

Visual thinking (that involves communicating
via visual medium like images, videos etc.) is
increasingly becoming important in today’s
times. Sketchnoting is an art form that helps
to condense and communicate the relevant
ideas. I honestly think i don't have innate
talent in Sketchnote but it is more of an
acquired skill (i didn't know how to draw 2-3
years back), which i got hooked on and
working hard to hone. The only talent I have
is being ruthlessly consistent and staying
relentlessly focused. I see the following
benefits:

Visual thinking helps you be more aware, be
present in the moment:

Sketchnoting requires you to be deeply
observant and have extended levels of self-
awareness to summarize the ideas. really
helps to extract more life out of each
moment.

Visual thinking brings in brevity in
communication:

Sketchnotes has really helped me balance
the continuum of creation and consumption.
Sketchnotes offer a powerful medium that
lets you do a concise representation of a
book or a large number of words in just one

page. It really helps to separate signal from
the noise. In short, it improves brevity in
communication.

Being more intentional about listening:

Visual thinking has made me more
intentional about listening. While the left
side of brain is always busy understanding
the content, segregating into different
knowledge buckets, the right side of brain
gets actively engaged in drawing pictorials
metaphors of all the gathered knowledge.

Retaining more info:

The fact that you can draw the summary of a
session or an article or a book or literally
anything you like, helps to retain more info in
your mind.

I loved this quote from David Heinemeier:

'I’ve realized that the hard part about most
books is not reading them but recalling their
knowledge or insight when you need it the
most.'

Sketchnoting helps you achieve exactly that.
The simple act of putting pen to paper helps
you remember more but the fact that you can
see the sketchnotes anytime you like (they
are all over my work area) means that you
always tend to actively or passively glance
through this.This act helps in ensuring that
you build strong neural connections in the
brain.

ISSUE 03/2021
OVER A CUP OF TEA WITH ANUJ MAGAZINE

ISSUE 03/2021
OVER A CUP OF TEA WITH ANUJ MAGAZINE

30 31TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

”Testers need high agency in high
proportions to navigate through various

challenges- from proving your existence to
delivering value.

https://teatimewithtesters.com/software-testing-and-the-art-of-staying-in-present/
https://teatimewithtesters.com/software-testing-and-the-art-of-staying-in-present/
https://www.ted.com/talks/elizabeth_gilbert_your_elusive_creative_genius


Building Networks:

Finally, one of the biggest blessings I got from my journey of visual
thinking is that it helped me connect with various accomplished
people, most of whom helped me make a better person and
professional.

I remember I read this quote that stayed with me (I think from the
book- 'Show your Work'):

Networking is less about knowing people and more about putting
your best work out in the open. that attracts the best people out there.

You read a lot and write often. What books would you recommend
testers that personally helped you?

Books have had a disproportionate impact on my life so I will certainly
have recommendations. But since I read a lot, my list of rec-
ommendations also keeps evolving :-). Keeping testers in mind, here is
what i would recommend:

The Third Door: The Wild Quest to Uncover How the World's Most
Successful People Launched Their Careers by Alex Banayan

This book on the surface has nothing to do with testing, very less with
technology yet i feature this high on my list. Reason- it teaches an
important skill that I rate highly among professionals- High Agency. Let
me explain what it is:

High Agency is about- "When you’re told that something is impossible,
is that the end of the conversation, or does that start a second
dialogue in your mind, how to get around whoever it is that’s just told
you that you can’t do something?" (Eric Weinstein's quote:)

High Agency is about finding a way to get what you want, without
waiting for conditions to be perfect or otherwise blaming the
circumstances. High Agency People either push through in the face of
adverse conditions or manage to reverse the adverse conditions to
achieve goals. (Shreyas Doshi's quote)

Testers need high agency in high proportions to navigate through
various challenges- from proving your existence to delivering value.

Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives by Nick Rozanski, Eoin Woods

I recommend this book for a simple reason- I have seen a very few
testers having a say in software architectures. Not that the tester's
abilities are lesser than anyone else but it's more about orientation
and developing interests. The best testers I have seen can present
product architectures like seasoned architects would and add value in
creating robust systems in a proactive way. This book can help you
understand an architect’s mindset.

Working in Public: The Making and Maintenance of Open Source
Software by Nadia Eghbal

I recommend this book because I have seen a lesser number of
Software testers participate in creating Open Source software. It’s a
fascinating read on the history, present, and near future of open
source software development. I foresee a world where more and more
testers participate in the Open Source community, holistically imbibe
the Open Source ethos and help build better, cleaner software.

If there is one thing you would like to stop tester from becoming,
what would that one thing be?

I read Subroto Bagchi’s book- “The Professional” many years back and
it had a profound impact on me. Subroto while describing the word
“Professional” says- “"A professional who sees his work primarily as a
means of earning money, runs out of meaning very soon.Being a true
professional is nothing short of a religion and the capacity to serve is
indeed a blessing in life."

He further goes on to say that there are 2 qualities that separate a
professional from someone who is just professionally qualified-

Ability to work unsupervised.

Ability to certify the completion of one’s work.

If there is one thing that I would like to stop testers from becoming, it
is becoming unprofessional or non-professionals.

When we embrace a particular field as our chosen career, our
responsibilities do not start and end at mastering the skills needed to
execute or exceed the job expectation but it in reality goes much
beyond. With extraordinary time and focus spent on building skills, we
sometimes tend to ignore a larger view.

To make my point further, I have listed a handful of situations that we
might face in our professional lives and followed up these situations
with a question-

- A person finds a High severity, rarely reproducible defect in the
Software component he/she was handling on a day before release.
Should he/she go and inform the Management (despite fearing his
lack of performance impressions) or should he remain quiet and not
report the bug (as anyway it is rarely reproducible and will be rarely
noticed) ?

- A person is knee deep in a technical problem, whose solution is likely
to be available with another teammate. He/She does not quite reach
the other guy for help just to serve his/her ego. Is it ok to let
professional ego slow the pace of a project ?

- A person meets another colleague on a pathway, they have a
discussion and as a follow-up, this person promises to send some
information to the colleague in 2 days time. A week goes by and the
colleague doesn't get the required information. Is it ok to be casual
about the commitments made to people who are not your bosses or
Managers ?

- A person installs a Software tool and learns it's very basic functions.
Next thing he includes the very mention of the tool in his resume as
one the "skills" he has. Is he right in claiming expertise on this tool
(which may even turn out to be the basis of him getting an interview
call) ?

Being a professional is our foremost responsibility as a tester, or for
any other role/job you choose to take.

ISSUE 01/2021
OVER A CUP OF TEA WITH GRIFFIN JONES

ISSUE 03/2021
OVER A CUP OF TEA WITH ANUJ MAGAZINE

32 33TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

mailto:contact@teatimewithtesters.com


~
Pe

op
le

34 35TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

~
Pr

oc
es

se
s

GUIDING
PRINCIPLES
FOR

CHOOSING A
TEST
FRAMEWORK

”Whatever complexity we might
code into our automated

checks, we need to provide
multiple accessible interfaces
for folks to run the automated
checks, abstracting any tool-

specific complexity (and setup)
at all its levels.

“No one understands my passion for this
vain test library, but I shall make it default
for everyone”

– A vernacular Software Test Engineer

The problem

Test tool (or framework) comparisons, and
the actual choice of a tool, can be a
“painful” and overblown exercise in modern
tech organizations:

- It’s prone to a lot of lengthy and tiresome
risk discussions between “hyper-focused”
advocates of different tools that haven’t
used the tools of the competition;

- It’s very easy in some cases for folks to fall
for sales pitches from malicious test tool
vendors;

- It’s easy to fall for a “honeymoon“-like
anti-pattern phase, where the initial
impression/adoption fails to uncover a lot
of deep rooted issues that come with
prolonged tool usage.

- Lastly, tools are intimately dependent on
their context, e.g. familiarity, team-level,
org-level, and industry-level suggested
imposed rules and standards, extensions &
plugins, etc., meaning: the “one test tool/
framework/library to rule them all” (likely)
does not exist.

This is oftentimes true regardless of the
area of focus of the test tools, be it UI-
facing, API-facing, Load/Performance-
dedicated, …

Proposed solution(s)

I’d like to share and suggest a handful of
personal guiding principles that have
helped me mitigate the non-useful noise
and disruption that comes with a tool-
choice exercise:

- Abstract tool-specific complexity through
accessible interfaces (Anyone can run)

- Containerize from the start (Anyone can
run from anywhere)

- Abstract the “attack type“ (Anyone can
run anything)

- Expose meaningful test results (Anyone
can understand what failed)

- Make debugging easy (Anyone can tinker
with failure)

The underlying principle is using accessi-
bility and maintainability as a compass
(and a shortcut) to help create some sort of
safety-distance / critical perspective while
comparing test-frameworks.

Let’s look at each of the above points in
detail.

https://filfreire.com/posts/load_scam
https://filfreire.com/posts/load_scam


ISSUE 03/2021
PROCESSES

ISSUE 03/2021
PROCESSES

36 37TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Anyone can run

One of the most overlooked aspects of any test tool, and specifically
tooling that is adapted and then developed on top of inhouse tools is
that it’s not always straightforward for folks to make use of the actual
tools.

If you have been working on the tech industry for a while, you
probably have seen some of the worse symptoms of what I’m
describing:

- The automated checks are only run by the same folks developing the
checks from the UI of an IDE, e.g. something done by Jetbrains like
IntelliJ, or done in any sort of the typical apps nowadays built with
ElectronJS, like Insomnia, Paw, Postman, etc.

- The automated checks only run locally through a CLI or a set of shell
commands, and are a mess to setup locally on someone else’s
machine aside from the machine of the engineers coding the checks;

- The automated checks are already at a stage where they run on a CI
pipeline in our typical Jenkins/GitlabCI/Github Actions/… BUT, only
the engineers that created those checks know about the CI jobs, and
are the only ones checking the results of those jobs;

- …

The basis of the problem is always the same: only the test engineers
developing the checks know how to run them and/or how to interpret
the results, and there is a massive disconnect in value between the
automation and everyone else in the team.

In my personal experience, to fight this problem we can resource to
one principle:

Whatever complexity we might code into our automated checks, we
need to provide multiple accessible interfaces for folks to run the
automated checks, abstracting any tool-specific complexity (and
setup) at all its levels.

What this means always depends on the context where we’re working,
but here’s a few good signals that we should be tuning for:

- If non-technical folks are drawn to run the tool and can run it
unsupervised and without fear of causing damage;

- If technical folks can run the tool in a way that suits their preferred
development environment tempos;

- If the interface we designed is easy to remember;

-…

In the field the above can look like this: suppose we’re working on a
test tool called “testthis” where folks can mimic user flows pointed at
the API level.

Technical folks can run the tool via CLI, which could look like:

testthis run --flow release_goat_for_trex --environment staging --
project dinopark

And non-technical folks can run the same tool from points where they
are used to work in, like in Slack or other chat-based software, e.g.
using a slash command:.

/testthis run --flow release_goat_for_trex --environment staging --
project dinopark

The trick is abstracting and reducing configuration, reducing the
mental load of someone using the tool. There’s more I could write
about this principle alone, because it’s tricky to design an interface
that is simple but not over-simplifying. I’ll leave it to another post for
the time being.accessible

Anyone can run from anywhere

One of the coolest things that I’ve come to appreciate over this past
year was having direct access to a friend who also happens to be a
Docker Captain (yes, that’s right Tom, I’m name dropping you on one
of my posts).

The main teaching that we adopt when we’re interacting everyday with
someone that is a Docker (and containers) ace pilot is:

If we can break apart and contain a solution to a problem, e.g. a piece
of software, the solution might not be perfect, but we’re solving in one
go a lot of other tiny issues for ourselves and others.

We go from the typical “Works on my machine” to being able to share
and distribute the thing, contain it and pin its dependencies to a
working state, and reuse it without worrying about internals or
obscure steps of setup or host machine specifics. It now “works on my
container”, which is a slightly better predicament than having
something just work on the programmer’s host machine.

Sadly, what we’ll find inside most organizations in the industry is that,
aside from using existing containerized tools, very few test engineers
tap into that power and start thinking about containerizing their own
automated checks and their own in-house test tooling, and fail to
extend tools that already allow for containerization. I believe this also
aggravates the pickles that a lot of Test Engineers endure:

• “No one uses my test tools”

• “No one cares for the automated checks I’ve coded”

• “My test tools work fine, folks just need to follow these 10 steps
on their machines to set it up, and between executions do these
15 steps to reset the test data”

• “I’ve worked on this piece of automation for months, and no
developer or tester or non-technical person uses it”

• …

Nobody cares because the test engineer is not distributing the thing
properly.

Distribution is not just sharing a link to a repository or a CI job. In
order to fix these “dormant test tooling dilemmas, we need to keep in
mind:

• Any piece of test tooling we are building needs to provide value
from the start, not in “6 months”;

• If there’s no easy to follow README showing me how I can run the
tool, I absolutely don’t care for the tool;

• If I can’t just spin up a container of the tool, not even technical
folks will care for the tool.

And probably the key side-pieces that come as a byproduct of the
above principles:

• We can provide value from the start if we can get it in the hand
of folks that will use it,

• There’s no better way of getting it to folks hands than container-
izing it,

Containerizing takes you to the next level, because containers can
“run anywhere” and be triggered to start “from anywhere”,

“from anywhere” means we easily provide our tool through a chat bot,
a spreadsheet, or any other tool that can underneath do any sort of
API requests to run a container “somewhere”.

When we do the exercise of putting our test tool or our handful of
automated checks working in a way that they can be run “anywhere”,
more often than not it also forces us to think about the next problem:
to “run anything” pointed everywhere.

Anyone can run anything

It’s usually the case our test tools all try do the same: they try to follow
a scripted path of the interaction of a user through a certain narrow
perspective of a product.

If we wanted the test tool user to do this same interaction at a larger
scale, like in a load test, it would be a good practice that they could
easily just do that: indicate that they want to run the same thing they
are running mimicking one user - but for hundreds, thousands, etc…
of users.

Here’s the part where most Test Engineers will spot a gotcha: folks
dedicate too much time either:

• on tools that accomplish flows for a single user, where they add
a lot of detailed assertions throughout those,

• or attacking the scale problem, focusing on load tests that are
not deep in assertions.

But they almost never dedicate balanced time for both. This cannot be
the case.

My proposed principle to try and do things right in this case is that we
need to push for ways that we can dedicate enough meaningful time
for both implementations. And this is only possible if from the start
we try to provide those through the “same” interface:

testthis run --flow some_flow (... other arguments)

testthis run-load --flow some_flow (... other arguments) (load specific
arguments, like number of virtual users, iterations)

testthis run-distributed-load --flow some_flow (... other arguments)
(load specific arguments) (distributed arguments)

The end user should be able to run anything easily, they just need to
focus on choosing the right “attack” type, and the “parent” test tool
abstracts the underlying complexity, and acts as an alias of any other
underlying tools.

Anyone can understand what failed

This goes back to something I had mentioned in this post.

As test engineers we tend make it so when a given automated check
suite fails, we get notified with some bland message and a link to a CI
job. Problems with this approach:

• The notifications end up being cryptic for the desired audience
for those notifications (in theory the whole team),

• It’s dumb to have to go through logs if what you want is just an
initial understanding of the issue,

• The notifications don’t provide any meaningful information, their
intended premise is “folks should care about these”, which
curses the notifications to fall into oblivion, since they quickly
get ignored.

This is not the way. Notifications for test tool failures should be as
“delicious”, enticing and meaningful as a typical predatory notification
for a new social media post… without the shallowness and ad-revenue
hungry demonic spirits that come with default social media
notifications and clickbait.

What would this look like in theory? Well, it means we prioritize:

• Meaningful error messages and easy to access logs over bland
failure messages;

• Direct-feedback loop over scripted test case loops through
integrations.

And what does this look like in practice? Taking the example from my
anti-patterns post, it’s all about trying to reach a message that tells a
story, like this:

SomeAutoChatbot says: The endpoint ABC in development environ-
ment 029 is failing with 502 Bad Gateway for the buy-an-action-man
test scenario. Error trace-id is 053de188-7438-42b1. Link to the logs
some kibana/cloudwatch link. Possible solution: restart the orders
service here or contact @oncall-support-dev-env-team.

versus saying something bland, like this:

something is not working, please check my failed jenkins job and the
ticket 1234 of the test case on JIRA

The point is: whatever you do, you optimize for the message itself, by
being sure that anyone in your surrounding context, including
yourself, can have a quick grasp and clear signals of why something
failed, and you leave breadcrumbs for folks to investigate deeper if
they are up for it.

Anyone can tinker with failure

How many times has a developer reached out to a test engineer and
asked - how could I do this specific automated check or debug a
failing check, only to be met with several flavours of the same
response:

You could, but you can’t

We tend to make our lives in a project harder by not looking at
probably the most useful problem to look at after the problem of
containerization:

How dowemake it easy for anyone to debug a failure state of our test
tool?

This principle depends heavily on the programming language,
libraries and tools from which each of us build our own automated
checks and test tooling, but its importance is what can make or break
a test tool and even a test engineer.

Some folks are quick to write this off and will say: “Ah, if folks do this
and that on the specific dev environment that I use, they can
somewhat debug the test tool… problem solved”

Those folks fail to realize they are a part of the problem. This shouldn’t
be the case. There are a few steps I can suggest in this case:

• You should be able to provide multiple different ways that folks
can both “breakpoint-resume” debug the test tool, as well as
your typical “console log” approach;

• The tool you are building details somewhere in meaningful logs
and other document formats the steps it took while trying to
follow along a certain flow;

• Any debug approaches should be documented somewhere
where it’s easy to find the info;

https://slack.com/help/articles/201259356-Slash-commands-in-Slack
https://www.docker.com/community/captains
https://twitter.com/tomwillfixit
https://filfreire.com/posts/anti_patterns
https://filfreire.com/posts/anti_patterns
https://filfreire.com/posts/lost_art


ISSUE 03/2021
PLACE YOUR CATEGORY HERE

ISSUE 03/2021
PROCESSES

38 39TEA-TIME WITH TETERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

• You should try each of the debug approaches you suggest for yourself;

• If any of the suggested debug approaches is hard to explain or convoluted and complex, scrap it for a simpler one.

Wrap-up: A caution word about tools that try to be human

Here’s what most folks might not talk about when it comes to test tool choice: the “evil” of tools that try to be and do everything a human does.

By this I mean:

They suggest impose a human-based domain specific language (DSL)

There’s two crucial points to keep in mind regarding this:

• It indirectly promotes software testing busywork, as in, “it is work that is done to show that work is being done”

• It impacts maintainability, since not only you have to maintain test code, you also need to maintain a regurgitated human translation of that
code that no one will care for;

• ….

Just these points breed the equivalent of the flowers blossoming problem: weeds blossom due to (re)implementation freedom. Oftentimes you
end up with an extra million ways of using the “do-it-all” library to solve a certain path within the same org, plus the added clutter of having
libraries that do more than what you are trying to do in the context of a scripted test.

So, I’ll wrap up this post with a word of caution:

There is such a thing as test tools/frameworks that try to do everything a human does so much so they become vain tools.

I recommend you give a read of Michael Bolton’s experience reports of Katalon and mabl to get a feel of what this usually means from the lens
of a hardcore software tester.

ISSUE 03/2021
PLACE YOUR CATEGORY HERE

ISSUE 03/2021
PLACE YOUR CATEGORY HERE

38 39TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

FILIPE FREIRE

Filipe is a portuguese test engineer, currently working with Kong Inc. In the past he's worked
doing all sort of testing and test engineering efforts in different software projects.

Outside of work he often blogs about testing, videogames, and more at http://filfreire.com.

https://www.developsense.com/index.html
https://www.developsense.com/blog/2021/11/experience-report-katalon-studio/
https://www.developsense.com/blog/2021/10/mabl-experience-report/
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf


ISSUE 03/2021
IN FOCUS

ISSUE 03/2021
IN FOCUS

40 41TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of
time.

Over the last ten years, Tea-time
with Testers has published
articles that did not only serve
the purpose back then but are
pretty much relevant even
today.

With the launch of our brand
new website, our team is
working hard to bring all such
articles back to surface and
make them easily accessible for
everyone.

We plan to continue doing that
for more articles, interviews and
also for the recent issues we
have published.

Visit our website
www.teatimewithtesters.com
and read these articles.

Let us know how are they
helping you and even share with
your friends and colleagues.

If you think we could add more
articles from our previous
editions, do not hesitate to let
us know.

Enjoy the feast!

https://www.teatimewithtesters.com


ISSUE 03/2021
PRODUCTS

ISSUE 03/2021
PLACE YOUR CATEGORY HERE

42 43TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

MACHINE
LEARNING
FOR
TESTERS

PART 2

PAUL MAXWELL-WALTERS
–
A British software tester based in Sydney, Australia with about 10 years of experience testing
in agriculture, financial services, digital media and energy consultancy. Paul is a co-chair and
social media officer at the Sydney Testers Meetup Group, along with having spoken at
several conferences in Australia.

Paul blogs on issues in IT and testing at http://testingrants.blogspot.com.au and tweets on
testing and IT matters at @TestingRants.

~
Pr

od
uc

ts

http://testingrants.blogspot.com.au


ISSUE 03/2021
PRODUCTS

ISSUE 03/2021
PRODUCTS

44 45TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Forests and Ensemble Methods

Decision trees have an intuitive, easy to
follow nature, but from an accuracy point of
view are more useful en masse

Lots of random decision trees can be
grouped together to form “forests”. These
provide very high accuracy and are called
“Ensemble Methods”.

• Bagging - Each model trained with a
random subset of the training set and
aggregated.

• Boosting - Poor models summed or
reweighted (a technique known as
“Adaboost”) to form strong models.

• Random Forests - uses a high number
of decision trees generated from
randomly selected sets of features. It is
highly uninterpretable but very
powerful and has generally good
performance.

•

k-Nearest Neighbour

(Images from https://en.wikipedia.org/
wiki/K-nearest_neighbors_algorithm)

Not to be confused with k-Means Clustering,
this is a simple technique where we classify
some data point or object by its (k) nearest
neighbors.

• For a data point, take the nearest k
items

• Whatever category has the largest % of
the k items, that is deemed the category
that the data belongs to.

• Do for all unclassified data

.As an example, for the blue square and red
triangle data set below -

• k = 1, nearest = 1 red triangle, category =
red triangle

• k = 3, nearest = 2 red triangles + 1 blue
square, category = red triangle

• k = 5, nearest = 2 red triangles + 3 blue
squares, category = blue square

K-Nearest Neighbours with Larger Data

An example below, shows this method
applied to a larger dataset with k =1, 3, 11.

From https://kevinzakka.github.io/2016/07/13/k-nearest-
neighbor/

When done for all points in training as per
the previous example, we get points grouped
by category.

The second image shows regions between
points bounded equidistant to other points,
commonly called Voronoi Cells. The lines
that separate points of different categories
are called Decision Boundaries.

Neural Networks

These are complex structures vaguely
inspired by the biological neuron
connections in our brains and are used to
solve many different types of predictive and
classification problems in machine learning.
Each “neuron” in this case is a node that
contains a series of inputs and weights along
with a bias. They either output with an
output to match the expected output or on
output treated as an input into another layer
of nodes.

The Perceptron

In the section on Logistic Regression, we
introduced the idea of binary separation a
non-linear Logistic Function. We stated the
logistic function as below -

This is a mathematical definition of what is
known as a 1 Layer Perceptron or the most
basic 1 Layer Artificial Neural Network.

A perceptron is a node that takes in a set of
weighted inputs, a bias, applies a logistic
function and spits out an output as below

Perceptrons to Neural Networks to Deep
Learning

Perceptrons or single layers of perceptrons
can

• classify linearly separable data sets

• do limited character recognition

• simulate some logical operators such
as AND, OR, NOR etc.

but for non-linearly separable functions (i.e
XOR) we need multiple “hidden” layers of
perceptrons between the weighted inputs
and outputs.

Networks of connected layered perceptrons
are known as “artificial neural networks”.

The use of multiple “hidden” layers in our
neural networks is known as “deep learning”.
The first multilayer neural network was
designed to simulate the logical operator
XOR (Exclusive OR).

•

Optimising The Model Parameters - Gradient Descent

To get the best parameters for any machine learning technique you need to reduce the error (a process known as “Training”). The error is defined
by a cost function, which we want to reduce. As an example, for Linear Regression this is the Mean Squared Error -

One way to reduce the Cost Function is to perform what is known as Gradient Descent. There are two types of Gradient Descent - Batch (Average
the Cost across all data points) and Stochastic (Update the parameter for every data point).

Applying gradient descent to a perceptron linear classifier - (Equations from https://en.wikipedia.org/wiki/Perceptron)

• Set the weights to some random value or zero.

• For each example j in our training data set D do the following over the input xj and desired output dj.

• Calculate the (actual) output from your perceptron.

• Update the weights

…until a local minimum is reached.

For multilayer neural networks we need to apply gradient descent to train the nodes in all the hidden layers. This is a complex process known
as Backpropagation.

Deep Learning - Convolutional Neural Networks (CNN)

• These are complex but important multilayer neural networks with many use cases i.e.

• Image Recognition and Computer Vision

• Recommender Systems (i.e. used by Netflix etc. to recommend shows based on previous watch history)

• Natural Language Processing

• Drug Discovery (i.e. AtomNet, 2015)

• Time Series Forecasting

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Perceptron


PLACE YOUR CATEGORY HERE

ISSUE 03/2021
PRODUCTS

ISSUE 03/2021
PRODUCTS

46 47TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Taking the example of computer vision, to identify (say) an animal or bird from an image it is necessary to identify features (i.e. limbs, feathers etc.)
that may appear more than once in the image and assign weights to them.

For this we need a neural network with hidden layers that apply some function to the inputs from the previous layer (known as a convolution) -
abstracting the image in the previous layer to a map of features.

For the example of AlexNet, a CNN created in 2012 for image recognition with 5 convolutional layers and three fully connected layers, the features
of the image are abstracted to the following in each layer.

They do not seem much but from these groups of features an object in an image can be recognised.

Deep Learning - Autoencoders

These encode an input to fit into a smaller layer, reduce noise and decode the input back to the output. This reduces the number of inputs or
features (“dimensions”) the model needs.

They are used in predicting social media posts, image recognition, drug discovery and (more nefariously) deep fakes.

In the deep fake above, a scene from the film Man of Steel is shown with the actor Amy Adams’ face replaced by that of actor Nicholas Cage, while
maintaining the same facial expressions and head movements. This can be done using autoencoders.

Deep Learning - Recurrent Neural Networks

Neural networks have been developed that have nodes form a directed graph along some temporal sequence. This makes them more dynamic (i.e.
exercising an internal “memory”, passing data from one layer back into the same node or earlier layers). These are called Recurrent Neural
Networks.

They have important applications particularly in speech recognition, natural language processing, handwriting recognition and translation.

Testing Model Selection and Performance

We have our models but how do we know if they are accurate? We have to compare their results to known output data.

Model Selection - Static Test and Validation Data

Data for training model parameters is typically split up into “training” data and “validation” data. We also have additional (separate, unseen) test data.

• Training Data - typically 80% of your training and validation data. Used to train the model.

• Validation (or “holdout”) Data - used to assess the model. Once a model passes assessment (“selection”), it is added to the training data and
retrained.

• Test Data - only used for making predictions after the model passes validation.

Model Selection - k-Fold Cross Validation

Another way to validate a model is to repeatedly cut all non-test data into k sections (“folds”), train on k-1 sections and validate on the final section.
Then the validation errors are averaged together. This means that the validation is less dependent on a specific training data set.

Evaluating the Model - Binary Classification Performance

For binary classifications where there are only two possible categories (i.e. having an illness or not, surviving the Titanic or not), we can evaluate the
model accuracy by counting all the true positives, true negatives, false positives and false negatives and creating what is known as a Confusion Matrix.

https://en.wikipedia.org/wiki/File:Deepfake_example.gif
https://www.cse.unsw.edu.au/~cs9444/20T2/lect/4a_Convolution4.pdf


ISSUE 03/2021
PRODUCTS

ISSUE 03/2021
PRODUCTS

48 49TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

These can be used to develop the following metrics you may come
across.

• True Positive Rate (TPR) = True Positives / (True Positives + False
Negatives)

• False Positive Rate (FPR) = False Negatives / (False Positives + True
Negatives)

Receiver Operating Characteristic Curves

True Positive Rate (TPR) and False Positive Rate (FPR) can be plotted on
a graph known as a Receiver Operating Characteristic (ROC) curve.

Interpreting ROC Curves

The area under the ROC curve (or just “AUC” or “AUROC”) is a measure
of the likelihood that the model can distinguish correctly between the
two categories. (Attr - https://towardsdatascience.com/under-
standing-auc-roc-curve-68b2303cc9c5)

AUC = 1, model distinguishes between each category perfectly. GOOD!!

AUC = 0.5, model has one false positive for every true positive - no
better than random. BAD!!

AUC = 0, model is actively mislabelling all output as the wrong category.
VERY BAD!!

Model Evaluation - Bias and Variance

ML defines model predictions and outputs as having some level of bias
and variance.

• Bias - Difference between a parameter’s expected value and the
actual value.

• Variance - Sensitivity of the expected value to small values in the
training set.

If the Bias is too large then the modelled relationship between input
and output is poor. This is called Underfitting. This can be reduced by
more input data, more modelling or (for k nearest neighbour) reducing
k.

However if the Variance is too large then the noise in the training data
is modelled too closely. This causes errors when evaluating the model
against test data. This is called Overfitting. This can be mitigated by
reducing variables (“features”) in our model, (for k nearest neighbour)
increasing k or specific mathematical techniques such as L2 and ridge
regression.

Steps that reduce bias often increase variance and vice versa. In order
to get a good model we require a balance, the need for which is known
as the Bias-Variance Tradeoff.

Evaluating the Model - Prejudicial Bias in Data

There may be other bias from the data itself that induce discriminatory
practices.

11 October, 2018 - Amazon forced to close down its AI hiring tool.

In 2014 Amazon decided to replace some of its HR functions with an AI
tool which used ML techniques to screen candidate resumes and
recommend candidates for interview. It allocated candidates scores of
1 to 5, however due to the historic lack of women in IT they were
unfairly prejudiced in the ranking.

Areas of unfair downgrading included -

• Inclusion of the word “women” – i.e. extracurricular activities like
“women’s drama club leader”

• Listing attendance at one of two all-female colleges, perhaps
because no past Amazon employees went to either of them

• Favouring language more commonly found on the CVs of men,
such as “executed” and “captured”.

In this case the bias was not in the AI tool itself but in the data. Its machine learning algorithm picked up biases from years of previous hiring
practice and optimised for them.

Despite efforts to have the algorithm respond neutrally to gender biased actions in the data as listed above, Amazon executives eventually
lost hope that the tool would not find other ways of discriminating against certain groups of applicants and disbanded the project. However
it provides a sharp warning to future efforts to automate the hiring process.

From the Reuters article - “The company's experiment, which Reuters is first to report, offers a case study in the limitations of machine
learning. It also serves as a lesson to the growing list of large companies including Hilton Worldwide Holdings Inc HLT.N and Goldman Sachs
Group Inc GS.N that are looking to automate portions of the hiring process.

Some 55 percent of U.S. human resources managers said artificial intelligence, or AI, would be a regular part of their work within the next five
years, according to a 2017 survey by talent software firm CareerBuilder.”

(Attr: https://www.hrmonline.com.au/technology/ai-bias-can-affect-hr-just-ask-amazon/ and https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-
secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G )

Epilogue

Far from being some statistical and mathematical black box to be used by data scientists to perform predictive magic, machine learning
techniques can be learnt and understood by developers and testers. QA has a role to play in the expanding area of machine learning
applications and we will be working on these types of projects in the years ahead. We ignore it at our peril.

This essay, while being long and somewhat terse from a conceptual and mathematical perspective, helps to open the eyes of the testing
community to the different concepts, terminologies and techniques available to execute and evaluate machine learning techniques. It points
towards the types of knowledge testers will need to work in the machine learning space, and hopefully the information in this and in other
machine learning resources will allow for a better dialogue between data scientists and software testers.

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://www.hrmonline.com.au/technology/ai-bias-can-affect-hr-just-ask-amazon/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G


ISSUE 03/2021
COMMUNITY

ISSUE 03/2021
COMMUNITY

50 51TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

COMMUNITY
On Monday 8th November I flew from London to Atlanta on one of
the first flights permitted after the US opened up again. There were
television crews crawling all over Heathrow airport, flight attendants
waving the Stars and Stripes, and even someone in a Statue of
Liberty costume. That was quite a thrill.

On the day I spent in downtown Atlanta I visited World of Coca Cola.
While I was there I drank too much fizzy pop from around the world
and told the Coca Cola Polar to grin for a selfie, which it did. That was
also quite a thrill.

The conference was at Truist Park, home of the Atlanta Braves
baseball team. On Monday evening we had a tour, even getting to
step onto the turf and sit in the dugouts. On Tuesday we had a day
of listening to knowledgeable people share their experiences of
software testing, and then discussing them and comparing them to
our own. That was the biggest thrill of all.

CAST 2021, my first CAST.

CAST is the Conference of the Association of Software Testing, a long-
running event well-known for being a place where practitioners get
together as peers. It's the conference that confers, breaking down the
barrier between speaker and attendee with its Open Season after
each talk. Instead of a traditional Q&A in which audience members
take it in turns to ask a question or monologue about their hobby
horse vaguely related to the talk, CAST has a facilitated conversation
in which audience members and speakers alike are able to put their
perspective and listen respectfully to those of others.

Ben Simo shared a model of testing as knowledge discovery that
presents areas in which confirmatory and exploratory activities take
place with a grey "horizon" separating them. Confirmatory work
happens around material that is understood and exploration attacks
the unknown. The model has an additional dimension stretching
from stakeholder to technology which can reflect the idea that the
understanding is usually not regular - often testers will be more
familiar with the stack than the domain, for example. The horizon's
angle and position are flexible, moving as more understanding is
accumulated or as it becomes apparent that previous understanding
was incorrect. He followed this up with a series of examples of ways
in which automation, often confined to the confirmatory, can
contribute to the exploratory testing.

Rajni Hatti spoke about how she bootstrapped security testing
experience while working on a project. By using the OWASP Top Ten
as an initial oracle, she was able to identify a credentials issue and
perform a malicious payload injection. By the time that professional
security personnel were brought in she'd learned enough to be able
to interact with them as equals which enabled sharing of ideas, risk
assessments, and tooling.

Laurie Sirois told us that when we laugh our colleagues laugh with
us. Humour is a great way to defuse a situation, build relationships,
and generally feel better about ourselves. Those of us without a
funny bone shouldn't feel left out. We can just smile to improve our
own and other people's moods, or share interesting observations: ha!
ha! and aha! are not so different.

Greg Sypolt presented a continuous integration system for testing
online exam courses. Nothing unusual there, except that it derives its
test cases from models of the system. When the model changes the
cases are automatically regenerated and re-run. Model-based testing
is not new, but finding a non-toy system at the core of this kind of
architecture is unusual. To some extent it's possible because the
system under test is relatively straightforward, but a significant
contribution is the commitment to making it happen and accepting
pragmatic implementation choices to make it work.

Tariq King reckons that AI needs testers to prevent the world from
being overrun by bad software. Sure there are challenges when
starting out in AI, not least the complex statistics and the idea that
oracles are likely to be fuzzy. But testers are used to working with
uncertainty and learning is part-and-parcel of the craft, so we should
stand up and be counted.

Angie Jones had a very flaky build. Too many tests were failing too
much of the time, the deployment pipeline was backed up, and trust
had been lost. Her team worked themselves out of the deep hole
through a number of initiatives, including separating out the tests
that failed often into a non-blocking suite; assigning a test monitor;
making tickets for fixing each flaky test so that they could be
prioritised alongside other work; and imposing a limit on the
proportion of tests that were permitted to be failing before all other
work stops.

I had a blast at CAST. It had the vibe I'd been wanting and expecting
despite being a Covid-safe event and sized for just 50 people.
Planning for next year is already underway. I expect to be there and I
hope you can make it too.

See also:

My sketchnotes from the conference

Chris Kenst’s video diary

CAST 2021.
An experience report

by James Thomas.

https://www.bbc.co.uk/news/uk-59197366
https://www.worldofcoca-cola.com/
https://www.mlb.com/braves/ballpark
https://www.associationforsoftwaretesting.org/conference/cast-2021/
https://www.associationforsoftwaretesting.org/conference/
https://twitter.com/QualityFrog
https://twitter.com/QualityFrog/status/1458101644944683011
https://www.linkedin.com/in/rajni-hatti/
https://www.linkedin.com/in/siroislaurie/
https://twitter.com/gregsypolt
https://twitter.com/tariq_king
https://twitter.com/techgirl1908
https://qahiccupps.blogspot.com/search/label/CAST%202021
https://www.youtube.com/watch?v=8gQ0tvebzac


52 53TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

~
A
w

ar
ds

Tea-time with Testers is immensely pleased to make this announcement. This is something we have been wanting to do for quite some years
and we are glad that we are finally doing it.

We are delighted to make yet another contribution to the testing community. And this time it is software testing awards.

Why new awards while there are already quite some?

The better question is, why not?

Actually, that’s the answer we got for ourselves when we decided to start Tea-time with Testers while there were already quite some magazines
on market. We listened to our inner calling and did what we felt was the right thing to do. And so here we are, doing it once again with the
software testing awards.

Presenting “Jerry Weinberg Testing Excellence” awards.

If you are our regular reader then you might be aware of the long association we had with Jerry and how much influence he had on what we
delivered over the last decade.

What could be the better way to honour Jerry and celebrate good testing together?

Through his feedback and regular reviews of the issues we published, Jerry taught us the importance of recognising good work and creating a
platform to promote good testing.

Through these awards, we want to recognise and reward worthy people who we think deserve to be known by the global testing community.
So that it inspires actions and encourages others in taking the craft of testing ahead.

What is the nature of these awards?

We have made some categories for this year and plan on to add few more going forward. A person’s work and contribution to the testing
community would be our key criteria. Our team has worked hard to make these awards as special and worthy as we could.

We will announce these awards every year in our December issue. The awardees will get a memento that we will send them via post. The most
important part is to recognise these people and help their ideas reach more people. And we are committed to delivering on that.

Please join is in congratulating all the awardees for year 2021. You shall find their names and accomplishments on following pages.

Once again, a very special thanks to Jerry’s wife and a great companion Dani Weinberg who saw value in this initiative and has been a great
supporter of this idea.

Jerry was very generous with his time to help smart people go ahead in life. We were privileged to be gifted with his association with us. And
these awards in his name are our humble efforts to pay it forward.

We are thrilled to end an year on this exciting note and super excited to see you all joining this celebration!

Sincerely yours,

Lalit

2021



ISSUE 03/2021
PLACE YOUR CATEGORY HERE

ISSUE 03/2021
PLACE YOUR CATEGORY HERE

54 55TEA-TIME WITH TETERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

Testing community and industry as a whole has lots of great testers, great thought leaders and philosophers. But the business leaders who
understand testing, study the craft of testing, contribute to the advancements of the field and represent meaningful testing in
organizations are just handful.

We firmly believe that, driving a great culture of quality and testing within organizations requires a strong and effective business leader. A
leader who knows what meaningful testing looks like, a leader who knows how much to push the test engineering pedal and where to
encourage creativity and craftsmanship in testing. A hands-on leader who immerses themselves in the changing contexts and develop
solutions to create value through testing, instead of blindly buying industry best practices(?) that add little or no value.

Dan Ashby is one such leader that testing industry has always needed. His passion for taking craft of testing ahead is inspiring and so is
his dedication to building newmodels for testing that are time relevant and context appropriate. His popular model of “Continuous Testing
in DevOps” quite effectively saved “testing” from getting lost in the process or getting too thinly spread to be even noticed.

And that’s not it, Dan has been inspiring actions and making significant contribution to the testing field by doing everything he does.

This award for Testing Leader of The Year had to go to Dan, hands down! And we need more leaders like him.

Congratulations Dan. Thank you for leading the way.

- RISING STAR OF THE YEAR -

RAHUL PARWAL

- TESTING LEADER OF THE YEAR -

DAN ASHBY

Jerry Weinberg
Testing Excellence Awards

2021

When you are finished learning, you are finished as a tester. - that’s the message Jerry had for the testing community when we interviewed
him.

Rahul is a passionate learner. In fact, his passion for learning is highly infectious. Name the testing event worth noting and you shall find
Rahul either attending it, participating in contests or being part of the event/activity itself. Rahul is one of its kind tester we came across
this year who is so eager to read, learn new things about testing and who does not stop right there. He also makes sure to share his learning
with community at the large.

In year 2021 alone, Rahul has published 8 e-books through which he further shares his own learning from various sources.

In year 2021 alone, Rahul has won 12 testing competitions and hackathons.

In year 2021 alone, Rahul has actively contributed in organizing various testing events.

It requires uncommon amount of passion for the craft of testing, a will to excel and inspire others to do the same by leading through an
example. Rahul is a rising star and we would like to see more testers like him taking the craft of testing ahead.

Congratulations Rahul. Thank you for your work and we wish to see you rising even higher.

https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/about-me/
https://teatimewithtesters.com/over-a-cup-of-tea-with-jerry-weinberg/
https://teatimewithtesters.com/over-a-cup-of-tea-with-jerry-weinberg/
https://testingtitbits.wordpress.com/
https://testingtitbits.wordpress.com/


ISSUE 03/2021
PLACE YOUR CATEGORY HERE

ISSUE 03/2021
PLACE YOUR CATEGORY HERE

56 57TEA-TIME WITH TETERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #03/2021

There is an interesting thing about stars in the sky. Have you noticed how some of them rise and shine for a while then disappear from the
horizon and how some of them consistently appear for all year round? Which stars would you rely on if you are to seek guidance and
direction when lost?

Since our own inception as a publication, we have closely observed how testing community and the craft has evolved throughout the
decade. Anna Royzman is one such star who has been consistently shining, is firmly positioned, always shows up and has been an
inspiration for many.

From being a hands-on test practitioner to inspiring testing leader, from being a conference speaker to creating conferences that make a
difference, from being part of the community to being a community builder, from taking stand for the craft to contributing to the
advancement of the craft, Anna has done it all her entire career and she continues to do so.

Anna’s entire career journey has been filled with stories of determination, passion, conviction, craftsmanship and courage. She is truly an
inspiration and we thank her for being who she is.

Congratulations Anna. Thank you for your contribution the field and the difference you have made.

- (THINKING) TESTER OF THE YEAR -

FILIPE FREIRE

- TESTING INSPIRATION OF THE YEAR -

ANNA ROYZMAN

Jerry Weinberg
Testing Excellence Awards

2021

There are two kinds of excellent testers in this world. Those who think critically, and

Having testers like Filipe in the community is more rewarding for community itself, we must say. Filipe caught our attention with his earnest
and sincere piece of writing i.e. Self proclaimed UN of Testers latest discovery. In fact, everything that he writes has deep substance to it.

The face and fate of professional testing could be much different today should we have had a lot many testers like Filipe who think
critically, who study the craft and most importantly who take the stand for meaningful testing. We believe it is more important to think
critically and say no to bad testing than embracing best practices for good testing without questioning them at all.

By asking questions that matter, by challenging the so-called best practices, by finding alternatives that are effective, by being technically
sound yet highlighting the importance of critical thinking, Filipe has become a true role model for testers of present times. And we believe
the “Model Filipe” is built to excel in all changing contexts.

If you have not yet come across Filipe and his work we highly recommend you to do so.

Congratulations Filipe. Please continue to help us see the hidden costs side of things.

http://testmastersacademy.org/
https://filfreire.com/posts/discovery
https://filfreire.com/
https://teatimewithtesters.com/over-a-cup-of-tea-with-jerry-weinberg/


W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 01/2022
READY TO ROCK THE NEW YEAR 2022? WE CERTAINLY ARE!

THE WORLD OF ARTIFICIAL INTELLIGENCE (?)
AND TESTING
What is still lacking in the way we understand (and do not understand) Artificial Intelligence and what it
means for the people in the software field. Watch out for this space for content coming from people who are
subject matter experts and researchers.

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. More
awesomeness on its way….

AN ARTICLE BY YOU PERHAPS?
Got an idea? Want to share with rest of the world about some cool stuff you built? Have concerns related to
testing and voice them out? Let us know. Write for yourself, write for the craft. We are here to publish and
celebrate, YOU!!!

02

01

03

TEA-TIME WITH TESTERS ISSUE #03/2021
59

mailto:editor@teatimewithtesters.com


TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising
Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS


