
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Testing and
the human aspect

How to sell excellent testing

Page 06

Automation with human touch

Page 32

Becoming a code listener

Page 36

WAKING TESTERS UP SINCE 2011 ISSUE #01/2022



TEA-TIME WITH TESTERS ISSUE #01/2022
3

EDITORIAL BY LALIT

INTERVIEW: 26-30
A CUP OF TEA WITH
JAMES THOMAS

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 1 3

1 4 – 1 5

1 6 – 1 8

2 0 – 2 4

HOW TO SELL EXCELLENT TESTING
This article shares 8 principles for selling the value of testing strategically to
make people in your organization perceive excellent testing as what it is: a
value center, not a cost center.

TESTER IS AN OVERLOADED VARIABLE
Recently I came across a post on LinkedIn explaining why there are no
testers in Scrum…

MANUAL TESTING IS VERY MUCH ALIVE
You may have noticed the strikeout in the article’s title. It’s not a mistake, but
instead a recognition, perhaps a feeble one, that there’s something wrong with
the label of “manual testing”.

TEA AND TESTING WITH JERRY WEINBERG
Software Subcultures - Part 2

TESTING
AND
THE
HUMAN
ASPECT!

TEA-TIME WITH
TESTERS

06 26 32 52



A NEXT GENERATION
MAGAZINE

FULL OF CONTENT AND
TIPS FOR TESTERS

3 2 – 3 3AUTOMATION WITH A HUMAN TOUCH
t’s been a while since I read from Taiichi Ohno about the Toyota Production
System and from Goldratt about the Theory of Constraints. Thus far I thought,
both have close to nothing to do with each other. Today, however, I got an
insight that brought the two closer together for me. Let me explain…

CONCEPT TESTING
We are used to using different products regularly. There might be millions and
billions of several applications but we are very specific when we choose to
navigate through specific applications and websites, aren’t we?

BECOMING A CODE LISTENER

Robert Sabourin and Mario Colina have worked in many different contexts in
which testing professionals have been able to do great work, collaborating
actively with other team members. Testers without programming skills can
learn about technical risks through a process that the authors have labeled
code listening.

APPROACHES TO CONTRACT TESTING

Recently, I have started working on a new consulting project with a client in the
UK. In this role, I am helping them implement contract testing to get better
insights into the effects that changes introduced by individual teams on
individual services have up- and downstream in a distributed software
environment.

TEA-TIME WITH
TESTERS

3 4 – 3 5

3 6 – 4 8

5 2 – 5 4

If you ask me what has been my personal highlight of the year so far, I would say it’s EuroSTAR
conference that happened in Copenhagen this year.

Was it because my talk was selected for this conference? No. Was it because my submission
received the coveted EuroSTAR Best Paper 2022 award? Not really! I mean, it is indeed an
honor and I consider it one of the biggest accomplishments in my testing career so far.

But there was one little thing that happened while I was at EuroSTAR. And that thing has made
me feel beyond humbled. It’s something I would keep myself reminding of whenever I
question myself if Tea-time with Testers should still be up and running.

It would be a lie if I tell you that I never thought of discontinuing the magazine. My reasons
and rationale behind thinking so are secondary. But one little conversation I had with a fellow
speaker at EuroSTAR conference, changed my whole perspective about Tea-time with Testers,
and the purpose a magazine can serve.

I happened to have a conversation with a passionate tester, conference speaker, a great mind
who is also a Head of QA at a technology firm. She told me some interesting stories about
how much she loved reading Tea-time with Testers and how things she learned from the
magazine have helped in her professional career. There was a time when she was allowed to
print only two pages per day at her work place. So she would ask some of her colleagues to
print two pages each for her. That way, she she got the whole magazine printed so she could
continue reading at home and learn from different articles published. She acknowledged the
role this magazine has played in her growth as a tester and where she is in her career today.

Such stories and acknowledgments coming from people I have great respect for makes me
feel immensely proud and honored at the same time. For me, this has been the true reward
for all the work entire team at Tea-time with Testers has done over the years.

This little conversation has given me another reason to keep the magazine up and alive, for
you never know how it will help someone else’s career as a tester. And as luck may have it,
we are getting new passionate members reaching out and joining our team.

I am pleased to announce Dave Levitt as new member in our editorial team and little by little
we plan on to add more members in Tea-time with Testers family. More awesomeness is on
your way.

I thank you for your patience with the little pause we took this year.

After all it’s little the things that make big difference. Don’t they?

Itʼs the little things…

TEA-TIME WITH TESTERS ISSUE #01/2022
5

LALITKUMAR BHAMARE
Chief Editor “Tea-time with Testers”
–
Manager - Accenture Song, Germany
Director - Association for Software Testing
International Keynote speaker.
Award winning testing thought leader.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedIn

https://conference.eurostarsoftwaretesting.com/awards/
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/


INGO PHILIPP

- Ingo is a seasoned product management professional
who helps companies to develop, marketize, and sell
software products & services that people need, want, and
will pay for.

He holds a master's degree (MSc) in astrophysics, an MBA
from the Vienna University of Economics & Business, and
has deep technical skills from 10+ years of experience in
software engineering.

In his last positions, his responsibilities ranged from
product engineering, product management, marketing
(e.g., product, event, content) to sales, pre-sales, and
evangelism.

Alice was, and most likely still is, a cocktail of testing excellence. Her testing was fast, inexpensive,
credible, and accountable. It was excellent.

This article continues the story of Alice. It outlines 8 principles that aim to help you to sell testing
in a strategic way. These principles will help you to change people's perception of testing in such
a way that testing is no longer seen as a cost center but as a value center.

Motivation

Working with Alice has been a double-edged experience.

One, it has been a humbling experience. I have learned that I am not even close but rather a world
away from being an excellent tester. Two, it has been a sobering experience. I have learned that
testers doing excellent testing aren't necessarily excellent in selling testing.

“Being excellent in ding testing does not imply being excellent in selling testing.”

Selling testing means communicating the value of testing in a strategic way so that testing is no
longer perceived as a cost center but as a value center by the people who matter.

lice was brilliant in what she did. She quickly got promoted. She became the first test lead in her
company. In this role, she was responsible for mentoring and coaching more than 20 testers
worldwide. Alice was used to doing testing, not talking about testing.

She was used to showing the value of her work to people inside her home territory (e.g., UI/UX
experts, software developers, product owners) by doing it.

A week after her promotion, she was asked to communicate the value of testing to people outside
her home territory. In this session, people from an operational level and strategic level in Alice's
organization were invited. This included people from c-level management (e.g., CPO, CTO, CXO) and
various directors and (senior) vice presidents.

Alice blew on the fire.~
Pe
op
le

“HOW TO SELL
EXCELLENT TESTING?”

This article shares 8 principles for selling
the value of testing strategically to make
people in your organization perceive
excellent testing as what it is: a value center,
not a cost center.

Introduction

Even though software development is so
dependent on software testing, hardly
anyone in management understands
anything about it. Testing is often either
willfully ignored, treated as something that
could be replaced by machines, or seen as
the number one bottleneck.

On top of that, excellence in testing is often
confused with excellence in automation.
What too many managers view as testing is
not what it actually is. This lack of
understanding and the resulting
misconceptions make it hard to sell the
value of excellent testing.

“Doing excellent testing is one thing, selling
it to management is another.”

Before you start selling your testing
excellence, you should know what it is.
Excellent testing is hard to describe. You

only find out what excellent testing is when
you see it.

“If you cannot tell your value, you cannot
sell your value.”

My article on excellent software testing
outlines what I have seen. It boils the
software testing excellence of a tester called
Alice down to 18 characteristics. Feel free to
use this article as an inspiration to work out
your notion of testing excellence.

Here's a teeny-weeny summary of her
testing excellence. Alice was our yardstick to
assess software quality. She was our
microscope for the actual problems in our
software. She was our telescope for the
potential problems in our software. She was
our wake-up call for our unawareness about
numerous things. She was our stop sign for
our over-focus on even more things. And she
was our alarm device for all the problems in
our thinking.

6 7TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

~
Pe
op
le

https://www.linkedin.com/in/ingophilipp/
https://www.linkedin.com/pulse/excellent-software-testing-ingo-philipp/


ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

She talked about functional testing, security testing, usability testing, load testing, stress testing, and performance testing. She philosophized
about the relation between testing and checking. She deep-dived into exploratory testing and session-based test management.

She spoke about unit testing, integration testing, system testing, and user acceptance testing. She gave a lecture on oracles, heuristics, risk,
coverage, metrics, and software quality.

She highlighted the differences between black-box testing, white-box testing, and gray-box testing. She outlined regression testing and
progression testing. She touched upon test-driven and behavior-driven development and their relation to software testing.

She discussed the potential negative consequences of false positives and false negatives. She pondered on ensemble testing, tour-based
testing, crowd-testing, A/B testing, context-driven testing, and testing in production in the context of DevOps, Agile, and CI/CD.

It was a firework of testing that lasted for about 60 minutes.

The good news is that Alice brilliantly demonstrated the complex nature of software testing. She showed that software testing is something that
cannot be done by anyone just like that. Her performance showed that professional testing requires special skills.

“Focus on the value of testing and not just the practice of testing. “

The bad news is that this wasn't what the audience was looking for. She sleepwalked into leaving the audience in the dark of understanding the
value of testing. She missed reading the room. She missed tailoring her message to the audience.

She talked about how testing is done, not why testing needs to be done. She over-focused on the practice of testing, not on the value of testing.
In her own words: "The pitch failed."

To put it mildly, Alice felt miserable after this session. However, she quickly started to take action. She drummed up her fellow testers and
organized several brainstorming sessions to work out a set of basic principles for selling software testing.

These principles can be understood as our general beliefs that guided our selling behavior. They guided the way we communicated the value of
testing in Alice's organization.

Principle of Selling

The common perception of selling and salespeople is all too often linked with used cars and timeshare apartments: Hit them hard, fast, and get
out of town with your commission w/o a long-term thought for the customer.

Therefore, the buying process is often one of mistrust and skepticism. In our brainstorming sessions, we have learned that this distorted
perception about selling made some testers feel icky, cheesy, or sometimes even sleazy when selling appeared on the agenda.

Alice's fellow testers often started painting the stereotypical picture of an egocentric, dodgy, dishonest, and money-grubbing person when the
term selling was vocalized in our sessions. Their impression was that selling means convincing people in a superficial and pushy way to do
something that isn't worth doing. That's not sales, that's bad sales.

Selling isn't telling. It means exchanging values. A sales transaction is an exchange of values between a buyer and a seller. The seller gives
something of value (e.g., product, service) to the buyer, and the buyer, in return, gives something of value (e.g., money, data) to the seller.

The way the seller can create value for the buyer is by providing a solution to the buyer's problems. We consider a problem as a gap between
what is perceived and what is desired.

Thus, there's a problem when there's something blocking the buyer from getting closer to their desired states (e.g., needs, goals, objectives,
wants, desires).

This principle reminded us of the following:

• We need to know our buyers. We need to know to whom we are selling.

• We need to understand the desired states of our buyers.

• We need to know the value we create through testing.

• We need to know how to tie this value to the buyer's desired states.

• We need to know how and when to articulate this value exchange.

This principle is a foundational one. It guided our discussions and helped us to understand that selling means demonstrating the way we create
value for others through testing.

Principle of Targeting

We decided to put our buyers, our targets, into two categories: People inside and people outside software development. Inside software
development, we had three groups. These groups reflected different levels of decision-making power in Alice's organization.



ISSUE 01/2022
PEOPLE

ISSUE 01/2022
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

You can’t hire someone to practice for you.

Thirdly, we have learned that some testers were frightened of failing
at selling. They were scared of giving the rest of the organization the
final proof that they don't understand their profession or that they
aren't made for success. This fear often created a mental block.

Ergo, we practiced. We practiced a lot. We practiced together to
release ourselves and our fellow testers from this anxiety. As a result,
these sessions boosted our confidence.

We didn't just share our success stories but also our failure stories
to help our fellow testers realize that failing is not bad, not learning
from failure is. This then stimulated them to speak about their
failures more openly. Ergo, we learned from each other and realized
that the most frightening monster isn't the one you are selling to, it's
the one that exists in your mind.

Without being committed to sell well, you will never start selling
well.

All this takes effort. But remember, without your individual
commitment you'll never start selling well. And without your team's
consistency, you'll never finish selling well.

We have learned that consistency comes from collaboration. Hence,
we decided to foster collaboration through sharing knowledge.
This leads us to our principle of collaboration.

Principle of Collaboration

Great selling comes from great collaboration

The true power of becoming and remaining excellent in doing and
selling testing comes from sharing knowledge, not withholding it. So,
we created a knowledge base for testing.

In this knowledge base, we shared the lessons we have learned from
our internal seminars, workshops, and meetups (e.g., action lab,
sales lab). We shared testing practices that turned out to be valuable
in our projects (e.g., heuristics, charters, mind-maps, models, tools).

We created a glossary to make testing-specific terminology (e.g.,
context-driven testing, exploratory testing) and testing-related
terminology (e.g., quality, coverage, risk) more consistent within the
organization. We shared what we have learned from reading books,
articles, papers, and blog posts. We shared answers to questions we
frequently discussed (e.g., "How to decide what to automate?"). We
shared educational material on testing such as blogs, books,
magazines, courses, podcasts, reports, and conference talks.

This list could go on and on. You get the point. This knowledge base
was our one-stop-shop for all content related to software testing.
Therefore, we called it the Testing Shop..

“Just as great testing,great selling comes from great collaboration”

This knowledge base wasn't just a storing platform but rather a
collaboration platform that enabled us to gather, incorporate, and
share feedback in the wink of an eye.

This platform was based on SharePoint and Confluence to make the
information accessible for everyone in the organization. This allowed
us to easily involve other people too. For example, professionals in
branding, UI/UX design, marketing, and sales. These people initially
supported us in structuring our positioning material in a more
professional form.

We created a variety of collaterals such as factsheets, one-pagers,
value cards, battle cards, and storybooks. This enabled us to share
our message in a more concise, to-the-point, and engaging way.
So, just as great testing, great selling comes from great collaboration.

In the course of creating and sharing this content, we not only
sharpened our understanding of the practical dimension of software
testing, but we also sharpened our understanding of the value we

create for other people through software testing.

Principle of Connectivity

Make your story their story

Having a crystal-clear understanding of the value of testing was
vitally important since we usually received two types of questions
from management. The first one was: "Why do we need testing at
all?". We addressed this question in the following way.

First, we made it clear to management that the value we provide
through testing is largely intangible. You cannot touch it. Through
testing, we collect quality-related information (e.g., risks) about the
software to enable other people (e.g., developers, product owners) to
make better-informed decisions (e.g., shipping decisions, fixing
decisions). We inform people.

Next, we let our management know that problems are the quality-
related information we primarily are looking for in the software.
Because making these people aware of problems means enabling
them to address these problems. And being able to address these
problems means being able to avoid that these problems turn into
bigger problems.

So, giving people the ability to avoid problems means giving them
the ability to mitigate potential damage, e.g., in terms of financial
loss, loss of reputation, or the loss of faith of clients due to poor user
experience. Simply put, through testing, we help other people to
mitigate risk by making them aware of the risks (i.e., potential
problems).

“Tie software testing to business objectives.”

We help other people to mitigate the potential of losing something
of value. Helping people in your company mitigate potential damage
means giving the entire company the ability to progress toward
strategic company goals at a sustainable pace, not at a reckless pace.

These goals are manifold (e.g., increase revenue, improve customer
experience). We only indirectly influence these goals through testing
but indirectly doesn't mean unimportant. With this oversimplified
example, we just want to illustrate what we were trying to achieve.

“Unless your story isn't their story, they wont give it a chance.”

We were trying to find a trading zone with our internal stakeholders
(e.g., managers). We did that by tying testing to their objectives. So,
we made testing legible to them by adapting our testing terminology
without oversimplifying the complex nature of testing too much.

In a nutshell, we made our story their story. The reason is simple: If
our story isn't their story, they wouldn't give it a chance. All in all, we
were trying to convey that we create value through testing by helping
other people to create value.

Principle of Differentiation

Know where you end and others begin.

Our principle of differentiation addresses the second question we
usually received from our management: "Why do we hire profes-
sional testers at all?".

Management tends to believe that anyone can test. Well, it's true:
Anyone can test but not anyone can test well. In other words,
management usually underestimates the difficulty of testing well. We
addressed this question in the following way.

“Professional testing is a set of skills that must be learned.”

First, we distinguished between professional testing and amateur
testing. Amateur testing is just code for testing that can be
performed by anyone. Amateur testing has a low probability of
finding rare, hidden, and subtle problems that matter. It's shallow
testing.

“When you speak to everyone, you end up speaking to no one.”

The term management was an umbrella term that referred to our
secondary and tertiary targets. These people were the "money
people" in Alice's organization. They controlled the budget of the
organization, including the budget spend on software testing.

You might now wonder why the managers, with their high decision-
making power, weren't our primary targets? The reason is twofold.
One, these people were hard to reach. Two, their decisions about
software testing were highly influenced by the people on the tactical
level.

Our approach was to primarily, not exclusively, sell the value of
testing through the people in our natural environment. In sales
jargon, our goal was to grow the people on the tactical level to our
sales champions who sell the value of testing on our behalf to the
operational and strategic levels. This was important, especially when
we weren't there.

We first grouped our targets according to their decision-making
power. Then we developed user personas for our targets to better
understand their habits, objectives, needs, and goals. Then we
prioritized our targets since we cannot please all our targets all the
time.

We then decided what type of content (e.g., factsheets, white-papers,
infographics, success stories) we need to create to attract each target
persona. Then we defined which mediums (e.g., webinars, blogs,
podcasts, workshops, meetups) to use to communicate the content
to the targets. Then we defined which channels to utilize (e.g., Slack,
Confluence, MS Teams, email) to distribute the content. Finally, we
decided how often to reach out to our targets.

In a sense, we conducted internal marketing campaigns to
communicate the value of testing. In doing so, we defined metrics
such as content engagements (e.g., likes, comments, shares),
impressions, and audience growth to later be able to assess the
success of our campaigns.

This was our basic scheme for selling testing. The challenge was not
so much to create this content but to ensure that this content is used
and consumed in a consistent way throughout the entire
organization. This leads us to our principle of consistency.

Principle of Consistency

Your superpower is consistency.

We are stronger together than we are alone. Alice understood this
very well. She started to unite her power with the power of her fellow
testers. She understood that the best (testing) teams not only have
chemistry but also consistency.

Alice wasn't alone. Many of her fellow testers faced the problem of
selling the value of testing well. Some testers were simply better at
hiding this problem than others. So, Alice quickly turned the

brainstorming sessions into a regular series of meetups. Our so-
called Action Lab was born. You can think of it as a community of
practice.

Our Action Lab was a group of people (e.g., testers, developers) who
came together on a regular basis (e.g., bi-weekly) to share their
passion for testing by exchanging ideas, sharing experiences, and
spreading knowledge. Everyone was welcome but no one was safe to
just lean back and relax. It was a working group. The focus was on
doing, not on talking.

“An ounce of practice is worth more than tons of theory”

The hands-on character of these sessions was key to keeping the
participants engaged. The individual sessions had no fixed duration
but usually lasted no more than two hours. Each session always
focused on one specific topic that was neither too big nor too small.

The topics were phrased as questions, not as statements because
questions require answers, statements do not. In our first session, we
tackled the question "What characterizes testing excellence?". From
this, we derived the 18 characteristics of excellent testing. In another
session, we discussed "How to structure note-taking during
exploratory testing?".

Ergo, the topics were not only focused on the practice of testing but
also on the value of testing. The overall goal was twofold. One, to
improve our daily testing practice. Two, to improve the way we
communicate the value of testing. The content resulting from these
sessions was then used for our internal marketing campaigns.

Each session was moderated. The moderator introduced the topic,
prepared the agenda, moderated the discussion, collected action
items, and summarized the lessons we have learned after each
session. That's, in a nutshell, how we rolled our Action Lab.

“Consistent action is what creates consistent results.”

Our Action Lab not only helped us to close skill gaps and knowledge
gaps among testers in different teams and different departments but
also enabled us to realize and understand that unity is a strength
and division is a weakness.

In the early days, our main learning was that even in one single
organization many testers often have different, and sometimes even
contrary, views on testing. Therefore, by getting together we were able
to develop a consistent view on testing. This, in turn, enabled us to
develop a consistent way of positioning and messaging the value of
testing.

This was crucial. Otherwise, we would have signified nothing right
from the beginning. To conclude, your superpower is your team's
consistency, not your individual brilliance.

Principle of Practicing

Your pitch is only as good as your practice.

In addition to our Action Lab, we also organized practice sessions to
train the way we pitch the value of testing. We decided to train
because we have learned that the delivery of our message is every
bit as important as its content.

This gave rise to our Sales Lab. We did that for three reasons. First, we
wanted to perfect the way we pitch the value of testing in less than
2, 5, 15, and 30 minutes. We mainly focused on making our pitch
succinct, since, in most cases, we only had a few minutes to get our
point across. Therefore, focus and momentum were our bosom
buddies in pitching testing.

Secondly, we have seen that some testers were deeply convinced that
one must be born with the magic ability to sell well. Well, that's
simply not true. Anyone can learn how to sell. You just need to be
willing to invest effort. Unsurprisingly, practicing the act of selling is
a great way to get released from this popular misconception. The
more often you do it, the easier it will get. Selling isn't talent. Just as
testing, selling is a set of skills that can be learned.



ISSUE 03/2021
PEOPLE

ISSUE 03/2021
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

On the other hand, professional testing has a high probability of
finding rare, hidden, and subtle problems that matter. It's the ability
to test deep. Deep professional testing leads to comprehensive
product knowledge and risk coverage, shallow amateur testing
doesn't.

Additionally, amateur testing is a tactical activity that is almost
entirely driven by the gut feeling, talent, and intuition of amateur
testers (e.g., developers, product owners).

In contrast, professional testing is a strategic activity that not only is
driven by gut feeling, talent, and intuition. It's an exploratory
enterprise backed by a colorful mix of systematic strategies,
approaches, and techniques. For example, the ability to design and
discuss test strategies is a hallmark of professional testing.

All in all, amateur testing is low-skilled testing. Here, randomness
rules. Here, the act of finding problems that matter is like playing the
lottery. Luck plays a major role.

In contrast, professional testing is high-skilled testing. It's a fast,
reliable, and consistent testing activity where luck only plays a minor
role in finding problems that matter.

Don't get me wrong. Shallow amateur testing isn't bad, far from it. It
can be very important. Among other things, it makes deep profes-
sional testing possible (Michael Bolton).

How do I know? Well, I (amateur tester) have worked with Alice
(professional tester). That's how I realized that I am not close but
rather a world away from being a professional tester.

In summary, (excellent) testing makes people aware of problems (that
matter), and problems that matter usually cause damage (e.g., loss of
reputation).

This then begs the question: "Do you really want to rely on luck when
your reputation is at stake?". We don't. We left management with these
types of questions to motivate two things.

“Professional testing requires professional testers.”

First, we emphasized the necessity and importance of professional
testing to the business. Secondly, we highlighted that professional
testing isn't natural talent only. It's a set of skills that must be learned.
Simply put, professional testing matters, and since professional
testing requires professional testers, professional testers matter too.

Here's a little exercise you can do. Think about your differentiators.
Think about them in three ways. First, think about your unique
differentiators. These are the capabilities that make you unique.
These are the capabilities that only you possess as a professional
tester. In business jargon, that's your unfair advantage. The ability to
test deep is one example.

Secondly, think about your comparative differentiators. These are
your capabilities that exceed the capabilities of other people (e.g.,
developers). These are the things you can do better. Typical examples
are assessing risk, analyzing coverage, and telling the testing story.

Thirdly, think about your holistic differentiators. These are the
capabilities that make you credible. For example, here you could
highlight that you regularly speak at testing-related conferences,
publish testing-related articles, or actively participate in testing
communities to advance the testing craft. In short, think about where
you begin and others end.

“If you don't understand your value, don't expect others to under-
stand it.”

It's important that these differentiators are true, important to your
targets, and provable. Otherwise, it's just cheap talking. So, think
about how you can defend them. In doing so, remember that less is
more. The amount of information your management can absorb is
usually limited. So, keep your list of differentiators concise but
precise.

Principle of Debunking

Your success is built on preparation

Our principle of debunking is about anticipating, exposing, and
proactively addressing toxic thoughts about testing. Think about all
the things your management should stop buying, here and now. Make
a list. Our non-exhaustive list is shown below.

For us, this list included, and still includes, the illusion of bug-free
software, the fantasy that all testing can be automated, and the fallacy
that 100% coverage is a meaningful practical concept. It included the
popular misconception that we can verify software or that everyone,
including cavemen, can test well. This list included the illusion that
quality can be assured and quantified, and that testing is all about
creating, automating, and executing test cases.

Whenever we pitched testing to management, we came prepared. We
wanted to be quick on the trigger. We did that by having responses
ready for these toxic thoughts. Remember, by failing to prepare, you
are preparing to fail.

“Success tends to come to people who are prepared.”

For example, here is what we did to address the false belief that
"testing is test cases". We reminded management that a recipe is not
cooking. We reminded them that a sheet of music is not a musical
performance. We also reminded them that a file of PowerPoint is not
a conference talk. In the same way, a test case is not testing.

TA test case is an artifact, testing is a human performance. So, just
as a file of PowerPoint is not central to a conference talk, a test case
is not central to testing. Ergo, a test case is not a test. And likewise,
the number of recipes (test cases) you have doesn't tell us anything
about your cooking (testing) skills. This argument, among many
others, has been stolen from the rich (Michael Bolton) and given to
the poor (Ingo Philipp).

You get the point. We adapted our testing terminology and talked in
simple terms to debunk these common misconceptions about
testing. We used metaphors and analogies.

These are simple but powerful cognitive tools to compare software
testing to something that's familiar to your managers. These tools
helped us to clarify our idea about testing by turning the abstract
discipline of testing into something concrete. It helped us to stop
this spiral of toxic thoughts about testing. It helped us to separate
myth from reality.

Conclusion

1 .Tactics without strategy is the noise before defeat.

The action-related principles were the general guidelines we
followed in the act of selling testing, i.e., when we pitched the value
of testing to other people (e.g., management). We also called them
tactical principles.

The process-related principles were our strategic principles. They
directed our processes that, in turn, helped us to plan, maintain, and
scale the way we communicated the value of testing across the
entire organization. This was crucial because the challenge was not
to do that just for 1, 2, or 3 testers. The challenge was to do that for
40, 50, 60, or more testers.

I am highlighting this because I have seen too many testing teams
that pay little to no attention to the process-related principles. I
have seen too many teams over-focusing on action-related
principles. This then often sets these teams up for failing in scaling.

Their action-related principles often turn into tiny little drops in a
vast ocean. Ergo, act strategically, not only tactically, since tactics
without strategy is the noise before defeat.

2 . Evangelism is not an option but a necessity.

Here are the three main benefits why following these principles pays
off. First, think about what happens when a company restructures,
the c-suite changes, or when employees must get laid off. In these
situations, positions are questioned. Their relevance to the business
is challenged. In the engineering department, people typically start
questioning positions related to testing because it's tough to
understand its value add. In these cases, you come prepared. You hit
these questions hard and fast to make these concerns go off the
table fast.

Secondly, through continuous and consistent evangelism centered
around the value of testing, you probably won't receive these tough
questions anymore. You already answered these questions since you
never stopped addressing them. So, in these cases, it's already clear
that professional testers significantly contribute to positive business
outcomes.

Thirdly, think about what usually happens when new (agile)
development teams are being formed. In the worst case, there's no
discussion on whether professional testers should be part of these
teams. Then there are situations where people discuss whether
professional testers are required but decide against them. Again,
through evangelizing the value of professional testing consistently
and continuously, you'll see these discussions go away.

You will be included in these teams. People will understand that it's
close to negligent to not include you. So, evangelism is not an option
but a necessity to get your seat at the table.

3. You cant correct what you aren't willing to confront.

In hindsight, the journey of developing these principles was much
more rewarding than the principles themselves. The real value of
that experience was in all the things we've learned and unlearned in
our heated discussions and lively debates.

The process of overcoming failures and finding new strategies in
selling the value of testing is what is valuable. Through this process,
we didn't just become better sellers of testing but also better doers
of testing. Again, this takes effort but it's worth doing.

So, take the effort and accept the trouble that comes with it. The
reason is simple: If you aren't taking care of how software testing is
perceived by the people in your organization, others will. Remember,
you cannot "correct" what you aren't willing to confront.

Namasté, my software testing friends.



ISSUE 01/2022
PEOPLE

ISSUE 01/2022
PLACE YOUR CATEGORY HERE

14 15TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

ISSUE 01/2022
PEOPLE

14 TEA-TIME WITH TESTERS ISSUE #01/2022

Recently I came across a post on LinkedIn explaining why there are
no testers in Scrum1. What struck me most about the post was the
amount of work the word “tester” was doing. In one sentence it
meant one thing (a role in a team), in the next sentence something
else (a step in the process), and so on. Hence the title of this post:
the word “tester” was being used as an overloaded variable. So let’s
do some unpacking.

Testers to people management

“Having a tester” means that there are people with the official title
of “tester” or “QA engineer” or whatever within the company. For the
purposes of people management2, there’s a distinction between
this role and the other roles in the company. This allows for more
specific expectations about the role, for different career paths and
salary scales, etc.

However, it tells you little about how what these testers do, is
organized. There might be a separate reporting chain for testing all
the way up the to the CTO or CIO. There might be a matrix structure,
where people management is separated from work management. Or
every member in the team reports to the same engineering manager
or team lead. It also does not tell you if testers are part of the
development teams3 and if so, in what way exactly. The only thing it
really tells you is that some people got a contract that lists for
example “test engineer” as their job.

Testers as a process step

“Having a tester” means there is a testing phase after the
development phase - implying a large and information-poor
handover from development to testing4. As is often the case, the
specifics matter here.

It is true there is always some testing you can only do after you
believe all the code has been written. And if you have a tester,
there’s usually5 some handover to that tester. However, the
timescale and the level of collaboration make all the difference
here. A handover of 3 weeks of programming work via poor
documentation is a very different beast from a handover of 3 hours
of programming work via a short pairing session. The former type of
handover leads to a world of pain, while the latter reaps the benefits
that testers can provide6.

Testers and their team

“Having a tester” means someone with the role of tester is involved
in at least part of software development and delivery. This can take
on two quite different forms: being a tester for the team versus
being a tester of the team.

Tester for the team

“Having a tester for the team” means there is someone responsible
for the work labeled as “testing”. If this tester is a member of the
development team, they tend to be the sole owner of the “testing”
column7 on the team’s board. So in a very real sense, this team is
operating as two teams: a development team and a testing team8.

For this reason I think that this setup is in many ways the same as
having a separate team of testers9. It’s not the team that’s doing the
testing; testers are doing the testing for the team. If the tester is not
available, little to no testing will happen.

Tester of the team

“Having a tester of the team” means that there is a team member
who spends most of their time doing testing. All members of the
team do all sorts of things, including testing. The tester of the team,
however, has testing as their main focus, similar to how other team
members have their own areas of focus.

Maaret Pyhäjärvi‘s blog post “Tester roles and services” does a great
job illustrating this way of working. She distinguishes 15 different
testing hats and shows how each of the four team members either
never wear that specific that, occasionally engage in that hat’s
activity, or are focused on it. She re-posted the diagram on LinkedIn,
saying: “It is possible to both have a tester in the team and have full
team testing.”

So all of this to say what exactly? I guess nothing more than this: if
you say that you have testers or that you don’t have testers, that
does not tell me a lot. So I’d be curious to hear more about how you
do software.

References and notes:

1. Which I don’t think is true. The 2020 Scrum Guide says “Scrum
Teams are cross-functional, meaning the members have all the skills
necessary to create value each Sprint.” and “Developers are the
people in the Scrum Team that are committed to creating any aspect
of a usable Increment each Sprint. The specific skills needed by the
Developers are often broad and will vary with the domain of work.”

It does not say that every single Developer should have all the skills
necessary. Nor does it not limit Scrum’s Developer-role to specific
skills or activities. The Scrum Guide also states early on “We use the
word “developers” in Scrum not to exclude, but to simplify. If you get
value from Scrum, consider yourself included.”

2. I refuse to call it Human Resources. Emily Webber has a great blog
post (and flowchart) on this topic: “Should you call people
resources?”

3. This tends to be called “embedded testers”, which I find
increasingly odd. It makes it sound you’re not a real team member,
but someone inserted into the team from the outside.

4. What rarely gets mentioned in this context is the handover of bug
reports from testing to development and the handover of fixes from
development to testing.

5. Ensembling (mob programming/testing) is an excellent way to
eliminate handovers.

6. The benefits a tester can provide, extend beyond the current topic
of “checking stuff at the end”, btw.

7. It’s always interesting to see which kinds of testing do happen
inside that column and which kinds don’t.

8. Two good definitions of teams: “If some of us can win, while others
lose, we’re not a team.” (source?) and “A team is a group of people
that share a problem.” (Douglas Squirrel)

9. They are not the same for activities that don’t fit in the “testing”
column. A tester inside the team, even if it’s a for-the-team tester,
will have more opportunities to participate in other team activities
than a tester who’s in a separate testing team.

JOEP SCHUURKES

- Joep wandered into software testing in 2006. After a
decade in which he learned (and practiced) exploratory
testing and test automation, his focus shifted to a bigger
question. How can teams and organizations build and
deliver good software? To answer that question, he has
been exploring topics such as technical leadership, agile
coaching, and software methodologies.

Joep has given talks and workshops at conferences
throughout Europe. He's also one of the organizers of the
Friends of Good Software unconference and of the LLEWT
peer conference.

“TESTER” IS AN
OVERLOADED VARIABLE”

https://twitter.com/maaretp
https://visible-quality.blogspot.com/2021/07/tester-roles-and-services.html
https://www.linkedin.com/posts/maaret_it-is-possible-to-both-have-a-tester-in-the-activity-6960845948419747840-NKpv
https://scrumguides.org/scrum-guide.html
https://emilywebber.co.uk/
https://emilywebber.co.uk/should-you-call-people-resources/
https://emilywebber.co.uk/should-you-call-people-resources/
https://twitter.com/douglassquirrel
https://www.linkedin.com/in/ingophilipp/


ISSUE 01/2022
PEOPLE

ISSUE 01/2022
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

Preamble

You may have noticed the strikeout in the
article’s title. It’s not a mistake, but instead a
recognition, perhaps a feeble one, that there’s
something wrong with the label of “manual
testing”. Years ago, it was simply called testing.
There was no distinction between automation
or not, but somewhere along the way the prefix
got added. Consider this though: some
surgeries are now done through robotics. Do
we now say, “manual surgery?” Of course not,
but why we say “manual” testing is beyond me.
I’m not sure what the solution to this
conundrum is, so for now, I’ll just strike out the
word to emphasize my point. I’ll then stake a
claim that manual testing is not only very
much alive, but an often-overlooked critical
skill when applied to static testing.

A Cause for Concern

We can’t ignore the fact that test automation is
here to stay, but for many, this could be a
disruptive transformation. If you’re a veteran
like me, you’ve probably lived through several
such disruptive transformations. This time
though, I think things are different. For the
sake of transparency, I still do manual testing,
and I do not feel threatened by automation (in
fact, I embrace it). For many readers though,
i.e., those that devote much of their time to
manual testing, you’d have every right to feel
under siege, and I am here to tell you that I
hear you. Many colleagues of mine have
shared numerous stories about how their
organizations are letting go of their manual
testers and replacing them with developers
who write test code, frequently called Software
Developer Engineers in Test (SDET). We’re
slowly doing it where I work too, but to the
best of my knowledge, these testers are
moving into other positions within the
company, and no testing jobs are being lost.

I maintain such bloodletting is totally
unnecessary and wrong, and I’ll spend the rest
of this article revisiting and building on a
concept known as Extreme Testing. In short, I
believe my adaptation makes maximum use of
the core testing skills, perhaps untapped, that
effective manual testers already have. First,
there’s some underbrush to clear.

The Test Pyramid, Revisited

A common visualization of classifying tests is
the classic test pyramid, such as this:

There’s some controversy about this model,
but for now, it serves its purpose. Structurally,
I believe it’s sending the right message, but as
a pyramid, it’s omitting something very
important: a foundation! Let’s give it one and
discuss its ramifications.

What I call static testing many people call
reviews. On the surface, the subtle change in
terminology might not seem like it’s a big deal,
but I believe it is. Reviews sounds too wishy-
washy, whereas testing is a much more precise
term. It also requires many of the core skills
that make effective testers what they are, such
as analytical and critical thinking, thinking
outside the box, questioning everything,
excellent communication skills, and more. By
now, a light bulb might be turning on, but if
not, I will give you a hint. For those familiar
with the Context Driven School of Testing, they
advocate, and I firmly believe, that testing is
not checking. The former requires the skills I
just mentioned. Checking, on the other hand,
is usually repetitive, slow, and doesn’t scale
well to an agile initiative. It is a perfect
candidate for test automation.

I know of several organizations that have
recognized this and have effectively restruc-
tured their test teams, whereby testers write
the test cases and leave the automation to the
SDET’s. In effect, testers are now writing
specifications much like analysts. This is a step
in the right direction. However, I believe there’s
a lot more that can be done to leverage the
best and most demanding skills of testers.
Before I dive into the details though, I want to
expand on static testing and how it fits nicely
into shift-left testing.

Shift-left Testing

I might be deviating from the standard
definition, but I define testing as a process of
exploration whose goal is to provide valuable
information that helps to reduce risks and
drive action. Add shift-left to the equation, and
it means accomplishing this as soon as
possible.

Together, static testing and shift-left testing
have powerful ramifications. Moving the delta
as far left as possible now exposes the true
value of static testing, because we can
leverage it to include not just user stories and
the like, but everything that gets produced in a
software development effort!

This may seem odd to someone who has been
limited to testing code, whether it be scripted
or exploratory testing, but true shift-left
testing begins with artifacts that are produced
well before requirements. For example, take
the vision document. This is a perfect time to
engage the test team for feedback. It’s
developed in the earliest stage of product
development. As such, testers gain valuable
insight into the intended product, its user
community, and the problem(s) it is intended
to address.

Extreme Testing

Many years ago, Extreme Programing (XP) placed programming at the hub of activity. A few years after its introduction, the 2nd edition of the
seminal classic “The Art of Testing”, 2nd edition, by Glenford Myers, et. all, was published, and in it, the authors introduced the concept of Extreme
Testing. It built on the concept of automated unit testing introduced in XP, and added acceptance testing, albeit not automated. Certainly, unit
and acceptance testing are necessary for an agile project, but why stop there? Since any deliverable can (and should) be static tested, let’s
incorporate it into Extreme Testing.

This now opens a whole new dimension on the scope of manual testing, and with it, the core skills testers possess.

Extreme Manual Testing (EMT) is multi-dimensional and can include static testing, exploratory testing, UAT, and more. EMT is not just a buzz word,
but a true reflection that manual testing is as much as a first-class citizen as is programming and automated testing.

Exploratory testing has been thoroughly covered over the years, whereas static testing not as much, which is unfortunate because it is just as
challenging. There’s two parts to static testing. The easier part is testing the material that is there. The harder part is testing what’s not there i.e.,
thinking outside the box and looking for what is missing. This requires orders of magnitude more skill, but it’s also where testers truly begin to
add significant value. Continuing with the product vision, a tester can identify feature gaps by learning more about the users, or perhaps doing
research on competing products. The possibilities and opportunities are endless.

Manual Testing is Very
Much Alive

”This may seem odd to someone who
has been limited to testing code,

whether it be scripted or exploratory
testing, but true shift-left testing be-
gins with artifacts that are produced

well before requirements.



ISSUE 01/2022
PLACE YOUR CATEGORY HERE

ISSUE 01/2022
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

ISSUE 01/2021
PEOPLE

ISSUE 03/2021
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #01/2021

A Simple Example of Static Testing

I happen to be a big fan of the classic triangle testing problem, first
introduced in the 1st edition of “The Art of Software Testing” It goes
like this:

The program reads three integer values from an input dialog. The
three values represent the lengths of the sides of a triangle. The
program displays a message that states whether the triangle is
scalene, isosceles, or equilateral.

Myers goes on to give a definition of each type of triangle and the
characteristics of their angles. He also has a complete chapter on
inspections, walkthroughs, and reviews. Perhaps an oversight, he
doesn’t apply any of these techniques to his own exercise, and while
countless articles have been written confirming or challenging his
answer of 14 test cases, I’ve not seen anything written about static
testing the specification. For example:

• While there are tests cases for unhappy paths, no mention is
made about displaying an error message for them. I would
consider this an omission in the specification.

• Is the input dialog a command line? A GUI? As a tester, this
opens a host of related questions.

• There happens to be two definitions for an isosceles triangle:
one has 2 sides equal, the other has at least two sides equal.
While this may not affect your test cases, as a tester, I’d feel
perfectly within my rights to do my own research.

Don’t get me wrong though. My intent is not to criticize Myers and his
groundbreaking book. Instead, it’s to call out that no specification is
perfect, nor is any oracle. For that matter, who defines what “perfect”
means? Adding to the challenge, no software deliverable is perfect,
and there’s always the soft skills required to understanding
unwritten context, or common knowledge. Just the same, this is
exactly the kind of questions testers need to explore when they do
static testing.

Looking Ahead

Behavior Driven Development (BDD) is gaining critical mass in man
organizations, and for testers, this is great news, as they will be
playing a vital role in the development of acceptance tests, usually
called feature files. I hope to provide specifics in a future article.

Concluding Thoughts

Many practitioners and authors have made abstract statements like
“you still need manual testing”, but the specifics have always been
lacking. I hope I have begun to change the conversation. Manual
testing, and by extension, static testing can be applied to all
deliverables throughout the entire software development lifecycle.
My only hope is that you are given a supporting environment. If not,
advocate for one. Manual testers, the world is now your oyster. Carpe
diem!

Special thanks to Lalitkumar Bhamare for his review and feedback,
which helped me crystalize and articulate my thoughts on manual
testing.

References

1. Robot-assisted surgery - Wikipedia

2. “The Vision on the Future of Software Testing”,
International Software Testing Qualifications Board,
December 2019.

3. “Just Say No to More End to End Tests”, Mike Wacker, 2015.

4. “We Need to Talk About Testing”, Daniel Terhorst-North,
Tea Time With Testers, March 2021. TTwT_March_2021
(teatimewithtesters.com)

5. “Testing and Checking Refined”, James Bach and Michael
Bolton.

6. “Shift-left to make testing fast and reliable”, Microsoft,
2021.

7. “The Art of Software Testing”, 3rd edition, Myers, et. all,
Wiley, 2012.

8. “Isosceles Triangle”, Wolfram MathWorld.

9. Test oracle - Wikipedia

DAVID LEVITT

- Mr. Levitt is a passionate software engineer and educator. He’s held lead roles as
a programmer and tester and has advocated vigorously for allowing more time for
static testing, both to his colleagues and his students. He holds a BS and MS in
Computer Science and an Advanced Certificate in Software Engineering.

He can be reached via LinkedIn Dave Levitt | LinkedIn or
david.levitt@metrostate.edu

https://en.wikipedia.org/wiki/Robot-assisted_surgery
https://www.istqb.org/documents/ISTQB_The_Vision_on_the_Future_of_Software_Testing_Final.pdf
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://teatimewithtesters.com/wp-content/uploads/2021/12/TTwT_December_2021.pdf
https://www.satisfice.com/blog/archives/856
https://docs.microsoft.com/en-us/devops/develop/shift-left-make-testing-fast-reliable
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxtcnNoZWhyaWNvbXxneDoyN2YyYjJlNWEyZmY1M2Q2
https://mathworld.wolfram.com/IsoscelesTriangle.html#:~:text=An%20isosceles%20triangle%20therefore%20has,sides%20and%20two%20equal%20angles.&text=An%20equilateral%20triangle%20is%20therefore,is%20the%20isosceles%20right%20triangle.
https://en.wikipedia.org/wiki/Test_oracle
https://www.linkedin.com/in/davidlevitt-2789452/


ISSUE 01/2022
PEOPLE

ISSUE 01/2022
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

JERRY WEINBERG
October 27, 1933 – August 7, 2018
–
Gerald Marvin (Jerry) Weinberg was an American computer scientist, author and teacher of the psychology and anthropology of computer software development.
For more than 50 years, he worked on transforming software organizations. He is author or co-author of many articles and books, including The Psychology of Computer Programming.

His books cover all phases of the software life-cycle. They include Exploring Requirements, Rethinking Systems Analysis and Design, The Handbook of Walkthroughs, Design.
In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information Sciences, the 2000 Winner of The Stevens Award for Contributions to Software Engineering, and the 2010
SoftwareTest Professionals first annual Luminary Award.

For over eight years, Jerry authored a dedicated column in Tea-time with Testers under the name “Tea and Testing with Jerry Weinberg”. As a tribute to Jerry and to benefit next generation
of testers with his work, we are re-starting his column.

To know more about Jerry and his work, please visit his official website http://geraldmweinberg.com/

Tea
and

Testing
with
Jerry

Weinberg

Pattern 0: Oblivious

We have added this pattern to
the five used by other authors.
Although it is not a professional
pattern, it is the most frequent
source of new programs, and
can be used as a baseline
against which other patterns
can be compared. In pattern 0,
there is no software
development organization
separate from the software user.
An example of pattern 0 would
be my developing a special little
database to keep track of my
own pulse and blood pressure, a
spreadsheet to keep track of my
scores at Precision Cribbage, or
a BASIC program to drive a
simulation game in one of my
seminars. I have no manager, no
customer, no specified
processes. Indeed, I probably
have little or no awareness that
I am doing something called
"software development," like
Moliere's gentleman who was
unaware that he had been
speaking prose all his life.

If asked, I would probably say I
was "solving a problem." That's
why we call pattern 0,
"oblivious."

Not only are the people using
pattern 0 oblivious to their
doing software development,
but so are most writers on

software development. I asked
one of my clients, the
Information Systems Manager of
a large corporation, to survey
the number of groups working
in each of the various patterns.

Their estimates were:

0. Oblivious 25,000

1. Variable 300

2. Routine 2,600

3. Steering 250

4. Anticipating 0

5. Congruent 0

The Information Systems
Manager told me he had never
really thought about the 25,000

people in the organization who
had been given access to PC's or
time-sharing. He worried about
what would happen when they
became aware that they were
doing software development. If
they came to his organization
for help, was that his job?

They would become aware, of
course, only when their quality
became unacceptable.

What saves Information Systems
Managers from the Oblivious

is a psychological phenomenon
known as "cognitive
dissonance." How many people
will admit that they don't value
the product of their own hands
and brain? Indeed, this might be
called the pattern of the "super-
individual."

Software Subcultures
- Part 2

”What saves Information Systems
Managers from the Oblivious

is a psychological phenomenon
known as "cognitive dissonance."

http://geraldmweinberg.com/


ISSUE 01/2022
PEOPLE

ISSUE 01/2022
PEOPLE

22 23TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

If asked why they are using this pattern, the Pattern 0 people would
probably say, "nobody else can give me what I want, or really
understand me." The characteristic magic posture of this pattern is
that of a god: Omniscient and Omnipotent. At times, playing god can
be a lot of fun.

Whether because of fun, cognitive dissonance, or some other factors,
Pattern 0 is highly successful at producing satisfied users. Based on
our casual observations, it seems to contain a number of sub-
patterns. In this work, we are not particularly interested in Pattern 0
except as a standard against which other patterns are often weighed.

Pattern 1: Variable

Pattern 1, Variable, often follows Pattern 0 when problem solvers
become aware, rightly or wrongly, that they are out of their depth. It
is the first of the patterns to involve a distinction between the
developer and user of software, so it's hard for the developer to
remain oblivious to the process of software development. Because
this is the first pattern to have this separation of responsibility for
quality, it's the first pattern in which blaming appears as a substantial
software development activity.

The super-programmer image

Crosby says of this pattern, "There is no comprehension of quality as
a management tool," but we go a step further. A characteristic of
Pattern 1 is that:

There is no comprehension of management as a development tool.

This pattern could well be called the pattern of the individual
programmer. The ideal here is the "super-programmer," and the
slogan is, "If we succeed, it's because of a super-programmer." A
variant of this pattern has the slogan, "If we succeed, it's because of
a super-team (led, of course, by a super-programmer). This is the
idealized pattern for Mill's "chief programmer"—a compact "surgical
team" headed by super-programmer. It is also the pattern described
in hardware development by Tracy Kidder in The Soul of a New
Machine.

When Pattern 1 is successful

Like all the patterns, this one is often successful. I commonly find this
pattern in young companies producing software products for
microcomputers. At the slightest provocation, any member of the
organization will relate an elaborate "creation myth" about the heroic
feats of the founding team. Often, as the new company grows, it
evolves to Pattern 2, but retains the myths of Pattern 1. These myths
have great value in recruiting new programmers. Thus, one of my
clients spoke about the "small team" that worked on a project—later,
I discovered that over 250 people took part at various times in its 3-
year duration.

Another place where Pattern 1 is found to be successful is in a large
organization where a "pool" of programmers serves some important
group of specialists. Information centers are often structured as
programming pools, but often they are more specialized. In aircraft
companies, I have seen the pool attached to the engineers; in an
insurance company, to the actuaries; in a bank, to the foreign
exchange specialists. These pools can be highly effective at satisfying
the needs of the specialists, and add much value to the company.

The ideal development structure

The ideal development structure in Pattern 1 is "the star in the closet."
If the project is patently too large for one star, then the ideal is the
"skunkworks." A Pattern 1 organization may have some procedures, but
they don't cover most parts of the actual process. Besides, they
always abandon any procedures at the first sign of crisis.

In Pattern 1, Curtis says, the typical personnel practices might include:

• Selection: Find out if candidate saw yesterday's game.

• Appraising Performance: Hold quick review before leaving on
trip.

• Organization Development: Build morale over a beer after work.

According to Curtis, "software personnel are treated as a purchasable
commodity," but I think the word "commodity" is imprecise. Personnel
are "purchasable," but more in the sense that professional athletes
are purchasable. The commodity model is more often seen in Pattern
2.

In Pattern 1, purchasing a "star" is the only hope the organization has
of improving quality. The belief system is very much like voodoo (send
in a hair or the fingernail of the key player, leader, programmer.) or
cannibalism (which gives you the power of the person whose brain
you eat.)

Humphrey says that the first step in statistical control is to achieve
rudimentary predictability of schedules and costs. Since performance
in Pattern 1 depends almost totally on individual efforts, the
variability in schedules and costs depends almost totally on the
variability in individuals. Studies of individuals have consistently
shown variations of 20:1 or more in schedule, cost, and error
performance among professional programmers, so it makes sense
that this is the level of variation we see in Pattern 1.

In Pattern 1, the best predictor of project schedule, cost, or quality is
which programmer does the job, thus reinforcing the belief system
characteristic of this pattern. The programmer gets all the credit, as
well as all the blame.

Pattern 2: Routine (but Unstable)

Pattern 2 arises for several reasons. An organization may be
dissatisfied with the tremendous variation in Pattern 1. They may
never have experienced Pattern 1, but simply need to build software
that obviously requires more than a small team. Or, the projects may
not be that big, but do require coordination with other organizations.
In any case, managers decide they can no longer afford to "leave the
programmers alone."

The super-leader image

Crosby characterizes the managers in this pattern as "recognizing that
quality management may be of value, but not willing to provide
money or time to make it all happen." There are several reasons they
don't provide the money or time

• They don't appreciate the value of what can be accomplished.

• They don't know what is needed to accomplish changes.

• They believe that pushing the programmers is all they need to do the
job.

A programmer in one Pattern 2 organization said of his management,
"They think they're managing a salami factory." This pronouncement
characterizes both the management style and the view of
programmers who would prefer to be working in Pattern 1. The
prevailing myth in Pattern 2 is that of the super-leader: "if we succeed,
it's because of a super-manager (but there aren't very many of those).
If we fail, it's because our manager is a turkey."

This attitude is expressed beautifully in the following excerpt from
The Tao of Programming:

Why are the programmers nonproductive? Because their time is
wasted in meetings.

Why are the programmers rebellious?

Because the management interferes too much. Why are the
programmers resigning one by one? Because they are burnt out.

Having worked for poor management,

They no longer value their jobs.

Managers in this pattern do institute procedures—because they've
been told that procedures are important to keep programmers
under control. For instance, Curtis observes that by Pattern 2,
management practices might have changed to:

• Selection: Managers are trained in selection interviewing.

• Appraising Performance: Managers trained in appraisal
techniques.

• Organization Development: OD plan created, morale surveyed.

Both managers and programmers generally follow most such
procedures. More

often than not, though, they follow them in name only, because
they do not understand the reasoning behind them. That's why we
call this pattern "Routine."

For instance, when Curtis observes that managers are be trained in
appraisal techniques, that merely means there have been courses
for managers. There is ordinarily no way to check on what processes
managers actually use in their appraisals. When we do check, we
find little correspondence between what the appraisal class outline
said to do and what is actually done in appraisals.

When Pattern 1 is successful

Humphrey says that the Pattern 2 organization has achieved a
stable process with a repeatable level of statistical control by
initiating rigorous project management of commitments, costs,
schedules, and changes. The operational word here, however, is
"repeatable," not "repeated." A telling characteristic of the Pattern 2
organization is that they don't always do what they know how to do.
Just when they seem to be doing well on a series of projects, along
comes one "disaster" project that bypasses the procedures just
when they are needed most. Worse than that, management starts
taking action that further undermines the situation. Here's a memo
issued by the manager of a project with a staff of 59:

We are now in the final push to bring Gateway to market. In the 10
weeks between now and turnover date, the following rules will be
in effect:

1. Everyone will be on scheduled 10-hour days, 6 days a week. This
is the minimum work week.

2. There will be no time off for any reason. All class attendance is
cancelled. All vacation days are cancelled. Managers are not to
grant sick leave days.

3. We must ship a quality product. It's everyone's responsibility to
reduce the bug count. Testing, especially, must become more
efficient. By ship date, today's bug count in every area will be cut in
half.

4. We must ship an on-time product. Further schedule slips will not
be allowed, and all previous slips must be made up by turnover.
Starting today, any schedule problems will be reported to me on a
daily basis.

Any developer, tester, or manager who violates any of these rules
will be accountable to me. Remember:

WITH TEAMWORK, WE CAN FULFILL OUR COMMITMENTS.

You'll be interested to know that this product was shipped on time,
and the manager was rewarded for his stunning feat of
management. Some people did disobey orders, however, and got
sick. Moreover, the "bugs" were not cut in half. Instead, they more
than doubled, and four months after shipment, the product was
suddenly withdrawn from the field.

Such disasters are inevitable in Pattern 2 organizations. Later, we'll
use detailed models to demonstrate why. The primary reason, of
course, is that Pattern 2 managers don't understand why they do
what their routine procedures tell them to do. Thus, when things
start to go wrong, they start issuing counterproductive orders—such
as ordering people not to be sick.

The ideal development structure

It's a characteristic of Pattern 2 organizations to be desperately
seeking a "silver bullet" to make a radical change in their
performance. For instance, they often introduce refined
measurements that make no sense in their unstable environment.
Or, they purchase sophisticated tools which are either misused or
lie on the shelf unused. This approach is what the anthropologists
call "name magic." To work name magic, you just say the name of
the thing: "structured programming," "CASE tool," "IBM"—and you
have its full power at your disposal.

The ideal development structure for Pattern 2 is a manager
supported by powerful tools and procedures. When the jobs are
routine, all the manager has to do is ensure that everyone does
every step in the right order. To do this requires "mana," the
personal charismatic power that resides in an individual. If we just
"put Jack in charge," everything will be all right. Unless it isn't.

Pattern 3: Steering

The competent manager

Pattern 3 managers never depend on magic, but on understanding.
Though there are many exceptions, the average Pattern 3 manager
is more skilled or experienced than the average Pattern 2 manager.
Pattern 2 managers often have come a successful programming
career with no particular talent for managing, no training in
management, no great desire to manage, no time to acquire
experience the job of management, and no role models to show
them how to manage. That may be why they so often overestimate
the power of their position:

I took a friend of mine—an organization consultant unaccustomed
to working with such programming managers—on a consulting visit
to one of my clients. After three days helping me interview people
to determine the state of the organization, I asked him what he
thought of their management style.

"Evidently," he said, "the only style they know is 'Management By
Telling.'"

Pattern 3 managers have a variety of skills required to steer an
organization, so they don't have to fall back on telling when their
project gets in trouble.

When Pattern 3 is successful

Pattern 3 managers either have more training and experience, more
desire, or else they are stamped from a different mold. Their
procedures are not always completely defined, but they are always
understood. Perhaps because of this understanding, Pattern
3managers generally follow the processes they have defined, even
in a crisis. That's why they can successfully manage larger, riskier
projects with a greater degree of success.



ISSUE 01/2022
PLACE YOUR CATEGORY HERE

ISSUE 01/2022
PEOPLE

24 25TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

ISSUE 02/2021
PEOPLE

ISSUE 03/2021
PEOPLE

24 25TEA-TIME WITH TESTERS ISSUE #03/2021 TEA-TIME WITH TESTERS ISSUE #02/2021

If you examine the "typical" project,
Pattern 3 may not look spectacularly
better

than Patterns 1 and 2. In Pattern 3,
however, more projects are "typical,"
because there are many fewer outright
failures. When a project starts, you can
bet it will finish successfully—with
value to the customers delivered on
time and within budget.

The ideal development structure

Of course, Pattern 3 processes are more
flexible, because managers choose
them on the basis of their most recent
information about what is actually
happening. That's why we call this the
"Steering" pattern.

Life in a Pattern 3 organization is much
less routine than in a Pattern 2
organization, and the programmers are
generally much happier with their
work. They often display contempt for
Pattern 1 programmers who don't
appreciate the joys of working in a
well- managed operation.

Humphrey says that the Pattern 3
organization has defined the process
as a basis for consistent
implementation and better
understanding. He adds the important
observation that advanced technology
can usefully be introduced into this
Pattern, but no earlier. In Pattern 3,
tools are actually used, and used
rather well.

To be continued…

PART 3
IN

NEXT
ISSUE

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

https://leanpub.com/b/thetesterslibrary/
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com


ISSUE 01/2022
OVER A CUP OF TEA WITH JAMES THOMAS

ISSUE 01/2022
OVER A CUP OF TEA WITH JAMES THOMAS

26 27TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

IN
TE

R
V
IE
W

The Great Post Office
Scandal? What is it?
What does it mean for
testers? What good are
certifications for?
James Thomas over a
cup of tea with Dave.

In this month’s edition of TTwT, I have the pleasure of interviewing James Thomas.

Greetings, James! Before we get started, I’d like to take this opportunity to thank you for taking the time to share your
perspectives to TTwT readers.

To set the stage, I’d like to dive deeper into your enlightening blog post on the Great Post Office Scandal.

Before I get started, it’s only fair to mention that I downloaded the complete book but did not have enough time to
finish it. However, I did get the chance to read some of it. It’s an amazing story that touches on the intersection of so
many dimensions, including, but not limited to testing, dysfunctional organizations, fear, ethics, and what might be
controversial, a call for licensure. I’ll try to cover each of these topics in the questions that follow.

- INTERVIEWED BY DAVE LAVITT

JAMES THOMAS
–

James Thomas is Vice President of the
Association for Software Testing, a non-
profit organisation dedicated to the
advancement of the testing craft. Over the
years he’s had many roles including
developer, technical author, technical
support, and manager, but the
combination of intellectual, practical, and
social challenges in testing are what
really excite him.

He's on Twitter as @qahiccupps and
blogs at Hiccupps

The book calls out there was a
total breakdown of testing. The
usual suspects have been
identified, such as lack of
adequate time, lack of auditing
and accountability, etc.
However, what I did not see
mentioned in the book, and
correct me if I am wrong, is that
testing should have begun long
before the first line of code was
written, like in the initial
planning or vision for the
product, whose scale was
clearly in uncharted territory.
Of course, hindsight makes
geniuses out of all of us, but
imagine you were on this
project in its early stages.

What techniques might you
employ to raise awareness of
the testing function?

risks, of what, to who, and when.
If I'm not running things, then
my advocacy for testing starts
before the project, occurs in the
project, and runs parallel to the
project.

Before the project, on other
projects, I'll work hard to make
the value of testing visible to
people who matter in the
business. How? By doing the
right kind of testing at the right
kind of time and the right kind
of cost, and then talking about
it. I want people on the project
to already be thinking that
they'd like the benefits they've
seen testing deliver elsewhere.

Readers:

What makes this story so sad is
that it’s not just one of many
massive IT project failures, but
the year’s long hardship it
caused for many innocent
people, some of whom went to
jail or had their savings
depleted due to no fault of their
own.

To get the most out of this
interview, do please take a few
moments to read James’s post.
To further appreciate the story, I
encourage you to visit the
publishers website where you
can read the 1st three chapters
for free: The Great Post Office
Scandal – Bath Publishing
Limited. They are brief, and
worth the few minutes of your
time!

I am glad you enjoyed the blog
post, Dave, but I wouldn't regard
myself as an expert on the
Horizon case. I think I'll probably
take any very detailed questions
in a more general direction and
refer you to James Christie for
really deep and insightful
analysis.

What techniques would I use to
raise awareness of the testing
function in the early stage of a
massive project in a large
organisation no doubt rife with
politics? I guess I'd give different
answers depending on the level
of direct control or influence I
had with other participants.

If I'm running the project then
I'll bring in people capable of
critical thinking and ask them to
look holistically for potential

https://qahiccupps.blogspot.com/2022/09/the-great-post-office-scandal.html
https://twitter.com/qahiccupps
https://qahiccupps.blogspot.com/
https://bathpublishing.com/en-us/products/the-great-post-office-scandal
https://bathpublishing.com/en-us/products/the-great-post-office-scandal
https://bathpublishing.com/en-us/products/the-great-post-office-scandal


ISSUE 01/2022
OVER A CUP OF TEA WITH JAMES THOMAS

ISSUE 01/2022
OVER A CUP OF TEA WITH JAMES THOMAS

28 29TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

By default I'll do all of those things as respectfully as I can, in relevant
places, at appropriate times. That includes in meetings, in meeting
notes, in tickets, in reports and white papers and so on. Again, the
goal is to get people to see the value of testing to the project
outcome.

In parallel I'll do the same kinds of activities with other people who
are on the project, but one-to-one. I'll be building relationships,
looking for allies and collaborators to help support a case for the
critical review of the work being done, the way we're doing it, and the
results we're expecting to deliver.

What I did not seementioned in the book was themethodology that
the project employed, but by virtue that it mentions lack of testing
time, it hints at waterfall. However, I have seen, and have been a
part of failed large-scale agile projects as well. I will cut to the
chase. Methodology and technology are certainly important, but the
three most important ingredients to a successful software project
are PEOPLE, PEOPLE, PEOPLE. Extending further, the biggest driver
is not the people in the trenches, but at the highest levels of
management. For reasons that totally escape me, software has
always been treated differently than other disciplines.

For example, I have been in organizations where the CIO has no
formal training in computer science, software engineering, or has
written any serious production code. Yet, this in unfathomable in
any other profession, say accounting. I have long believed this
dilemma would make for a fascinating investigation. I would be
interested to know if you are aware of any such studies in this area?

I think my first answer reflects your point about people. The
relationships between individuals, and their motivations, can have a
massive effect on the success of projects.

I have never tried to look for literature on the specific question you
asked but I'd say the fields of sociology, ethnography, and psychology
would have direct relevance. I'm not sure they're more relevant to
software than other industries where there is large-scale
collaboration though.

For me, a CIO lacking technical expertise isn't as unfathomable as you
suggest. C-level positions are more likely to be strategic than tactical
and strategic thinking can be a transferable skill. That's not to say
that subject matter and domain knowledge isn't valuable, of course.

For me, a good chief will have trusted lieutenants that can give them
sufficient data, detail, and context. They'll also establish a network
for triangulating that information and getting feedback and criticism
on their thoughts and actions.

Getting back to the people in the trenches, the fact is that people in
management positions are usually trained in negotiating and
conflict management skills, but I can’t honestly say the same for
people in technology positions. Even worse, people in management
often are many years older and have more experience and
influence. I like the fact that your post mentions the ACM code of
ethics. As an IEEE member, I am bound by the same code. However,
the code by itself is no match for preparing practitioners for the
power dynamics that exist in organizations. Do you have any
thoughts on what is needed to provide this kind of training and
guidance?

When I was managing a team of testers I organised annual team
training, which I attended too. We had a pattern of technical skills
one year and then (inter-)personal skills the next. One of the most
productive that we did, for me at least, was on assertiveness.

If you're unfamiliar with the term, assertiveness might sound like
aggression, but it's actually nothing of the sort. Assertive behaviour is
professional behaviour: expressing yourself calmly and clearly and
on equal terms with others, without backing down or being
manipulative.

In particular, one simple conversational technique from that course
has stuck with me for years: Express, Listen, and Field. It means say
what you want to say, actively listen to the response, and then push
parts of the response that are irrelevant to your point to one side. The
course also gave us a vocabulary for talking about how we talked to
each other, which was itself powerful.

When we introduced line management in my team I suggested to
each of the new managers that they try to tease out a set of
principles that they could use as a basis for making choices. I
personally found that it invaluable for consistency of thought and
action, and to avoid having to work every situation out from scratch.

A couple of other things I think it'd be good for people to be familiar
with at work: the Satir model of interaction which describes how a
message moves from inside my head to inside yours, and says that
the likelihood of it being the same in both places is small; the perils
and pitfalls of feedback and what it says about the giver and receiver;
and congruence, the idea that decision-making should consider the
self, others, and the context.

Much of this I learned from reading Jerry Weinberg.

I must believe there was at least one tester in the Horizon project
who, in spirit, tried to abide by the code of ethics, but did not out of
a real-world fear of losing their job. Consider a scenario where this
individual had a family with financial obligations. It’s easy to say,
“walk with your feet”, but it’s not so easy to do in practice. What is
needed, among other things, is a safety net so individuals can, and
are encouraged to do the right thing. As I had not had time to
completely read the book, was there any sort of a safety net at
Horizon? if not, does England have a whistle blower act, such as the
one in the US? See, for example: Whistleblower Protection Act -
Wikipedia

There is government guidance on whistleblowing, yes. It includes this
passage:

As an employer it is good practice to create an open, transparent and
safe working environment where workers feel able to speak up.
Although the law does not require employers to have a
whistleblowing policy in place, the existence of a whistleblowing
policy shows an employer’s commitment to listen to the concerns of
workers. By having clear policies and procedures for dealing with
whistleblowing, an organisation demonstrates that it welcomes
information being brought to the attention of management.

https://assets.publishing.service.gov.uk/government/uploads/
system/uploads/attachment_data/fi le/415175/bis-15-200-
whistleblowing-guidance-for-employers-and-code-of-practice.pdf

.

Here in the US, other than software engineering, all other forms of
engineering require licensure, and rightfully so because of the risk
to the public. Efforts at software licensure have been tried, and for
many reasons have failed: Licensure of Electronic, Computer and
Software Engineers (ieeeusa.org). Of course, licensure alone is not a
silver bullet, but given the shortcomings of the code of ethics and
the lack of adequate organizational training, it could certainly help.
Assuming that one day there will be an appropriate exam for
licensing software testers, and such licensure would be required for
some people on some projects like Horizon, or on projects that are
life-threatening, would you be in favor of supporting a licensing
program or against it? Why or why not?

Big questions there, Dave, but I think your assumption is a big one too
and "appropriate" is doing a lot of work!

First, I'm not against the idea of certification of practitioners in
principle.

But what problem is your license trying to solve, for who? What would
it license a tester to do, and on what basis?

You mentioned an exam, but there are other options too, including
practical demonstration and assessment of skills and experience,
bookwork, interview, or even simply (and sadly) attending courses.

Is it a cross-industry and technology license? Or is it tailored for
particular applications with specialist concerns like AI or healthcare
or the military?

In any case, why are we focusing on testers? Why not license
designers, or developers, or product managers?

Why not certify the testing (rather than the testers), or maybe the
products, or the companies who produce the products, or the
regulatory frameworks in which companies operate?

And so on.

The Association for Software Testing has a well-considered position
on certification.

The last sentence in the book is very sobering “As for any individual
being formally censured or punished for their role in causing,
perpetuating, or trying to cover-up the Great Post Office Scandal,

well… I’m not going to hold my breath.” I am going to go one step
further and predict that most likely, those most responsible will not
be held accountable, and something like this will likely happen
again. Are you aware of any steps the British government has taken
to ensure something like this doesn’t happen again?

I am not. I'm also skeptical of the idea of ensuring things don't
happen in general. That's particularly true in the complex systems
(e.g. UK law) that exist to allow complex systems (e.g. the Post Office
and Fujitsu) to build complex systems (e.g. Horizon) for use in
complex systems (e.g. Post Office counters, their wide range of
services and products, their partners, their suppliers, their staff, and
customers).

Other than your blog post and what we’ve already covered, is there
anything else about the scandal you’d like to share?

I mentioned complex systems a few times in the last answer. In its
bare essentials the Horizon product is conceptually reasonably
simple. It's a point-of-sales system which reports sales back to some
central authority on a regular basis. But it was built and used by and
in a web of complex systems with competing aims. It's not obvious
that this complexity was appreciated or respected by the Post Office
and Fujitsu, and that was compounded by a lack of empathy and
consideration for the people involved.

Formy final question, is there anything else you’d like to share other
than the scandal? It could be related to any of your other posts or
any special topics of interest.

I've recently been working on building clients of a service that use
randomness and a model of the service to help me explore it. I've
found it an extremely enjoyable and productive way to get the system
into unexpected states, refine my understanding of the system, and
generate data about the system that I can explore.

I did a talk on this for an Association for Software Testing webinar
recently,

It's been a pleasure, James! Thanksagain for your time. It’s on my
bucket list to visit the UK one of these days. Hopefully we’ll get the
chance to share a pint and talk more on these topics.

Cheers, I’d like that.

”A couple of other things I think it'd be good
for people to be familiar with at work:

The Satir model of interaction

https://en.wikipedia.org/wiki/Whistleblower_Protection_Act#:~:text=The%20Whistleblower%20Protection%20Act%20of%201989%2C%205%20U.S.C.,and%20specific%20danger%20to%20public%20health%20and%20safety.
https://en.wikipedia.org/wiki/Whistleblower_Protection_Act#:~:text=The%20Whistleblower%20Protection%20Act%20of%201989%2C%205%20U.S.C.,and%20specific%20danger%20to%20public%20health%20and%20safety.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/415175/bis-15-200-whistleblowing-guidance-for-employers-and-code-of-practice.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/415175/bis-15-200-whistleblowing-guidance-for-employers-and-code-of-practice.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/415175/bis-15-200-whistleblowing-guidance-for-employers-and-code-of-practice.pdf
https://associationforsoftwaretesting.org/certifications/
https://associationforsoftwaretesting.org/certifications/
https://www.youtube.com/watch?v=QNt-0SQOPUM
https://www.youtube.com/watch?v=QNt-0SQOPUM


Building Networks:

Finally, one of the biggest blessings I got from my journey of visual
thinking is that it helped me connect with various accomplished
people, most of whom helped me make a better person and
professional.

I remember I read this quote that stayed with me (I think from the
book- 'Show your Work'):

Networking is less about knowing people and more about putting
your best work out in the open. that attracts the best people out there.

You read a lot and write often. What books would you recommend
testers that personally helped you?

Books have had a disproportionate impact on my life so I will certainly
have recommendations. But since I read a lot, my list of rec-
ommendations also keeps evolving :-). Keeping testers in mind, here is
what i would recommend:

The Third Door: The Wild Quest to Uncover How the World's Most
Successful People Launched Their Careers by Alex Banayan

This book on the surface has nothing to do with testing, very less with
technology yet i feature this high on my list. Reason- it teaches an
important skill that I rate highly among professionals- High Agency. Let
me explain what it is:

High Agency is about- "When you’re told that something is impossible,
is that the end of the conversation, or does that start a second
dialogue in your mind, how to get around whoever it is that’s just told
you that you can’t do something?" (Eric Weinstein's quote:)

High Agency is about finding a way to get what you want, without
waiting for conditions to be perfect or otherwise blaming the
circumstances. High Agency People either push through in the face of
adverse conditions or manage to reverse the adverse conditions to
achieve goals. (Shreyas Doshi's quote)

Testers need high agency in high proportions to navigate through
various challenges- from proving your existence to delivering value.

Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives by Nick Rozanski, Eoin Woods

I recommend this book for a simple reason- I have seen a very few
testers having a say in software architectures. Not that the tester's
abilities are lesser than anyone else but it's more about orientation
and developing interests. The best testers I have seen can present
product architectures like seasoned architects would and add value in
creating robust systems in a proactive way. This book can help you
understand an architect’s mindset.

Working in Public: The Making and Maintenance of Open Source
Software by Nadia Eghbal

I recommend this book because I have seen a lesser number of
Software testers participate in creating Open Source software. It’s a
fascinating read on the history, present, and near future of open
source software development. I foresee a world where more and more
testers participate in the Open Source community, holistically imbibe
the Open Source ethos and help build better, cleaner software.

If there is one thing you would like to stop tester from becoming,
what would that one thing be?

I read Subroto Bagchi’s book- “The Professional” many years back and
it had a profound impact on me. Subroto while describing the word
“Professional” says- “"A professional who sees his work primarily as a
means of earning money, runs out of meaning very soon.Being a true
professional is nothing short of a religion and the capacity to serve is
indeed a blessing in life."

He further goes on to say that there are 2 qualities that separate a
professional from someone who is just professionally qualified-

Ability to work unsupervised.

Ability to certify the completion of one’s work.

If there is one thing that I would like to stop testers from becoming, it
is becoming unprofessional or non-professionals.

When we embrace a particular field as our chosen career, our
responsibilities do not start and end at mastering the skills needed to
execute or exceed the job expectation but it in reality goes much
beyond. With extraordinary time and focus spent on building skills, we
sometimes tend to ignore a larger view.

To make my point further, I have listed a handful of situations that we
might face in our professional lives and followed up these situations
with a question-

- A person finds a High severity, rarely reproducible defect in the
Software component he/she was handling on a day before release.
Should he/she go and inform the Management (despite fearing his
lack of performance impressions) or should he remain quiet and not
report the bug (as anyway it is rarely reproducible and will be rarely
noticed) ?

- A person is knee deep in a technical problem, whose solution is likely
to be available with another teammate. He/She does not quite reach
the other guy for help just to serve his/her ego. Is it ok to let
professional ego slow the pace of a project ?

- A person meets another colleague on a pathway, they have a
discussion and as a follow-up, this person promises to send some
information to the colleague in 2 days time. A week goes by and the
colleague doesn't get the required information. Is it ok to be casual
about the commitments made to people who are not your bosses or
Managers ?

- A person installs a Software tool and learns it's very basic functions.
Next thing he includes the very mention of the tool in his resume as
one the "skills" he has. Is he right in claiming expertise on this tool
(which may even turn out to be the basis of him getting an interview
call) ?

Being a professional is our foremost responsibility as a tester, or for
any other role/job you choose to take.

ISSUE 01/2022
PLACE YOUR CATEGORY HERE

ISSUE 01/2022
OVER A CUP OF TEA WITH JAMES THOMAS

30 31TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

mailto:contact@teatimewithtesters.com


~
Pe
op
le

32 33TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

~
Pr
oc
es
se
s

AUTOMATION
WITH A
HUMAN TOUCH

It’s been a while since I read from Taiichi Ohno about the Toyota
Production System and from Goldratt about the Theory of
Constraints. Thus far I thought, both have close to nothing to do with
each other. Today, however, I got an insight that brought the two
closer together for me. Let me explain.

Some context

I am currently working on a client that deals with 6- or 7-joint robots,
even in the industrial field. Today I worked with one of their teams on
their product vision. They had identified customers as companies
that want to automate portions of their work stream by bringing in a
robot and teaching it some repetitive tasks, as well as users in those
companies, people who teach the robot the movements it should
start to do later on while working on several workpieces.

While coming up with value propositions, I brought up something I
learned from Taiichi Ohno while he was setting up the Toyota
Production System in the early 1950s and 1960s: automation with a
human touch. Ohno argues that his goal never was to automate every
step of a process, but maybe to make use of humans with creative
brains aiding in automation.

I brought up how the robot can easily free the human brain from
repetitive tasks in the work process, thus freeing the human brain
from drought tasks. Instead, a trained craftsperson can inspect the
workpieces that the robot has been working on and identify
additional steps to apply maybe manually to finish off the coarse
work that the robot easily repeated.

Theory of Constraints

As reflected in one of the wastes stemming from Lean, waste of
human effort, it dawned on me, how this principle basically is
applying Theory of Constraints Thinking to the problem of automa-
tion. Let me explain.

In the Theory of Constraints, every production process is limited by a
constraint, the slowest or most time-consuming step in the
production facility. The whole system cannot produce faster products
than the constraint currently allows. Goldratt identifies five focusing
steps to improve the system:

1. identify the system’s constraint(s): Identify the current constraint
(the single part of the process that limits the rate at which the goal
is achieved).

2. Decide how to exploit the system’s constraint(s): Make quick
improvements to the throughput of the constraint using existing
resources (i.e., make the most of what you have).

3. subordinate everything else to the above decision: Review all
other activities in the process to ensure that they are aligned with
and truly support the needs of the constraint.

4. elevate the system’s constraint(s): If the constraint still exists (i.e.,
it has not moved), consider what further actions can be taken to

eliminate it from being the constraint. Normally, actions are
continued at this step until the constraint has been “broken” (until it
has moved somewhere else). In some cases, capital investment may
be required.

5. Repeat the process: The Five Focusing Steps are a continuous
improvement cycle. Therefore, once a constraint is resolved the next
constraint should immediately be addressed. This step is a reminder
to never become complacent – aggressively improve the current
constraint…and then immediately move on to the next constraint.

If the constraint in a production process is the creativity of a human
crafter, one way to exploit, subordinate, and elevate that constraint
lies in freeing the human mind from boring, repetitive tasks that
break his creativity zone.

Sources of explanation

So, if we bring in automation to free the human mind from the
repetitive steps in that process, we make sure that the constraint of
human creativity can be used to think about more problems.

Does this relate to test automation?

I think this point can be related to the benefits you can get from
following a balanced approach between test automation and
exploratory testing as well. Make sure to keep that human touch
though. In software testing, usually, there is close to an infinite
amount of tests that you could potentially run.

As Doug Hoffman explains in Exhausting your test options, he was
tasked in his career once with testing the square root calculations of
a new floating point unit. In order to make sure all input values
resulted in the correct results for 32-bit floating point numbers as
inputs, he pre-calculated on another device the expected results,
automated all 4 billion calculations with the new calculation unit,
and let it run on the new computer. Through the automation, the
execution took 5 minutes. He found two erroneous results.

Thinking forward to 2022, we currently deal with 128-bit floating point
numbers in more modern computers. Assuming the same execution
times would yield 1^40 hours to calculate (several millennia). Thus,
it’s impractical to test all the values on a modern computer, and just
consider how more complex than calculating square roots modern
applications have become. In fact, the whole software testing theory
mainly deals with ways to reduce the number of tests that you
execute to some meaningful subset of all the tests you could
potentially run.

As the story also illustrates, Doug Hoffman used automation to aid in
his testing with a human touch. If automation takes away the boring
tasks from the human brain cells, we can spend more time exploring
what our automation did not catch. I came to realize how this as well
relates to Theory of Constraints Thinking applied to software testing.
And I began to realize how the similarities in other places of work
have similar constraints.

Then it dawned on me, that the whole fear about automation taking
away jobs from folks, is more an emotional one rather than a logical
one. But maybe we need to dive into that distinguishment at some
other point in time.

MARKUS GÄRTNER

–

Markus Gärtner works as Organizational
Design Consultant, Certified Scrum Trainer
(CST) and Agile Coach for it-agile GmbH,
Hamburg, Germany. Markus is the author
of ATDD by Example - A Practical Guide to
Acceptance Test-Driven Development and
contributes to the Softwerkskammer, the
Germany Software Craftsmanship
movement.

He blogs in English frequently at http://
www.shino.de/blog.

https://www.leanproduction.com/theory-of-constraints/
https://bbst.courses/wp-content/uploads/2022/08/Hoffman_Exhaust_Options.pdf


ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

34 35TEA-TIME WITH TETERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

Concept Testing
We are used to using different products regularly. There might be
millions and billions of several applications but we are very specific
when we choose to navigate through specific applications and
websites, aren’t we?

Have you ever found it questionable why a few are doing great while
others are not?

The answer remains in the product design.

Let’s think we have ideas for different products like online shopping,
food delivery, etc. and we are building the product with the hope that
it will create a buzz in the market and will be used by a huge number
of customers.

There is a potential cause that might lead to an unsuccessful launch
if it does not meet user expectations.

And this is why Concept Testing is coming into the picture and
playing a significant role.

What is Concept Testing?

Concept testing is a research method of testing new or hypothetical
products or services before they are launched that includes user
feedback during the upfront part of the design process to give
feedback on potential solutions.

It generally happens at the beginning phase of product development
allowing users to share in the initial shaping of an idea to solve a
problem.

The testing is specifically intended to screen several concepts to
identify the strongest ones for progression, to improve/refine the
base product or service proposition, and/or forecast their likely
success.

Purpose

Concept testing is mainly used for go/no-go decisions for a new
product. Below are some examples of situations in which this study
finds its usage:

• Reaching out to a new market segment

• Ranking and selecting the best potential product concepts,
brand name, packaging, logo, etc.

• Determining the optimal pricing point for new products

• Testing customers’ trial experiences to see if the product or
communications adjustments should be made.

• Benchmarking

• Forecasting demand

Involved Personas

The value in concept testing extends beyond UX and includes
members beyond the UX team in the process of carrying out testing.
This includes:

• Marketing team members,

• Tech/Dev team members,

• Business analysts,

• Key internal stakeholders from outside the core product team.

There are several types of methods for Concept testing, let’s have a
look.

Comparison Testing

1. Comparison testing involves the testing of two or more ideas.

2. Participants are given a breakdown of multiple concepts together
and then answer ranking questions to compare both concepts and
choose one that managed to sway them.

3. Researchers form inferences based on the respondents’ answers,
determining which concept proved to be more widely accepted.

This might result in little out of expectation as this is dependent on
human preferences.

Monadic Testing

1. In a monadic test, the target audience is broken down into multiple
groups. Each group gets shown only one concept.

2. These tests focus on analyzing a single concept in-depth.

3. Adds context to the respondents’ choices. Results are much more
thorough, giving researchers a better idea of what aspects, each
group liked and disliked.

4. Monadic tests can be a relatively more costly endeavor,
considering that it requires a large sample size.

Sequential Monadic Testing

1. Like the monadic test, in sequential monadic tests, the target
audience is split into multiple groups. However, instead of showing
one concept in isolation, each group is presented with all the
concepts.

2. The respondents are asked the same set of follow-up questions for
each of the concepts to get further insights.

3. Since each group of respondents sees all concepts, the target
audience size required to perform a sequential monadic test is
relatively small.

4. As each group is presented with all concepts, the questionnaires
are relatively lengthy.

5. Multiple concepts can be tested in a single round. Thus, sequential
monadic tests are more cost-effective and easy to field. This
concept testing method makes it ideal for research with budget
constraints or when only a small target audience is available.

Proto-Monadic Testing

This is a combined idea altogether.

1. A comparison test follows a
sequential monadic test, it’s referred to
as proto monadic testing.

2. Here, respondents first evaluate
multiple concepts and are then asked to
choose the concept they prefer.

3. The results of the latter play a
significant role in verifying the results of
the sequential monadic test. Whichever
concept the participants prefer will
likely have more positive feedback in
the sequential nomadic test.

4. Researchers can verify if the concept
selected in the comparison test is
compatible with the insights collected
about each concept.

Concept Testing Methods:

Hypothesis Testing

Hypothesis testing in statistics refers to
analyzing an assumption about a
population parameter. It is used to
make an educated guess about an
assumption using statistics.

Questions to explore the supposed
requirement that the concept needs to
address as a whole.

1. Do users struggle with accomplishing
a task or have an unmet need in the
area your concept will provide a
solution?

2. Will this concept meet the needs of
the users?

A/B Testing

A/B testing also known as split testing, refers
to a randomized experimentation process
wherein two or more versions of a variable
(web page, page element, etc.) are shown to
different segments of website visitors at the
same time to determine which version
leaves the maximum impact and drives
business metrics.

This testing as defined helps us determine -

• Which version of the concept conveys
an idea clearer?

• Which version of the concept provides
a more immediate value?

• Which version of the concept is more
realistic to bring to life and meet users’
needs?

A/B testing requires greater resources in
terms of creating an artifact to test. At least
two versions of an idea are required to
conduct A/B testing asynchronously, having
users log into a site hosting visualizations of
the concept and asking them questions
along the way.

Interviews

Take interviews with stakeholders and end
users to visualize their expectations better.

Current Comparative Products

Thorough research on current comparative
products is highly recommended. This will
set the stage for initial understanding and
build a foresight regarding the market, and
end- user surmise.

Benefits

Let’s summarize the potential benefits that
we get before launching the product -

• Confidence that we are working on the
right thing at the right time,

• Gain buy-in from stakeholders,

• Uncover features or enhancements you
haven’t considered.

An idea in your pocket? launch!

ANKITA BASU
–

Ankita Basu is currently working as an Analyst, a test
enthusiast by heart. She likes cooking, being a plant mom,
and reading self-development books especially. Ankita
believes anyone can achieve his dream through hardwork
and patience.

She loves to share her little knowledge and experiences
through words. To find more about what this newbie blogger
shares, check out Ankita Basu – Medium.

https://medium.com/@ankitabasu109


ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PLACE YOUR CATEGORY HERE

36 37TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

Introduction

Robert Sabourin and Mario Colina have worked in many different
contexts in which testing professionals have been able to do great
work, collaborating actively with other team members. Testers
without programming skills can learn about technical risks through a
process that the authors have labeled code listening.

In this article, we define the concept of “code listening” as the ability
to identify test ideas from the source code of a software project. We
define “test ideas” as any potential test objectives.

In this article, Robert Sabourin and Mario Colina will share several
types of code listening illustrated with examples taken from real
software development projects.

The methods described do not require programming skills and may
be interesting to organizations, or development and testing
professionals seeking to identify methods to improve their software
testing process and practice.

Code listening skills are particularly effective when testers are
working under time pressure and are interested in identifying areas
of a product on which to focus their testing initiatives.

Understanding Algorithms and Program Logic

When tasked with a programming assignment, software engineers are
challenged to solve a problem. The problem can be expressed as a
requirement. The solution can be expressed as a design. The
solution can be implemented with code and data.

Teams use a wide variety of styles to document software
requirements and designs.

Formal, procedural methods such as the IBM/Rational Unified
Process, RUP, use a modeling language to express requirements and
designs. In RUP, requirements are often described using formal use
cases. RUP represents software designs using various visualizations,
such as sequence diagrams and state models.

Software development methods that rely on “agile” frameworks, such
as Scrum, express requirements and designs with less formality. Our
“agile” customers often express requirements with user stories with
acceptance criteria and use various diagrams to visualize designs.

Active participation in planning activities provides an excellent
opportunity for testers to learn about what can go wrong in a
programming initiative.

1.1 Requirement Review

A requirement review takes place before a development team
commits to implementing a feature. These reviews have different
names depending on the software development lifecycle model.
Many teams perform these reviews as part of “Refinement”,
“Grooming”, “JAD (Joint Application Development)” or other
“requirement elicitation activities”.

The authors encourage testers to actively participate in requirement
reviews to help team members better understand what can go wrong,
comparing new requirements with past implementation experiences.

Testers should be able to identify variables related to the upcoming
requirement implementation. These variables can include factors or
conditions that may influence or be influenced by the behavior of the
software being developed.

1.2 Example of Code Listening Requirement Review “agile” Grooming

This is a short experience report by author, Robert Sabourin, about
code listening related to requirement reviews in an “agile” grooming
session.

Every Tuesday afternoon, the SCRUM team held a backlog grooming
session. The team reviewed high-priority stories being considered for
future sprints.

The team had four reasons to groom stories. First, team members
attempted to gain a common understanding of upcoming work.
Second, the team helped to clarify new story descriptions. Third, the
team elicited meaningful examples to be used as acceptance tests,
and fourth, the team estimated the size of each story.

Grooming meetings were time-boxed at 90 minutes. In attendance
were the product owner, the business analyst, four developers, two
testers, a technical writer, and the scrum master. The business
analyst and the product owner authored the story descriptions. The
business analyst also acted as the meeting facilitator.

The meeting started out with a short, five-minute team-building
exercise designed to break the ice, get everyone talking, and
encourage participation by all.

The business analyst used a PowerPoint presentation to walk through
new stories one at a time. In this particular meeting, four stories were
groomed.

One of the groomed stories was a new, complex business rule being
added to existing transactions. The business analyst started by
reading the story out loud, which was patterned to answer the
questions: “Who is the user?” “What does the user want to achieve?”
“Why does the user want to achieve it?” Testers asked plenty of
domain-specific questions, uncovering potential ambiguity and risky
misinterpretations. The team compared and contrasted the new story
with existing functionalities. The business analyst edited the
description as the team discussed clarifications. Some edits added
acceptance tests in the form of examples describing the expected
behavior in certain specific circumstances. Other edits clarified the
statement of the story. The business analyst called on the authority
of the product owner to confirm that the story was consistent with
business needs. The team used planning poker to estimate the size
of the clarified story. It took three rounds for the team to achieve
consensus. During each round, team members justified low and high
estimates using persuasive arguments based on recent relevant
experience.

A couple of the new stories were very similar to previously
implemented stories. The business analyst walked through them
quickly. There was very little time spent discussing them. In both
cases, the estimation required only one round of planning poker and
all the team members agreed based on common shared experiences.

One story of interest was quite foreign to the team and raised many
questions. It turned out that the business analyst and product owner
did not have answers to some of the clarifying questions. During the
meeting, the product owner and the business analyst unsuccessfully
attempted to split up the story. The story was pulled from the
grooming session. The product owner and business analyst would
need to rework the story before subsequent team grooming.

At the end of the meeting, the business analyst summarized the work
accomplished and indicated that the groomed stories would be
added to the product backlog for some upcoming sprints.

BECOMING

A

CODE

LISTENER



ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

1.3 Design Review

Design reviews take place during solution planning activities. In some,
more formal, lifecycle models design activities adhere to project or
corporate governance guided by software engineering professionals
assigned architectural responsibilities. In some “agile” lifecycle
models, design review takes place during a team’s planning session.

Design decisions are taken by teams and will guide the
implementation of any code changes required to implement the
requirements.

Testing professionals can actively participate in design activities even
if they do not have programming experience.

During design meetings, team members break down problems, starting
from the abstract to the specific. This activity breaks down, or
decomposes, a problem into technical tasks, which can be assigned to
suitably skilled programmers. Teams will sometimes need to do some
experimental programming to confirm that a design approach is both
feasible and reasonable. Such experimentation is often called a
“spike”.

During planning meetings, teams make important design decisions
related to:

Processing elements

- Which processing elements will be created, deleted, changed, or
adapted?

Data elements

- Which data elements will be created, deleted, changed, or
repurposed?

Algorithms

- How is the problem going to be solved?

The authors have seen testers actively participate in design sessions
in three distinct ways: risk identification, design decision-making, and
test oracle identification.

Risk identification can take place when testers correlate changes to
processing elements with product usage models. Testers can identify
excellent testing ideas, looking for unexpected consequences and side
effects of changes to processing elements or data.

Testers can participate in design decision-making whenever a team
chooses the best among several alternatives. As a heuristic guide,
Robert Sabourin has frequently challenged developers to come up
with at least three different possible solutions. The team chooses the
best alternative by comparing the benefits and consequences of each
solution. Testers can participate in design decisions by helping to
identify risks associated with any one solution. Experienced testers
can identify potential failures in each proposed solution.

When testers are aware of the methods being used to implement a
solution, they can gain an understanding of test oracles, which are
strategies used to assess the correctness of the implementation. The
complexity of assessing correctness is often greater than the
complexity of implementing a solution. When participating in design
sessions, testers should be encouraged to identify different ways the
implementation can be assessed. For example, is there a variable that
must have values in a certain range or have specific relationships with
other variables? Or should the computed tax be less than the cost of
the items? Should a value be positive, or should an array be sparely
populated?

1.4 Example of Code Listening Design Review System Decomposition

Decomposition of a software system

This is a short experience report by author, Mario Colina, about code
listening related to a reviewing system design.

When testing large complex systems, how does one account for areas

in the software system that are not so obvious to understand or test?
When you’re working on a large end-to-end system with
interconnected external servers that have machine-to-machine
communication with respect to each other, decomposing it down to
solve a testing problem is one way to do it.

Take this scenario for example: a video recording and playback system
over the internet, like online video streaming services. A video
playback system has lots of interconnected parts with different
components responsible for different functions like encoding/
decoding, encryption/decryption, and file storage. Testing a playback
feature is a daunting task and not so obvious with all the background
processes running. Analyzing the software and hardware architectural
designs to further understand the overall system can guide you in
decomposing the system into smaller parts. These smaller parts of
interest make it easier to test a particular function like how files are
stored for video streaming.

For illustrative purposes, let’s assume that the system stores and
divides the video into many files that are 10 seconds each. This is
called chunking. Let’s also assume that the software component
names the file in alphabetical order for the files that are spliced/chun-
ked. The server would also create a manifest that would point to these
chunked files once the whole file is processed.

The client device would request this manifest for playback. How can we
verify that the proper files will be requested correctly during playback?
If we observed a glitch or interruption during playback, how can we tell
if this is due to a network problem or a software glitch during
playback? One way to test that the chunking mechanism works is to
write a small script that verifies the timestamp of the spliced files and
cross-reference that with the naming convention of the spliced file.

Another script can be written to scan the manifest file and verify that
it is built correctly and contains the correct order of the filenames. Part
of the analysis is to also verify false assumptions. If, for example, the
system was to somehow splice one file out of order or a corrupted
splice, then during playback, this would be evident for a file that is a
10-second chunk but will not be so evident for a chunked file less than
a second during playback. This can be misinterpreted as a network
glitch rather than a software component issue.

We have seen that drilling down to a small subsystem can help in
testing one aspect of a larger system feature. Having good knowledge
or asking about the architecture of the system helps in generating test
ideas.

1.5 Code Walkthrough

When a software engineer has completed implementing code changes,
the code is often subjected to peer review before being committed to
a code repository.

Testers with programming skills can actively participate in such peer
reviews to verify that elements of the code developed match
organizational standards and that the code fairly and accurately
represents the designed solution.

Testers without programming skills can participate in a type of peer
review known as a code walkthrough. In a code walkthrough, the
programmer tells the story of all the codes that were written, or
changed, in order to implement the design.

Testers can gain an understanding of the solution implemented,
including the scope and complexity of changes to the product’s code
base, factors, and conditions that can influence the behavior of the
changed code.

During code walkthrough, testers are encouraged to identify other factors that are missing from the code changes. A tester can determine if
omissions are deliberate and not an erroneous algorithm or computation. A tester can ask programmers about the code that was omitted. Were
omissions purposeful or were omissions a result of a design or programming error?

During the code walkthrough, testers can also create a visualization of the code changes to confirm their understanding of the technical work being
done by the programmers. Control flow diagrams, decision tables, state models, and flow charts may be well suited to visualizing the code
changes.



ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

40 41TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022



ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

42 43TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

1.9.3 Application Program Interface

Static analysis of source code can confirm that any application program
interfaces implemented are consistent with the way they are used. Static
analysis tools can confirm that API parameters are of the correct type,
identify missing parameters, identify parameters out of order when order
matters, and also confirm that the API is in the correct operating state.

1.9.4 Potential Security Risks

Many static analysis tools are available to help teams identify security
risks in a product’s source code. These risks are highly dependent on the
technology used to develop products. Security vulnerabilities flagged by
static analysis suggest test ideas related to determining whether these
vulnerabilities can indeed be exploited.

1.9.5 Maintainability

Some static analysis tools provide insights into possible difficulties in
future code maintenance.

Code that is difficult to maintain can be easily damaged when
programmers attempt to resolve bugs in legacy code working under time
pressure. Tools can indicate whether there are too many pathways
through a section of code, whether the code is commented on, and
whether the code logic is confusing.

1.9.6Unreachable code

Static analysis tools can find sections of the source code that could
never be executed. This unreachable code is often a side effect of cut-
and-paste programming. Unreachable code can be an indicator of
incorrect code reuse, logic errors, or missing conditions.

1.9.7 Risky patterns

Some static analysis tools can identify risky source code patterns
particularly related to memory management or thread-safe coding
practices.

1.9.8 Code Structure

A series of static analysis tools are available and can be used to scrape
through a code repository and document the code structuring. The
structure includes calling order, a summary of methods, and classes,
including parameters and data types.

1.10 Example of code listening: Static Analysis Variance

Code Listening for Static Analysis Variance

This is a short experience report by author, Robert Sabourin, about code
listening with a static analysis tool in a computer desktop security
project.

I managed a software engineering team responsible for a home security
software suite deployed to consumers through internet service providers
on a subscription basis. Frequent updates were deployed to clients in
response to new and emerging threats, computer viruses, spyware, trojan
horse security risks, and other harmful malware. The software ran on
MS-Windows computers. The code was primarily written in Microsoft
Visual C++. The development teams used an iterative incremental Scrum-
like framework. Independent testers were assigned to each project team.
Testers collaborated with programmers continuously through each
iteration. Testers had access to the source code and build systems.

Continuous integration included frequent builds with multiple tens of
thousands of automated regression unit tests.

When ready (programming done, passed unit testing, and passed peer
review), the build candidate was exercised by an independent tester.

Testers considered risks to explore, and over and above confirming
requirements were acceptably met on target platforms. The tester
reviewed code changes by studying some static analysis findings

generated during the product’s build process.

Homemade static analyzers, written in Perl, were used to assess (a) the
number of statements in the source file and (b) estimated cyclomatic
complexity by counting the number of basis paths in each source file.
The tester would review changes in value from a prior build measured
prior to the implementation of new features.

Whenever a significant variance (over 20% increase or decrease) was
observed in statement count or complexity, then additional exploratory
testing would be done on the features, capabilities, or workflows
associated with the changed code. This heuristic helped testers uncover
many important bugs that would otherwise have been missed by the
regression testing (checks) done.

The tester code-listened for static attribute variance. The tester
successfully identified features and workflows at risk of being adversely
impacted by code changes.

1.11 Example of code listening, static analysis code structure

Javadoc

This is a short experience report by author, Mario Colina, about code
listening related to visualizing code structure using static analysis.

Looking at code is not the only source to understand code. An immense
aid in the understanding of what methods, classes, or functions do is to
look at API documentation generated from code document generators.
One such document is the Javadoc, which is a document generated from
java code that documents classes. It is helpful in understanding the code
because the method and classes are explained with all the parameters
required for its use.

Let’s continue the journey where, in this instance no pun intended, the
application under test did not yet have a REST interface implemented.
We used a test tool that allowed us to make method calls via an ejb
interface (Enterprise JavaBeans).

Looking at the Javadoc was helpful in not only understanding the code
but also in the creation of my test scripts. You might ask, “How?” Well,
when writing my automation test scripts, I referred to the document for
a better understanding of how the specific java method worked and what
input parameters, such as strings, lists, objects, etc., were needed to
make a proper method call to the application. It identified what were the
mandatory or optional parameters that were used and the return values
of the method. It also allowed me to test some invalid inputs and verify
how the system would react.

Another good use of the Javadoc was when a java stack trace exception
occurred. I cross-referenced the method from the trace to the Javadoc to
get a better understanding of what that method does, obtaining more
information in my investigation of the exception.

The document is a great source of reference when it comes to
troubleshooting the application under test in conjunction with our test
scripts. Since the Javadoc (for this example) is an HTML-based
generateddocument, it makes it easy to follow links to other methods or
classes, and it provides a rich source of information.

Stack Trace

1.12 Program Model

The authors encourage all testers to have a model of how modern digital
computing systems behave. The computing model you use does not
need to be complex but should include considerations of how computer
resources are managed to execute the software we are called upon to
test.

The basic model used in almost all digital computing systems was first
described by John von Neumann. Von Neumann model includes the
following six elements:

1.6 Example of code listening: A code walkthrough

Code Walkthrough

This is a short experience report by author, Mario Colina, about code
listening related to a code walkthrough.

Understanding someone else’s code is no cup of tea, especially if
you’re not a software developer. How else can a software tester
understand the inner workings of instances, classes, and methods?
Walking through the code with a developer can give you some
insights into the thinking that went into the piece of software you’re
testing.

Follow me on this short journey. Many years ago, in a test environ-
ment not so far away, I was assigned a complicated feature to test. I
had read the user story and the acceptance criteria. I knew what
coverage I needed to test. I still wanted some more insights and to
further understand how the complicated feature I was supposed to
test worked. When the developer submitted his code for review, I
thought to myself, “Hmm, I need to have a short walkthrough with
the developer to show me the ins and outs of this feature.”

I scheduled a meeting. While I sat with the developer, he explained
to me how the feature worked. I was getting a clearer picture of the
logic, the flow, and how the exceptions were being handled. This
interactive session led me to develop more test ideas and think of
ways I could have better coverage in my tests. I didn’t need to fully
understand the code, but I was able to follow the logic and the
thought process the developer went through, and how he
interpreted the feature requirements.

Meetings like these help to build a good relationship with a
developer because it shows that as a tester, I care about under-
standing the feature beyond just reading an acceptance criterion.
Having more of these types of meetings also allowed me to
understand how to read and follow a programming language. This
gave me the confidence to investigate and have a better under-
standing of the code when an exception occurred during my testing.
It allowed me to provide more specific information in the bug report
I raised and pinpoint the area in the code where the exception
occurred.

1.7 Example of code listening: Understanding Algorithms and
Program Logic

Code Listening for Program Variables.

This is a short experience report by author, Robert Sabourin, about
code listening related to developing a device-independent graphics
library application program interface.

I developed and tested several graphics libraries to be used in
Computer-Aided Design systems.

One utility I worked on was programmed in three different
languages. The device control software was written in C.
Application-level software was written in Delphi and C++.

An important test objective was to confirm that an object’s image
was correctly rendered on the display. We knew the viewpoint and
the object’s position. Matrix calculations were used to map the
three-dimensional object onto a two-dimensional projection, which
was then rendered in a window. The window was a two-dimensional
grid.

I reviewed the display code with its author. Several program
variables were used in object rendering.

Object coordinates were stored as triples (oX,oY,oZ) using floating-
point values.

The viewpoint was stored as a triple (vX,vY,vZ) using floating-point
values.

The planar image was stored as a pair (pX,pY) using floating-point
values.

An intermediate normalized coordinate was stored as a pair (nX, nY)
using integer values.

The normalized coordinated mapped to a window pixel position was
stored as (wX, wY) using integer values.

Mouse clicks were returned as window pixel positions. Reverse
mapping computed the associated normalized coordinates, planar
image coordinates, and object coordinates. One window pixel
position could map to many possible object coordinates.

I learned that the range of values was for each data type. I defined
tests selecting viewpoint and object coordinates so that all points of
an object would render to the same point in (pX, PY), to the same
point in (nX, nY), and to the same point in (wX, wY). I attempted the
reverse mappings. I used domain analysis, boundary, and
combination test design to exercise intermediate variables in all the
different coordinate systems.

I discovered several image distortion and incorrect object selection
bugs. Tests developed were subsequently used in regression testing.

Static Analysis

1.8 Static Analysis Tools and Continuous Integration

The authors use static analysis techniques to learn about product
risks by studying non-executable artifacts of the software project.

Static analysis techniques fall neatly into two categories: manual
static analysis and automated static analysis.

Manual static analysis techniques include reviews, walkthroughs,
and inspections.

Automated static analysis techniques rely on tools to learn from
project source code and other non-executable artifacts, such as
database schemas.

In continuous integration systems, automated static analysis tools
can be used to report risks based on the source code being built into
a product. The static analysis tool would be run before or after
compilation.

There are many commercial, community, and open-source static
analysis tools available. Static analysis tools are highly dependent
on the technology used to construct a software product.

1.9 Test ideas based on static analysis

Static analysis tools can provide a wealth of information about
technical risks in the product being developed. Some static analysis
tools focus on a very specific set of risks, while others are mostly
general-purpose tools.

1.9.1 Code Metrics

Static analysis tools can provide information about the size and
complexity of the product’s source code. Size can be measured in
many ways, such as counting the number of statements, counting
the size of the compiled code, computing the number of pathways
through a piece of code, and gathering other statistics about the
code.

Variations in source code metrics may point to risky code changes.
Large increases or decreases in code size or complexity suggest
potential technical risks. A related test idea would be to exercise
features that use code demonstrating variations in code metrics.

1.9.2 Code Standards Compliance

Some organizations implement coding standards and naming
conventions to improve the reliability and maintainability of source
code.



ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

44 45TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

1.17 Coverage-based Test Ideas

Test coverage tools enable testers to identify which parts of a
software system have not been exercised during a testing activity.
Coverage-based test ideas exercise elements of source code that
were not otherwise exercised during a past testing activity.

1.18 Example of code listening: Code Coverage

Code Coverage Tools

This is a short experience report by author, Mario Colina, about code
listening using code coverage tools.

Statements, branches, and decisions. Did we cover everything yet?
No, we are talking about Code Coverage tools that can help testers
identify areas in a code that have not been executed as well as areas
that need to be tested with additional tests.

Alright, this is the last of my journey in that test environment not so
far away. I was asked by the development team if I could help with
some testing. Along with Javadoc, IDEs, and stack traces mentioned
in the previous sections, another source of understanding the code
is to understand how it navigates and flows in its internal network
of “roads”.

Metrics that a tool can collect are function, statement, branches,
conditions, and line coverage. These metrics determine what tests
are missing. In this oversimplified example, I was investigating
branch coverage containing if/else statements.

The code tool identified a gap in one of the branches not being
executed—the else block—since the test values of x and y never
added up to greater than 10. What the coverage tool also allowed
was to understand the flow of the code. Understanding the “internal
roadways” provides a deeper understanding of the product and
gives rise to creative test ideas. I was able to ask questions like:

“How can I get to a certain block in the code from an initial starting
point and what test data can I use to influence the path?”

“What data am I missing?”

“What conditions did I omit in my test design?”

Using the coverage tool provided me with more knowledge, which
helped me to read codes better and understand the flow of
branching. The more tools a tester can use, the better the building
blocks to design tests for different test phases like feature, function,
and end-2-end integration testing. It is another arsenal that can be

used to gain more information and knowledge about the code.

Troubleshooting and Debugging

1.19 Troubleshooting

A lot of training focus testers on the act of identifying and reporting
bugs in a piece of software. Rich terminology and vocabulary are
established to emphasize the difference between errors, failures,
issues, incidents, and defects.

The authors of this paper come from an engineering background.
The authors consider it critical for testers to provide insights into the
cause of a problem, not just the externally observed behavior of the
system.

The authors define troubleshooting as a term used to describe the
isolation of the cause of a specific problem.

1.20 Debugging

The authors define debugging as a series of technical activities
directed at finding ways to resolve a problem.

In the book, “Systematic Software Testing”, SST, author Rick Craig
indicates that testing and debugging should be isolated from each
other. Testers are expected to identify defects but are not expected
to isolate their cause nor find a solution. Testing is not debugging.
Testing is not troubleshooting.

1.21 Active participation by testers in troubleshooting and
debugging

A code listening tester can work with a programmer in the
development environment to identify factors that cause a problem
and verify that a proposed solution yields the correct results.

Testers can pair with programmers and other team members to go
beyond just identifying a problem; they can collaborate to help
resolve the problem as well. You don’t have to be a programmer to
learn bug isolation and debugging techniques with a modern
development environment.

1.22 Example of code listening: Troubleshooting and Debugging

Troubleshooting

This is a short experience report by author, Robert Sabourin, about
code listening used in troubleshooting and debugging a complex
insurance application.

Fred, Bill, and Chris are members of a scrum software development
team at a major American insurance company. Their products
compute insurance premiums based on a proprietary risk model.
Fred is a seasoned insurance software tester. Bill is a senior
programmer. Chris is an insurance domain subject matter expert.

Some projects are customer-facing projects, while others are
exclusively for internal use. Newly developed products have multi-
tier, web-based architectures. Legacy products have mainframe
data-centric architectures.

Fred, Bill, and Chris often collaborate in order to troubleshoot bugs
found in the heat of the sprint. They apply a wide variety of skills.
Fred contributes with his scripting and test design skills. Bill
contributes with his programming, debugging, and unit testing skills.
Chris contributes with his practical business analysis skills.

Fred, Bill, and Chris troubleshoot problems in a workspace called the
aquarium. They use a test environment running the previous
product release with recent, sanitized production data. In parallel,
but on independent hardware, they test a current development
build. They simultaneously exercise the same business rules on
both systems.

• Processing unit

• Control unit

• Memory for both data and instructions

• External storage

• Input mechanism

• Output mechanism

Since instructions are stored in the same memory as data, they are
treated as data by the control unit. The control unit always has a
pointer to where the current instruction resides in the memory.

1.13 The Control Stack

Software systems are composed of many modules, which call on each
other to perform operations and computations. Control units keep
track of the instruction used to call on a module. The structure used
to keep track of the return instruction location is called a stack.

When a new module is called, the return address is placed on the
stack.

When a module has completed its work, the control unit returns to the
return address.

Basic stack operations include placing an item on the stack, pushing
it, removing an item from the top of the stack, and popping it.

1.14 Calling Structure

The calling structure of the code that is executed is evidenced by the
state of the stack.

When a programming error leads to a system crash; for example, trying
an illegal operation, trying an operation with invalid data types,
moving to an instruction outside of accessible memory, then a stack
trace can be created by the operating environment (for example, the
Java Runtime Environment) and this trace can be available to testers
and programmers to determine the code pathway taken, which led to
this unexpected exception.

1.15 Example of code listening: Stack Trace

Stack trace Review

This is a short experience report by author, Mario Colina, about code
listening with a stack trace or a rest API middleware system.

Trying to decipher someone else’s code is no walk in the park,
especially when you’re not a software developer. How else can a
software tester understand the inner workings of instances, classes,
and methods? Oh my!!! Should one wait for the system to crash and
then investigate? Well…. Not exactly. A stack trace is useful for gaining
insights into the inner workings of an application.

Are you getting tired of following me on this short journey? Hopefully
not! This is fun! I was testing a middleware application written in java
by executing REST API calls. Any time I am testing an application, I
always follow my server logs in real time and watch out for Java
Exceptions! Cry havoc!! Why did the application throw an exception?
Was there not a handler for it? Stack trace logs provide me with vital
clues of where the exception occurred, as it is a trail of breadcrumbs
that leads you to the offending method. From the Sample trace below,
the most recent method (methodTwo) points to the root cause of the
exception.

Further confirmation was needed. It was time to bring the developer in
and show what I found during my testing. Our developer connected to
my test system through the Integrated Development Environment
(IDE). I would step through the actions from my test script one step at
a time while the developer was following the path in the code until the
exception occurred. We were able to isolate and confirm that
methodTwo was the root cause. In some instances, the most recent
method in the stack trace can be a symptom of another issue. But in
this instance, methodTwo turned out to be the cause. In any case, the
trace helped isolate where to investigate the issue.

Stepping through the code with the developer allowed me to have a
better understanding of how the application worked and in what
instances the application crashed. This provided me with new test
ideas and new insight into what is happening under the hood, so to
speak.

Another great benefit was to help build a better relationship with the
developer. Stack traces are important for investigating issues and they
help you to get a better understanding of the code you’re not familiar
with.

Code Coverage Tools

1.16 Coverage Models

Some software engineers, and testing professionals, believe that
testing completeness can be measured using various coverage
models. A coverage model can be defined as a means of measuring
which elements of a software system have been executed, or
otherwise used, during software testing activities. There are well over
100 documented coverage models. A testing activity may look to have
a high coverage using one model but could have a very low coverage
from the perspective of other models. A classic example would be that
even if 100% of the source code in a model has been exercised, it is
possible that many pathways through the module have not been
exercised by the same set of tests.



ISSUE 01/2022
PROCESSES

ISSUE 01/2022
PROCESSES

46 47TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

1.24 Bug Clusters

Many aspects of software testing can influence process improvement.
Testing findings can help identify quality concerns about a product.
Test findings can also help identify potential process improvements
for all aspects of software development.

When testers identify multiple bugs that have a common cause, then
a bug cluster has been identified. By eliminating the cause, multiple
bugs can be corrected and future related bugs can be avoided.

To understand the cause of bugs, testers should review with
programmers the actual technical work done to correct the defect.
Clusters are defined by a common cause, not necessarily by common
effect.

1.25 Example of code listening: “agile” retrospective

Retrospective

This is a short experience report by author, Robert Sabourin, about
code listening used in an “agile” retrospective meeting.

The team held a retrospective meeting immediately after each sprint.
The retrospective meeting was held immediately after the customer’s
work demo was done in the sprint.

The goal of the retrospective meeting was to review work done by the
team in the previous sprint and look for opportunities to self-organize,
encourage effective practices, and change ineffective practices.
Changes would be implemented in the following sprint. The scrum
master facilitated the retrospective meeting and took note of changes
to apply to the team’s development approach.

The first step of the retrospective meeting related to the work done.
The team discussed the following points:

• What worked well?

• •What did not work well?

For points that worked well, the team took note of practices they’d
continue to use.

For points that did not work well, the team discussed alternatives and
decided upon changes to their method of operation for subsequent
sprints.

The second step of the retrospective meeting related to improvements
in programming and testing tasks. The team discussed the following
points:

• Any wasted time?

• Any missing tasks?

The team used this knowledge to improve planning in future sprints.

If a task was a waste of time, the team discussed whether it could be
split up, avoided, or implemented differently in the future. Missing
tasks were added to checklists the team maintained to help in
planning future sprints.

The third step of the retrospective meeting related to collaboration.
The team reviewed collaboration within the team and with people
outside of the team. Excellent collaboration practices were to be
encouraged. Weak collaboration practices led to discussions of how to
improve such collaboration in the future.

The fourth step of the retrospective meeting related to bugs. The team
looked at bugs found and fixed during the sprint. If several bugs had
a common or similar cause, the team tried to identify means of
avoiding the bugs or catching them earlier; for example, in unit testing.

Some Concluding Remarks

Testers can apply code listening skills to discover many great test
ideas.

Code listeners are well positioned to collaborate with their peers in
programming, architecture, and implementation, focusing on risks
based on what is really changing in the source code.

Code listening can help testers focus their work based on the impact
of changes to the source code of a system over and above any
knowledge they have about product requirements, acceptance criteria,
target environment, and usage models.

The authors’ experiences suggest that testers who speak to developers
about system structure gain a better understanding of failure modes.
For example, what can break when a system is operating?

The authors’ experiences suggest that testers who speak to developers
about code changes in a system can learn how to identify testing
ideas, which can expose unintended consequences.

Technical collaboration between testers and programmers can lead to
more efficient testing, troubleshooting, and debugging of a system,
which minimizes rework and eliminates unnecessary or redundant
testing efforts.

Acknowledgments

Robert Sabourin wishes to thank the thousands of students who have
participated in test training courses over the past four decades.

Robert Sabourin and Mario Colina wish to thank many of their
professional colleagues who have contributed to their learning when
it comes to the value of code listening and the importance of technical
collaboration between professionals with different roles and
responsibilities in a software engineering project.

The test system has an integrated source-level debugger. Bill was able
to insert breakpoints at any place in the code.

The test environment enabled the creation of custom test data and test
transactions. Fred could simultaneously execute the same transaction
side by side on the old and new systems.

Fred and Chris figured out different test oracles. Fred sought out at least
three independent means of assessing correctness for tested objects,
features, or transaction types.

During the early project sprints, Fred, Bill, and Chris ran into many
unexpected difficulties. They found that transactions often gave
different results in the old and new systems. Differences in behavior
were not always indicators of issues requiring resolution. Some
differences were related to variations in precision in intermediate
calculations with new technologies. For example, COBOL was used to
implement business rules in the old system, whereas Java was used to
implement business rules in the new system. COBOL and Java data types
had different numeric precisions.

Some differences were related to the order of operation. Computations
were implemented differently in the old and new systems. Some
computations on the old system were computed in their entirety before
being stored in the database. These same computations may have been
implemented incrementally, with intermediate results stored in the
database rather than the entire computation.

Some differences were related to bugs in the old versions, which were
being corrected in the new system. An old calculation may have been
incorrectly programmed, being used, as is, for many years without the
knowledge of the system users.

Some differences were due to Phantom Bugs, which occur when part of
the code required to implement a transaction was not ready in the new
system being developed.

Some differences were due to errors in the implementation of test
transactions.

Some differences were due to bugs in the test harness rather than bugs
in the system being tested.

And some differences were actually related to bugs in the new system
being developed.

One of the concerns was that a bug in the old system could have been
cloned in the new system, leading to a passing test. Two wrongs do not
make a right. These errors could not have been found with the test
strategy employed by Bill and Fred.

Bill and Fred worked with the business analyst to help identify
acceptable variations on ranges of values. Essentially, for some
transactions, a variation could be acceptable as long as it is within some
rules. For other transactions, an exact matchup to an established
precision was required.

Fred and Bill worked together to study differences in results in the test
harness. Whenever a bug in the system under test was suspected, they
used two-pronged combined bug isolation and debugging approaches in
order to troubleshoot the problem. They worked top-down by building
new test data sets, trying to isolate which variables trigger the error.
Each test data set varied by a single factor and together, they were used
to explore a hypothesis related to identifying factors influencing the
buggy behavior. They worked bottom-up by placing strategic break-
points, assertions, and data logs. Break points would stop execution at
certain points in the code so that Fred and Bill could look at the program
variables and, if required, single-step through the code to see if the code
flow matches what was expected or what was intended. Assertions in the
code were special pieces of code added to confirm that the system or a
transaction was in the correct state at the time the code was running.
For example, a file should be open before its data is used; if not, an
assertion would be tripped, indicating that the code was executed in a
way that was out of control. Data logs could be used to record in a
separate log file or database any interesting intermediate variable. Fred

and Bill could study the log after running a data set looking for
inexplicable behavior patterns.

Sometimes, Fred and Bill used an approach called OFAT. In OFAT, each
test data set would vary by one single factor at a time. OFAT was
especially useful to help confirm or refute hypotheses that a small set of
factors are culprits, but they do not affect the behavior in combinations.
They are assumed to be independent factors.

Sometimes, Fred and Bill used an approach called MFAT. In MFAT, each
test data set would vary by many factors at the same time. MFAT was
especially useful to help confirm or refute hypotheses that a few
dependent variables were causing the problem being investigated. Note
that various combinations of test design approaches, including Pareto
Analysis (80/20 rule), Randomizing Data, and Pairwise combination
approaches, were used with MFAT troubleshooting.

In bug isolation, Fred and Bill used the rule of three. Whenever they had
to decide the next course of action, they would identify at least three
different alternatives. Comparing and contrasting alternatives helped
them to decide what to do next.

Retrospective

1.23 Process improvement

One of the most influential process improvement approaches used in
engineering is called the Deming Cycle.

W. Edwards Deming described a system process improvement model
using a four-step cycle. This model is known as a PDSA cycle, which
stands for Plan, Do, Study, Act.

Using PDSA, practitioners review the results of process change to
determine if it is effective. Process changes are identified to encourage
improvements and discourage degradation.

• Plan, prepare for change

• Do, execute the plan

• Study, study the results

• Act, adapt based on your findings



ISSUE 01/2022
PLACE YOUR CATEGORY HERE

ISSUE 01/2022
PROCESSES

48 49TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

ISSUE 01/2022
PLACE YOUR CATEGORY HERE

ISSUE 01/2022
PLACE YOUR CATEGORY HERE

48 49TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

48 49TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

References

[1] Myers, et al. The Art of Software Testing.
John Wiley & Sons, 2012.

[2] Kaner, Cem, and James Bach. Lessons
Learned in Software Testing. Wiley, 2001.

[3] Pólya, George. How to Solve It: A New Aspect
of Mathematical Method. Doubleday, 1957.

[4] Sommerville, Ian. Engineering Software
Products. Pearson Education, Inc., 2020.

[5] Copeland, Lee. A Practitioner's Guide to
Software Test Design. Artech House, 2008.wein

[6] Sabourin, R. Charting the Course Coming Up
with Great Test Ideas Just in Time. AmiBug,
2020.

[7] Dijkstra, Edsger, “Programming methodolo-
gies, their objectives and their nature.” 1969

[8] Freedman, Daniel P, and Gerald M Weinberg.
1990. Handbook of Walkthroughs, Inspections,
and Technical Reviews: Evaluating Programs,
Projects, and Products. 3rd ed. Little, Brown
Computer Systems Series. New York, NY: Dorset
House Pub.

[9] Gilb, Tom, Dorothy Graham, and Susannah
Finzi. 1993. Software Inspection. Wokingham,
England: Addison-Wesley.

[10] Wiegers, Karl Eugene. 2002. Peer Reviews in
Software: A Practical Guide. The Addison-
Wesley Information Technology Series. Boston,
MA: Addison-Wesley.

[11] Fagan Michael, “A History of Software
Inspections” in Broy, M, Ernst Denert, and Sd &
m AG. 2002. Software Pioneers: Contributions
to Software Engineering. Berlin: Springer.

[12] von Neumann, John (1945), First Draft of a
Report on the EDVAC.

[13] Kaner, Cem, “SOFTWARE NEGLIGENCE AND
TESTING COVERAGE”, Software, QA Quarterly,
Vol. 2, #2, p. 18, 1995

[14] McConnell, Steve. 2004. Code Complete
(version 2nd ed.). 2nd ed. Developer Best
Practices. Redmond, Wash.: Microsoft Press.

[15] Vaidhyam Subramanian, Shivashree Vysali.
2021. “Enriching Code Coverage with Test
Characteristics.” Dissertation, McGill University
Libraries. McGill University.

[16] Craig, Rick D, and Stefan P Jaskiel. 2002.
Systematic Software Testing. Artech House
Computing Library. Boston: Artech House.

[17] Tornhill, Adam, and Michael C Feathers.
2015. Your Code As a Crime Scene: Use Forensic
Techniques to Arrest Defects, Bottlenecks, and
Bad Design in Your Programs. Edited by
Fahmida Y Rashid. The Pragmatic
Programmers. Frisco, TX: Pragmatic Bookshelf.

[18] Ambler, Scott W. 2002. Agile Modeling:
Effective Practices for Extreme Programming
and the Unified Process. Programming,

Software Development. New York: J. Wiley.

[19] Kruchten, Philippe. 2004. The Rational
Unified Process: An Introduction. 3rd ed. The
Addison-Wesley Object Technology Series.
Boston: Addison-Wesley.

[20] Schwaber, Ken, and Mike Beedle. 2002.
Agile Software Development with Scrum. Series
in Agile Software Development. Upper Saddle
River, NJ: Prentice Hall.

[21] Schwaber, Ken. 2004. Agile Project
Management with Scrum. Redmond, Wash.:
Microsoft Press,

[22] Cohn, Mike. 2004. User Stories Applied: For
Agile Software Development. Addison-Wesley
Signature Series. Boston: Addison-Wesley.

[23] Derby, Esther, and Diana Larsen. 2006.
Agile Retrospectives: Making Good Teams
Great. The Pragmatic Programmers. Raleigh, NC:
Pragmatic Bookshelf.

[24] Deming, W. Edwards. 1986. Out of the Crisis.
Cambridge, Mass.: Massachusetts Institute of
Technology, Center for Advanced Engineering
Study.

[25] Weinberg, Gerald M. 2001. An Introduction
to General Systems Thinking Silver anniversary
ed. New York: Dorset House.

[26] Seashore, Charles and Seashore, Edith and
Weinberg, Gerald M. 2013, The Art of Giving and
Receiving Feedback, Smashwords.

[27] JavaTM Platform, Enterprise Edition 6 API
Specification. (2011, February 10). https://
docs.oracle.com/. Retrieved June 27, 2022, from
https://docs.oracle.com/javaee/6/api/
index.html?overview-summary.html

[28] Harte, Lawrence. 2008 IPTV Testing. Althos
Publishing, Fuquay-Varina, North Carolina

MARIO COLINA
–

Mario Colina has more than 20 years of systems
integration and software testing experience in the area of
optical networks, wireless, location-based services, MoIP,
music delivery, and IPTV-related technologies, just to
name a few. He is passionate about software engineering
and is an active member of the Context-Driven community.
Mario is open-minded and creative in his approach to any
project. Has a passion for critical thinking, innovation, and
new product ideas, which included spearheading a joint
patent initiative for Cloud TV (Patent No.: US 10,362,366).
Mario is continually invited as a guest speaker for McGill
University's Software Engineering in Practice course.

ROBERT SABOURIN
–

Robert Sabourin has more than forty years of
management experience, leading teams of software
development professionals. A well-respected member of
the software engineering community, Robert has managed,
trained, mentored, and coached thousands of top
professionals in the field. He frequently speaks at
conferences and writes on software engineering, SQA,
testing, management, and internationalization. The author
of “I am a Bug!”, the popular software testing children’s
book, Robert is an adjunct professor of Software
Engineering at McGill University. Robert is the principal
consultant (and president/janitor) of AmiBug.Com, Inc.

https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://www.linkedin.com/in/mario-colina


TEA-TIME WITH TESTERS ISSUE #01/2022
51

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of time.

Over the last ten years, Tea-time with Testers has
published articles that did not only serve the
purpose back then but are pretty much relevant
even today.

With the launch of our brand new website, our team
is working hard to bring all such articles back to
surface and make them easily accessible for
everyone.

We plan to continue doing that for more articles,
interviews and also for the recent issues we have
published.

Visit our website www.teatimewithtesters.com and
read these articles.

Let us know how are they helping you and even
share with your friends and colleagues.

If you think we could add more articles from our
previous editions, do not hesitate to let us know.

Enjoy the feast!

https://www.teatimewithtesters.com


52 53TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

~
Pr
od
uc
ts

As a simple example, consider the situation where consumer A
expects a provider to return a house number in an address as a
string, whereas consumer B might expect the same provider to return
that same house number as an integer. This is exactly the kind of
potential integration issue that consumer-driven contract testing can
uncover, and the kind of issue that often slips by unnoticed with
more traditional approaches to integration testing. Or when no
integration testing is done at all..

Here’s what the typical CDCT flow looks like:

In words:

1. The consumer writes down their expectations about provider
behaviour in a contract and publishes that to a central
repository

2. The provider pulls the relevant contracts from the repository
and verifies whether it can fulfill all of the expectations in all of
the contracts

3. The provider publishes the verifications results back to the
repository

4. Both consumer and provider can query the repository for the
latest verification results to see if there are any potential
integrations issues, and if it is safe to deploy their next build
into production

CDCT is particularly useful in situations where:

• consumers and providers are able to communicate easily to
discuss testing situations and work out potential integration
issues

• consumers are willing to spend the effort writing the
expectations (pacts) and the tests that are required to generate
the contracts from these expectations

More situations where CDCT works well, as described by the team
behind Pact, one of the leading contract testing tools available today,
can be found here.

CDCT does not particularly work well in situations where:

• the provider is a public API, i.e., it is hard or even impossible to
maintain communication with the provider development team
for individual consumer development teams

• the provider is not keen to do contract testing in general, or to
listen and adapt to the needs of individual consumers (again,
public APIs are a good example here)

More situations where CDCT does not work well are listed here.

Provider-driven contract testing (PDCT)

With PDCT, as you might have guessed from the name, it is the
provider, not the consumer, who is ‘in charge’. Basically, it comes
down to the provider issuing a contract expressing the way they
behave and telling their consumers ‘this is what I do, deal with it’. A
typical PDCT flow is therefore much more straightforward than the
CDCT flow we saw earlier:

In words:

1. The provider issues a contract expressing their behaviour

2. Consumers use the contracts issued by the providers to
determine whether they can communicate with the provider

In my opinion, the biggest drawback of PDCT is the lack of a feedback
loop, i.e., there’s no way for the consumer to tell the provider ‘this is
what works, this is what doesn’t’. The initiative and the power is fully
in the hands of the provider, without any way for the consumer to
voice their opinions or concerns, be it about provider behaviour or
even provider design.

So, PDCT has the drawback of not having a feedback loop, while
CDCT’s biggest drawback is probably the effort it takes to do it, do it
well and keep doing it. This is the reason that recently, a third type of
contract testing has emerged.

Bidirectional contract testing (BDCT)

With BDCT, neither the consumer nor the provider is significantly ‘in
the lead’. Instead, with BDCT, both consumer and provider create their
own version of a contract for a specific integration, the consumer
contract containing (as in CDCT) their expectations about provider
behaviour, the provider contract (as in PDCT) containing a spec-
ification of their behaviour.

The main difference between BDCT and the two other flavours of
contract testing we discussed earlier is that with BDCT, contract
comparison and verification is done by an independent entity
instead of either by the consumer or the provider. Both parties
upload their contract to this third party, which then compares the two
and checks for potential integration issues.

Recently, I have started working on a new consulting project with a client in the UK. In this role, I am
helping them implement contract testing to get better insights into the effects that changes introduced
by individual teams on individual services have up- and downstream in a distributed software
environment.

Now, most people, when thinking of or talking about contract testing, immediately think of the
consumer-driven variant, often referred to as CDCT. However, contract testing is broader than ‘just’
CDCT. One of the first questions that we typically need to answer, and one that is often forgotten, is

What kind of contract testing approach would be the best fit for our situation?

In this article, I’ll present three different approaches to contract testing as well as their respective
benefits and drawbacks. I am not going to discuss the merits of contract testing in general in this post.
If you’re interested in reading more about that, I recommend you have a look at this blog post series
instead.

Consumer-driven contract testing (CDCT)

As the name suggests, in CDCT it’s the consumer that is calling the shots, so to say. The consumer writes
down their expectations about the behaviour of a provider in a contract, then passes that contract to
the provider. IT is then the provider’s responsibility to demonstrate that they are able to meet all of the
expectations expressed by the consumer.

It’s important to keep in mind here that a provider often has to demonstrate that they can meet the
expectations of many, many different consumers. Each of these consumers hands over a contract with
their specific expectations, and the provider has to meet all of them. This does mean that there can be
conflicts of interest.

APPROACHES TO
CONTRACT TESTING

https://docs.pact.io/getting_started/what_is_pact_good_for#what-is-pact-good-for
https://docs.pact.io/getting_started/what_is_pact_good_for#what-is-it-not-good-for
https://www.ontestautomation.com/an-introduction-to-contract-testing-part-1-meet-the-players/


ISSUE 01/2022
PRODUCTS

ISSUE 01/2022
PRODUCTS

54 55TEA-TIME WITH TESTERS ISSUE #01/2022 TEA-TIME WITH TESTERS ISSUE #01/2022

Here’s what that flow looks like:

In words:

1. Both consumer and provider upload their contract to the contract
repository

2. The repository (which now also acts as a verification agent) compares the
contract and checks for potential integration issues

3. Both consumer and provider can query the repository for the latest
verification results to see if there are any potential integrations issues,
and if it is safe to deploy their next build into production

Currently, the only way I know of to do BDCT is by using Pactflow. If you want
to see a working example of BDCT, here’s one I created and wrote about
recently.

The biggest benefit of practicing BDCT is that the way BDCT is implemented
within Pactflow and the wider Pact ecosystem means you can leverage existing
technology to generate contracts more quickly, without having to depend on
a full-blown Pact implementation.

A drawback for some teams and companies might be that right now, you need
to use Pactflow (either the cloud version or an on-premise installation) to be
able to practice BDCT.

As you can see, there’s more than one way to do contract testing, and each
approach has their own benefits and drawbacks. Before you start throwing
tools at your integration testing problem, it’s therefore a good idea to take a
step back and first ask yourself ‘what is the best approach to contract testing
for our particular context?’.

BAS DIJKSTRA
–

Bas Dijkstra, is an independent test automation consultant
and trainer.

He has been active in the test automation field for some
16 years now, and has worked on software testing and
automation solutions across a wide range of programming
languages, frameworks and technology stacks.

Know more about Bas.

https://www.ontestautomation.com/an-introduction-to-contract-testing-part-6-bi-directional-contracts/
https://www.ontestautomation.com/about/
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery


TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 02/2022
MORE AWESOMENESS IS ON YOUR WAY THIS SEASON!

TESTING THE RECOMMENDATION SYSTEMS

The age of digital transformation has brought with it a wealth of information. However, filtering it to be usable
is can be highly challenging. It is now possible to understand patterns in user behavior and then correlate it
with the other user's behavior to predict and help in the decision- making process. Do not miss this exclusive
article by Soumya Mukherjee in next issue.

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. More
awesomeness on its way….

TESTING AND PREVENTION- THE ILLUSION
Thought provoking article by Paul Seaman that will make you question some popular beliefs and disbeliefs.
Fasten your seatbelts.

02

01

03

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME WITH TESTERS ISSUE #01/2022
57

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

mailto:editor@teatimewithtesters.com


TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising
Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS


