
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Testing, Quality,
Machines, More!
Testing and Prevention: The Illusion

Page 06

Testing Recommendation Systems

Page 28

ChatGPT for Testers:Part 1

Page 36

WAKING TESTERS UP SINCE 2011 ISSUE #01/2023

TEA-TIME WITH TESTERS ISSUE #01/2023
3

EDITORIAL BY LALIT

INTERVIEW: 22-26
A CUP OF TEA WITH
JEAN ANN HARRISON

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 0 8

1 0 – 1 1

1 2 – 1 6

1 8 – 2 0

TESTING AND PREVENTION: THE ILLUSION
The “prevent” claim raises a significant question for me. Is the statement
credible and representative of what testing and testers can provide?

THREE LESSONS AFTER THREE MONTHS OF
QUALITY ENGINEERING
Three months ago I started a new job as a quality engineer, supporting two
teams…

REBRANDING MANUAL TESTING
In this article, I’ll tie all this together. I’ll begin with an overview of shift-left, fail-
fast testing. From there, I will promote techniques that shows how we can do
even better than static testing by participating in the development of
requirements and acceptance tests.

TEA AND TESTING WITH JERRY WEINBERG
Software Subcultures - Part 3

TESTING

QUALITY

SEMANTICS

MACHINES

MORE!

TEA-TIME WITH
TESTERS

06 22 28 36

A NEXT GENERATION
TESTING MAGAZINE

2 8 – 3 2TESTING RECOMMENDATION SYSTEMS
The age of digital transformation has brought with it a wealth of information.
However, filtering it to be usable can be highly challenging. It is now possible
to understand patterns in user behaviour and then correlate it with other user's
behaviour to predict and help in the decision-making process. The data which
is gathered is then processed by recommendation algorithms. These
Recommendation Systems constantly analyse various types of information to
provide a user with a variety of valuable information.

CHATGPT FOR TESTERS: PART 1
Seventy years ago Alan Turing proposed that real Artificial Intelligence (AI)
would be able to interact with the person through a keyboard and screen just
like a human. That is, the way to pass a Turing test would be if the user could
not tell who was on the other end of the network — human or AI. ELIZA was an
early attempt to pass the Turing test. Eliza mimicked what a psychotherapist
might do, asking “tell me more?”. or “how does that make you feel?” or
matching a pattern. ELIZA was also easy enough to trick, and lacked a sense of
context. It was … a start. There are plenty of Eliza-like programs available
online. There’s a trivial example from today at right.

TEA-TIME WITH
TESTERS

3 6 – 4 0

SAVE THE DATES - RECOMMENDED CONFERENCES FOR TESTERS 2023

Another interesting year has passed by and here we are in brand new year 2023.

With every new year, the change drivers in industry (technology, business models, methods
and tools) compel testers to come out of their comfort zone and embrace new challenges.
This means we should unlearn old, irrelevant ways of testing and reinvent new ones, or tweak
and twist the known ones to suit changing contexts.

That’s the very nature of a testing profession. It is constantly changing, evolving, transforming
but it continues to exist. To the best of my knowledge, “dedicated testing” as a profession was
born out of its need. Programmers writing the code and testing it for themselves was
probably not enough which is why a tester was brought in to do that job with skills and
dedication.

Over the years, industry perception of testing has changed. For most of the organizations that
care about building quality products, skilled testing is essential. For some organizations that
aim for a different type of quality, a good-enough software, dedicated testing not always
necessary. And they are apparently right at their place. Why to invest in dedicated testing if
you can produce software that is marginally accepted in market and your business survives
on quantity rather than quality? In certain business contexts, investing in dedicated testing
may not be really fruitful. By coaching programmers in testing it is possible to make them
more competent, and what programmers alone can contribute in given context might very
well be enough.

But does that mean “most” of the teams don’t need dedicated testers? Actually, no team
requires dedicated testers if all that happens in the name of testing is “finding obvious bugs”
which competent programmer could easily avoid writing. If I am to have dedicated testers in
my team, I want them to tell me all the ways the product does not work. Similarly, if I am to
have programmers in my team, I want them to write the code without any obvious bugs. Be it
this or that, it requires dedicated efforts, skills, passion for professional quality work, and
most importantly a mindset to get it. I would say “every” team should have programmers and
testers who would “partner together” to deliver quality software that people will use happily
(and not because some market giant left them with no choice but to accept marginal quality
crap).

I for one can understand the frustration of managers if all they heard from testers was,
“I clicked here and it broke” instead of information about risk that stands up to scrutiny. But
it would be a terrible mistake to assume that testing is all about such button pressing
exercise. With their sharp observation skills and their placement in your overall “system”, a
skilled tester can create a lot more value for the project team might even protect your system
from collapse. One only needs to understand what meaningful testing looks like, to see what
dedicated tester in a team is capable of doing. Do that well and you might be surprised to
find out why you “need” dedicated testers in the team.

By the way, now that chatGPT is here, are we about to hear a new management slogan?

“We don’t need dedicated programmers”… perhaps?

Let’s get back to this in 2024, my friends.

Until then … keep testing, with dedication! Teams that understand what meaningful testing
looks like need you more than ever!

On “We don’t need” this and that…

TEA-TIME WITH TESTERS ISSUE #01/2023
5

LALITKUMAR BHAMARE
Chief Editor “Tea-time with Testers”
–
Manager - Accenture Song, Germany
Director - Association for Software Testing
International Keynote speaker.
Award-winning testing thought leader.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedIn

https://www.thinkautomation.com/bots-and-ai/the-history-of-the-turing-test/
https://www.thinkautomation.com/bots-and-ai/the-history-of-the-turing-test/
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
https://www.youtube.com/watch?v=DIWRdiE4XYI
https://www.youtube.com/watch?v=DIWRdiE4XYI
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/
https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://bit.ly/3UFcywJ
https://www.inflectracon.com/

- PAUL SEAMAN

Paul is an established, highly competent software tester
with 20 years of testing and leading experience. He has
experience across Waterfall and Agile development
environments within companies that companies that
range from Government to private enterprise, small local
to global corporations.

His experience ranges across multiple domains (finance,
legal, administration, travel, medical practice
management, scheduling and compliance).

Paul has helped organise and run testing conferences, a
meetup group and cofounded the Epic TestAbility
Academy which taught unemployed people on the autism
spectrum how to test software with the aim of finding
them employment. His current adventure is with LIFELENZ
where he works as a Senior Software Engineer. When not
testing Paul is exploring new ideas, sitting down with his
guitars (not frequently enough), reading interesting books
across a range of subjects, blogging on https://
beaglesays.blog/, podcasting as one of the 3 Amigos of
Testing (https://anchor.fm/the-3-amigos-of-testing) and
getting out on the occasional bike ride. You can find him
on LinkedIn and Twitter @beaglesaysBroadly speaking software defects have two states when we consider observation:

1. they exist and have been observed

2. they exist but have not been observed

Within state 1 we know there is an issue because it has been observed. We have a record of
it happening. Perhaps we have identified the specific conditions required to reproduce the
problem and are able to analyze the issue. We might even agree that the outcomes are
undesirable (a threat to value) and fix the defect. Of course we might also make a decision
to not make any changes (a different topic).

State 2 is the “great unknown”. Issues are sitting in the product just waiting for somebody to
stumble across them. To the extent that they remain “hidden” and do not threaten value,
these are often ignored. Until they change into state 1.~

Pe
op
le

“TESTING AND
PREVENTION – THE ILLUSION”

In what is my first article for quite a while I’m
going to look at the notion that “testers
prevent defects”. I see this claim made by
non-testers talking about testing (yes “agile”
I’m looking at you as well as your coaches),
professional testers and test consultancies. It
must be incredibly enticing to issue claims
that as a tester you prevent an unwanted
outcome. That’s powerful, right? As a
marketing tool, either for a company or a
person, it’s a bold selling point.

The “prevent” claim raises a significant
question for me. Is the statement credible and
representative of what testing and testers can
provide?

Let’s start by looking at the meaning of
“prevent”.

From the Collins English Dictionary:

To prevent something means to ensure that it
does not happen.

And from the Merriam-Webster Dictionary:

To keep from happening or existing

The use of “ensure” (to make sure or certain)
within Collins’ definition is interesting. If you
care to look at other dictionaries you’ll find
that prevent has definitions consistent with
the above selections

6 7TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

~
Pe
op
le

https://www.linkedin.com/in/paul-seaman-bb129526/
https://www.collinsdictionary.com/dictionary/english/prevent
https://www.collinsdictionary.com/dictionary/english/ensure
https://www.collinsdictionary.com/dictionary/english/happen
https://www.merriam-webster.com/dictionary/prevent

ISSUE 01/2023
PEOPLE

ISSUE 01/2023
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

For the purposes of this discussion let’s move on from state 1. Clearly
there was no prevention because the problem has been observed
(either pre- or post-release).

Before I venture further let’s consider a few places we might observe
issues within software development while wearing a testing hat:

1. Documentation – specifications, help guides, product claims

2. Discussion – ideas, thoughts, queries about the software,
specific to a set of changes or the product more generally

3. Software – investigation of the product either in part or whole

As a tester, I:

• engage with issues by helping to solve them with other people.
The issue might be that we need new, additional functionality to
keep customers happy or that some part of current functionality
is not working in desirable ways (ways that threaten value)

• provide evidence-based observations of what I have done
during testing. What I have observed, my view of risks in the
software. I’m likely to comment on things such as (but not
limited to) ease of use, consistency in the application, issues I
have found and how much of a threat they might be. My
communications around testing can cover a lot of different
considerations. Key to these observations, the “consistent
thread”, is that I can back up my observations with evidence. If
I’m asked to provide details related to my testing my response
will not be “just feels like it” or similar. It will be backed by
specific evidence.

If I claim that I “prevent issues”, how do I provide evidence that I
prevented a thing that never existed? If my Manager (or anybody else)
asks me to evidence the “issues I prevented” how would I do this? At
best I could point to a trend of declining issues in production (which
is an excellent outcome) but correlation does not imply causation. I
get that it’s nice to think in this way but I actually want to see the link
because that’s important feedback in improvement loops. How do

you know you are preventing anything? Even small software
companies have a myriad of changes happening in parallel. So which
ones are working well? That’s a matter of evidence linking changes to
outcomes. Good luck with that when you have no evidence
(remember that the issue never existed).

It seems to me that a re-frame is in order. Let’s consider that by
visiting those places I listed earlier where we might find issues.
Documentation, discussion, software.

You’re reading through a specification and you find an error in a
statement regarding functionality. To fix this you consult with the
specification author and a change that corrects the problem is added.
Cool you prevented an issue….except you didn’t. What you did is find
something in the document that does not make sense to you. You
detected a signal that there might be an issue here. When you discuss
this with the document author, and they concur, then they will update
the document to add clarity. But, and this is important, they may not
agree and the document might not be changed. Regardless of
whether the change is made, this is early detection, not prevention.

You’re in a project group discussion. The basic information flows of
the project are being mapped out along with how data will be entered
and interacted with by your customers. You notice a large
inconsistency with a similar feature elsewhere in the software. This
inconsistency would reduce usability and increase confusion so you
point this out. Awesome, you prevented an issue……except you didn’t.
Again you detected a signal that there might be an issue, you raised
this with your colleagues, and further discussion and investigation is
likely to follow. Perhaps this inconsistency, while not initially known,
is now considered to be an important aspect of the project and will
be retained. Again, this is early detection of an issue, not prevention.

You’re running a test session pairing with a Developer. During your
exploring you observe that for a given set of values you receive
different results each time you enter the values. Incredible, you
prevented an issue…except in this scenario that’s not a claim you’re
likely to make. Why? It’s really no different to my first two examples.
The incorrect output is a signal that there is an issue. We have helped
identify that further investigation is required so we can reconcile
actual behaviour with desired behaviour.

When I see claims of testers, or testing, preventing bugs it seems to
me that testing is being set up for failure by representing goals and
outcomes it can never own. It is a confusion of what powers testers
and testing possess. If I was a surgeon and you were a doctor off to
the South Pole as part of a team, it is a requirement that your
appendix be removed. As a surgeon I could, in this context, assert
quite positively that, by removing your appendix, I have prevented
you suffering an episode of appendicitis. Testing isn’t like that.

Testing is like this. You’re a passenger in a car, driving down a road
that has a variety of speed limit signs. The car has a speedometer
which you can see and you glance at it occasionally to check the car’s
speed. Does the speedometer reading prevent the driver from driving
over the speed limit (which is an issue)? It doesn’t. The speedometer
provides you with a signal which you can either ignore or act upon.
You might say to the driver “gee the speed limits change a lot around
here, we just moved from an 80 km/h zone and into a 60 km/h zone”.
The driver can choose to listen to you or ignore you. They might
increase speed, decrease speed or stay at the same speed. Changing
speed requires a direct input on the accelerator and it is the sole
responsibility of the driver to make that adjustment.

As a tester you have a focus on the speedometer (and other
conditions that are part of the context such as the weather, the road
conditions, etc.). You are providing feedback, perhaps even
encouraging slowing the car to a more appropriate speed. You are an
observer of what is happening, not the driver who has control and
can make changes based on your feedback. You are providing
feedback that can be acted upon, but you’re not the person making
the adjustments.

As I noted at the opening of this post, I’m very unclear why people
really want to make the claim that they, or testing, “prevent issues”.
Not only is that claim beyond the remit of testers and testing, it is
damaging to testing. It denies the value and usefulness of detection,
something that good testers bring to the table with each test
assignment and discussion. My advice is to use your detection skills,
scrutinise, explore, question, propose ideas, challenge and advocate.
When you’ve done these things you can actually demonstrate how
you have influenced product quality by talking about all those issues
you have brought to light. That feels a lot like being an advocate for
better quality in an authentic way.

A big thank you to Lee Hawkins (@therockertester) for his endless
patience and quality feedback.

https://therockertester.wordpress.com/
https://quality.seastarconf.com/

ISSUE 01/2023
PEOPLE

ISSUE 01/2023
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

Three months ago I started a new job as a quality engineer,
supporting two teams. So far it’s been an interesting challenge. The
two teams were formed only a few months before I joined, although
some team members had been working for the company before
that. Each team has their own product manager. We also have an
engineering manager, but he joined only two weeks before I did. And
then I was added to the mix, with a job description that didn’t give
a lot more guidance than: support the team in things related to
testing and quality.

So my first task in my new job was figuring out what my job was. Or
rather, figure out what concrete things I could do that fit that job
description. This was not made easier by the fact that we’re a fully
remote company. Not being in the same space throughout the day
does make things harder when you’re trying to find your place.
Reflecting on the past three months made me realize there are three
things that are really important: visibility, connections, and patience.

Visibility

The first lesson is visibility. When your work does not come down to
“perform these steps in the process”, it’s easy to become a bit
invisible. Not that your colleagues forget about you, but you’re not
top of mind either as they go about their jobs. Especially if you’re
working remotely, because it’s not as if people see you sitting
behind your desk as a reminder that you joined.

Showing that you’re there

So the first part of visibility is literally that: showing that you’re
there. Join all the meetings. Have your camera on. Say something or
ask a question. Ask someone for more information or resources
after the meeting. Similarly, be active on Slack (or Teams or …), even
if it’s just an emoji reaction to what someone said.

I’ve also started an experiment: writing a weekly internal blog. The
inspiration came from Giles Turnbull‘s “The agile comms handbook”
and its idea of “working in the open”. Every Friday I take 30 minutes
to write three paragraphs about my past week. It’s still an
experiment-in-progress, but it’s been successful enough after six
posts that I decided to stick with it. At some point I should probably
dedicate a full post to this experiment.

Showing what you can do

The second part of visibility is showing what it is that you can do.
Quality engineering is a very broad discipline. It’s also a young
discipline. Few people have experience working with quality
engineers.

So I was faced with two questions:

• What is it that quality engineers do?

• What is it that you can do?

The best way to show what you can do, is by doing things. That’s
easier said than done, though, when you have to answer the two big
questions above. Doing lots of small things is key here. One place to
start is in meetings and conversations. Actively participating in
those not only confirms you are there, it also lets you demonstrate
your expertise through what you say or ask.

For example, in a conversation about API design I brought up the
differences between RESTful APIs and RPC APIs. Hopefully that made
my colleagues realize I know a thing or two about API design.
Similarly, when investigating a support ticket, I asked a developer if
I could talk them through what I had found so far, because I was
completely stuck. At some point in my story I said “So I looked
through the code, and …”, which made the developer go “Oh, You
looked at the code?” Hopefully that was enough for this developer
to discover that’s something I can do.

And if not, that’s fine. The point is not to make a great display of one
of your skills that people will remember forever. The point is to
consistently show in small ways where and how you can provide
value.

Connections

The second lesson is connections. Working remotely means that all
communication gets that little extra friction. You can clearly notice
it during meetings, for example when two people start talking at the
same time and they have to figure out who goes first. It’s less
noticeable, but a bigger issue, when it comes to small and casual
interactions. There are a lot fewer opportunities to have those than
if you’re sharing an office. So you need to be more intentional about
them, which can feel awkward.

It’s definitely something I personally struggle with, because even at
an office I’m not the greatest at those casual conversations.
Sometimes it comes naturally, often enough it takes me active
effort. What I find a lot easier is to connect with colleagues through
doing work together or through having conversations about the
work we’re doing. Unfortunately, if you’re still figuring out how you
can contribute to the work, it’s not that easy.

There are two things I’ve been doing to build connections. The first
thing is to schedule some coffee chats. When I started, I had an
introduction chat with everyone in the two teams. Since then, it’s the
work that has been determining who I speak with and when. So I
realized it was time to change that.

A second thing is that I’ve been actively making conversation as we
are waiting for a standup or other meeting to start1. Even though it
takes me some energy because it doesn’t come that naturally to me,
I feel it’s a lot better than what would happen otherwise: people
waiting in silence and/or doing something else.

Finally, I should not forget to mention connecting with my fellow
quality engineers. In a sense that’s been easier because of the “one
of us”-effect. What also helps is that we have a Slack channel and an
informal catch-up every other week.

Patience

The third lesson is patience. I have very high expectations of myself.
With less than two months in, I was asking myself: am I doing
enough? Shouldn’t I be having a bigger impact already? Part of me
knew those expectations were unrealistic. And luckily some
colleagues said I was doing fine. Yet that doesn’t make these feelings
go away completely.

So I have to remind myself to be patient. That my main focus might
be on figuring out what my job is, but that in the meantime lots of
other things are happening in the company as well. That yes, I need
to be moving forward, but also that these things take time. I need to
be patient with myself and with others.

Reflection

What I find interesting about these three lessons is that none of
them are directly related to quality engineering or software
development as such. Rather, they’re about entering a situation and
figuring out how you, with your specific skills and knowledge, can
add value.

You could say that’s a problem, typical of roles that lack very clear
expectations. I’d like to turn that around, though. I think that things
get a lot better, when people can let their job description fade into
the background and instead focus on where they can bring value.

JOEP SCHUURKES

- Joep wandered into software testing in 2006. After a
decade in which he learned (and practiced) exploratory
testing and test automation, his focus shifted to a bigger
question. How can teams and organizations build and
deliver good software? To answer that question, he has
been exploring topics such as technical leadership, agile
coaching, and software methodologies.

Joep has given talks and workshops at conferences
throughout Europe. He's also one of the organizers of the
Friends of Good Software unconference and of the LLEWT
peer conference.

“THREE LESSONS AFTER THREE MONTHS
OF QUALITY ENGINEERING”

https://gilest.org/
https://agilecommshandbook.com/
https://www.linkedin.com/in/ingophilipp/

ISSUE 01/2023
PEOPLE

ISSUE 01/2023
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

Introduction

In my earlier article, published in the November 2022 issue of TTwT, I made a claim that manual1 testing is very much alive, and the skills manual
testers possess can be effectively leveraged when applied to static testing. I also called out that there’s something inherently wrong with the label
“manual tester, and I dropped a hint that Behavior Driven Development (BDD) is a great way to apply many core testing skills.

In this article, I’ll tie all this together. I’ll begin with an overview of shift-left, fail-fast testing. From there, I will promote techniques that shows how we
can do even better than static testing by participating in the development of requirements and acceptance tests. Finally, I’ll propose a solution to
being branded a manual tester and propose a more appropriate and fitting job title.

Revisiting Shift-Left, Fail-Fast Testing

While static testing promotes the goodness of shift-left and fail-fast testing, this goodness can be further amplified when testers get involved in the
development of the requirements and acceptance tests.

BDD Primer

Lightweight / agile requirements like user stories are a great thing, but they are only effective if, and only if, test cases are developed as their proxy.
But whose test cases? Most stories contain acceptance criteria that is too high level. At the other end, automated unit tests that’s been advanced by
Extreme Programming are too low level. Why? Because test code coverage says nothing about business value. For example, a developer saying “x’
number of unit tests have been written and passed is great, but it does not provide any sense that the test cases measure what’s important to Product
Owners. They are more interested to know about the test coverage of their features.

Enter BDD. It was introduced circa 2004 by Dan North.as an alternative to unit testing and Test Driven Development. At its core, it couples requirements
and acceptance tests by using a language that non-technical users can understand. There are many flavors of BDD, but the one most popular these
days uses a simple language celled Gherkin2. As will be shown shortly, this opens a new and existing pathway for testers.

REBRANDING MANUAL
TESTING

For the sake of economy, I won’t have the space to go into every detail of Gherkin, but below is a summary of the major keywords. For readers
who are interested in learning more, a good place to start would be www.cucumber.io or www.specflow.org.

Example 1: Developing Happy and Unhappy Path Scenarios

Here is a simple, hypothetical example for an ATM Withdraw Money feature. It’s not production worthy, but it will suffice for now.

Feature: Withdraw Money from an ATM

As a bank customer

I need the ability to withdraw moneySo I can go shopping and pay my bills

Scenario: Account has sufficient funds

Given Dave has been authenticated

And has a savings account with a $200 balance

And the ATM has $1,000 cash on hand

When he requests to make a withdraw from savings

And selects the option to withdraw $40

Then the system dispenses $40

And updates its cash on hand to $960

And updates the balance of the savings account to $160

And adds transaction details to the transaction log

And issues a message “Please take your cash”

Note how powerful and expressive this simple example is. Also note that the expected results are clearly written and testable, and they are far
superior to what is typically captured in user story acceptance criteria.

The recommended practice for developing features and scenarios is to actively engage 3 people:

Product Owner: who describes the feature and the desired behavior of scenarios.

Developer: who ensures the feature can be implemented.

Tester; who ensures the feature can be tested with expected results.

Enter the Tester, a human being, not a piece of code, who is now sharing many of the skills typically associated with a Systems Analyst. This brings
to light that taken in its most abstract sense, both testing and analysis are cognitive processes of discovery. Analysts seek to understand and
drive out the “what”, while Testers do same, but focus on the “what if”. It’s like looking at the same coin from two different perspectives.

”
Many people think you need automa-
tion to write scenarios. FALSE! Yes,
tools like Cucumber and Specflow

can be used for automation, but the
real value of writing complete and
expressive scenarios lies in their

ability to effectively promote a shared
understanding and deliver better

quality sooner.”

https://teatimewithtesters.com/wp-content/uploads/2022/11/TTwT_November_2022.pdf
https://cucumber.io/
https://specflow.org/

ISSUE 01/2023
PEOPLE

ISSUE 01/2023
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

Let’s see how this can play out using the simple withdraw feature described above. A Tester might suggest some unhappy path scenarios as well,
such as:

- Customer has insufficient funds.

- Customer provides an invalid amount. Examples: $0, $37, $400

This is a great example of using a scenario outline, which I explain below.

- Customer specifics “other” amount. Example: an amount on a list, such as $140

- Customer provides an amount that exceeds the daily withdrawal limit.

- Customer cancels the transaction.

- Customer does not respond in time (timeout)

- Customer forgets to take cash (my ATM sounds an alarm after a few seconds)

- ATM has insufficient funds.

- Transaction is not able to complete.

- Customers account is closed or suspended.

Note there isn’t a scenario for customer is not authenticated. That’s because it’s in the Given clause, and thus, is a precondition.

Example 2: Developing scenarios using combinatorial testing techniques

Dealing with an explosion of test cases is nothing new to a tester, nor are tools like AllPairs or Microsoft PICT to generate test data. The good
news is that we can leverage our knowledge in combinatorial testing to develop very effective and compact scenarios.

Here are the steps involved for a hypothetical system used to determine if I should buy a bond or not. Here is the purchase criteria I have
established:

1. The bond has a AAA, AA, or A rating.

2. The bond has an A- rating and risk rating of medium.

3. The bond has a B+, B, or B rating and has a risk rating of high.

4. The bond has a C+, C, or C- rating and has a rate of return that is 50% or more.

Step 1: Build a PICT model

PICT model for bond selection.

Rating is the bond rating. Risk represents my risk tolerance. ROR is rate of return.

RATING: AAA, AA, A, A-, B+, B, B-, C+, C, C-

RISK: Medium, High

ROR: 49%, 50%, 51%

$Result: Buy, NoBuy

IF [RATING] IN {"AAA", "AA", "A"}

OR (([RATING] IN {"A-"}) AND ([RISK] = "Medium"))

OR (([RATING] IN {"B+", "B", "B-"}) AND ([RISK] = "High"))

OR (([RATING] IN {"C+", "C", "C-"}) AND ([ROR] IN {"50%", "51%"}))

THEN [$Result] = "Buy"

ELSE [$Result] = "NoBuy";

** PICT supports more than pairwise tests. It also has ways to build more optimized models, but this will suffice for now.

Step 2: Run PICT from the command line and redirect the results to an output file

PICT BondModel.txt > BondModelResults.txt

Step 3: Create a scenario outline and copy the PICT results into it.

A scenario outline is just like a scenario, but it uses multiple instances of test data. The complete table requires 30 rows, one for each pairwise
test. To save space, I only copied the first two.

Scenario Outline: Determine if a bond is a wise purchase

Given a rating of <RATING>

And a risk tolerance of <RISK>

And a rate of return <ROR>

Then the result will be <RESULT>

Examples:

! RATING | RISK | ROR | RESULT |

| C | Medium | 49% | NoBuy |

| AA | Medium | 50% | Buy |

Other Testing Techniques and BDD

So far, we’ve seen just two examples of how testing skills can be utilized in the development of features and scenarios, but this is just the tip of
the iceberg. I’ve successfully applied other test case design techniques as well, such as equivalence partitioning, boundary value analysis, state
modeling, and decision tables. For the sake of brevity, I’ve not detailed them here, but perhaps I will get the opportunity in a future article. Till
then, I’ve provided below a couple of references. Experiment with your new-found knowledge. Work with your team, try out new ideas, learn from
them, and help your team deliver true value to your business partners. Trust me, it’s an extremely rewarding experience when this all comes
together!

There’s one more thing. Many people think you need automation to write scenarios. FALSE! Yes, tools like Cucumber and Specflow can be used
for automation, but the real value of writing complete and expressive scenarios lies in their ability to effectively promote a shared understanding
and deliver better quality sooner. In fact, we started our journey without any automation at all. At times, we still do. However we consistently
hear from multiple project teams over many years that even without automation, writing scenarios is very much worth the effort.

The Bad and the Ugly

BDD is certainly not a panacea, and like any tool or technique, it’s only as good as the skill of person using it. I’ve been an avid practitioner for
over 5 years now and I have witnessed some impressive results. However, I have also seen several anti-patterns:

• Scenarios are too technical. Well-written scenarios needs to meet the following criteria. Here’s a paraphrase from Gerald Weinberg’s
excellent Software Quality Management series:

• They capture the desired behavior using the language of the business This answers the Product Owner’s question “Will I be getting
what I will be paying for?”

• They capture in sufficient detail enough information to facilitate design and development. This answers the Developer’s question
“How to I design and build it?”

• They capture in sufficient detail enough information so that the expected results are observable and testable. This answers the
Tester’s question “How do I know if it works?”

• Scenarios contain too much detail. Scenarios should be minimal, but complete.

• Scenarios are written like test cases. Scenarios are acceptance tests. More formally, they are one of many implementations of Specification
by Example.

• Scenarios are the wrong solution. I’ve seen scenarios written for testing a database schema. Technically, this can be done, but it’s the wrong
tool to use.

• Too many repetitive scenarios. Quite often, many scenarios can be combined using Examples, as I have shown earlier.

• Scenarios are not cohesive. A feature file should contain a cohesive set of scenarios, not a mash up of unrelated ones.

• Scenarios are too high-level. For example, ambiguous expected results that are captured in the Then clauses.

ISSUE 01/2023
PLACE YOUR CATEGORY HERE

ISSUE 01/2023
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

ISSUE 01/2021
PEOPLE

ISSUE 02/2022
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #02/2022 TEA-TIME WITH TESTERS ISSUE #01/2021

So what is an Appropriate Job Title?

In my search to rebrand the existing family of job titles for manual
testers, I first looked to those developers who develop automated
tests. For reasons unknown, they are given a special job title, such as
“Software Development Engineer in Test (SDET). SDET’s are nothing
more than programmers who develop test code. However, it’s a job
title that stands out, and people who have that job title are very
much in demand.

For manual testers, a QA Analyst is one of the more common job
titles. I like that it includes analyst in the title, as this recognizes the
analytical and critical thinking skills testers have. What I don’t like
about it is that it conveys nothing about testing and its special set of
skills! So let’s change the game and come up with a job title that
stands out, and something that amplifies the strong correlation
between systems analysis and testing.

How about “Systems Analyst in Test (SAT)?

I don’t claim this new title to be a nirvana, but if starts a rich and
lively conversation on rebranding the negative connotation of being
a manual tester, then my quest for appropriate recognition for testing
has succeeded.

Concluding Thoughts

All too often requirements are “thrown over the wall” and there is too
little time to review and provide feedback. Done properly, BDD
provides a vehicle for SAT’s to get in the game earlier in the
development process and actively engage in the development of
features and scenarios. It also provides an excellent opportunity to
apply testing and analysis skills. BDD can also promote a better
application of fail-fast, shift-left practices and opens a whole new set
of opportunities for testers. However, BDD is not a be-all, end-all
cure. It takes practice and patience to apply effectively, and it will
never be, nor should it even be considered, as a proxy for exploratory
and non-automated testing.

It’s time to stop treating manual testers subservient to SDET’s. Let’s
come up with a job title that rightfully recognizes that testing is a
creative and intellectually challenging task that requires analytical
thinking and a special set of skills. An SAT may not be the final
answer, but it certainly a worthy candidate. As always, I welcome your
thoughts and suggestions.

Finally, the author wishes to thank Lalitkumar Bhamare for his
reviews and suggestions for this article.

References

1. Microspeak: Impedance mismatch - The Old New Thing
(microsoft.com)

2. History of BDD - Cucumber Documentation

3. GitHub - microsoft/pict: Pairwise Independent Combinatorial
Toolt

4. “A Practitioner’s Guide to Software Test Design”, Lee Copeland,
Artech House, 2003

5. “Specification by Example – How Successful Teams Deliver the
Right Software”, Gojko Adzic, Manning, 2011

6. “Writing Great Specifications – Using Specification by Example
and Gherkin”, Kamil Nicieja, Manning, 2018.

7. Software Quality Management – Volume 4 Anticipating Change,
Gerald M. Weinberg, Dorset House, 1997. This book may be out of
print, but the complete software quality management series is
available online for a killer price of $49 USD from LeanPub at
Quality Software (leanpub.com)

8. “We Need to Talk About Testing”, Daniel Terhorst-North, Tea Time
With Testers, 2021, Issue 3.

9. There are some great scenario writing exercises available at t
www.specflow.org

DAVID LEVITT

Mr. Levitt is a principal consultant for Logisolve LLC, located in Minneapolis, MN
USA. He is a passionate software engineer and educator, and he has championed
BDD practices to both his students and his coworkers. He holds a BS and MS in
Computer Science and an Advanced Certificate in Software Engineering.

He can be reached via LinkedIn (1) Dave Levitt | LinkedIn or
david.levitt@metrostate.edu

https://devblogs.microsoft.com/oldnewthing/20180123-00/?p=97865#:~:text=In%20relational%20databases%2C%20an%20impedance%20mismatch%20occurs%20when,between%20what%20you%20have%20and%20what%20you%20want.
https://devblogs.microsoft.com/oldnewthing/20180123-00/?p=97865#:~:text=In%20relational%20databases%2C%20an%20impedance%20mismatch%20occurs%20when,between%20what%20you%20have%20and%20what%20you%20want.
https://cucumber.io/docs/bdd/history/
https://github.com/Microsoft/pict
https://github.com/Microsoft/pict
https://leanpub.com/b/qualitysoftware

ISSUE 01/2023
PEOPLE

ISSUE 01/2023
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

JERRY WEINBERG
October 27, 1933 – August 7, 2018
–
Gerald Marvin (Jerry) Weinberg was an American computer scientist, author and teacher of the psychology and anthropology of computer software development.
For more than 50 years, he worked on transforming software organizations. He is author or co-author of many articles and books, including The Psychology of Computer Programming.

His books cover all phases of the software life-cycle. They include Exploring Requirements, Rethinking Systems Analysis and Design, The Handbook of Walkthroughs, Design.
In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information Sciences, the 2000 Winner of The Stevens Award for Contributions to Software Engineering, and the 2010
SoftwareTest Professionals first annual Luminary Award.

For over eight years, Jerry authored a dedicated column in Tea-time with Testers under the name “Tea and Testing with Jerry Weinberg”. As a tribute to Jerry and to benefit next generation
of testers with his work, we are re-starting his column.

To know more about Jerry and his work, please visit his official website http://geraldmweinberg.com/

Tea
and

Testing
with
Jerry

Weinberg

Pattern 4: Anticipating

Speaking at a recent symposium, Humphrey presented data gathered
from DoD organizations and contractors who participated in
assessment of their software processes. They found that 85% of the
projects are at the lowest level of software maturity; 14% are at level
2; and 1% are at level 3. They found no projects yet at levels 4 or 5.

Our own experience is similar. I have seen projects, or parts of
projects, that had elements that are said to belong in Humphrey's
level 4, but certainly not an entire organization. Therefore, whatever I
say about level 4 (or Pattern 4), is partial or based on indirect
knowledge or theory.

According to Crosby, the Pattern 4 manager is similar to the Pattern 3
manager but sits at a higher level in the organization and has a higher
level of understanding concerning
quality management.

According to Humphrey's extrapolation
of Crosby to software, Pattern 3
managers have procedures, which they
understand and follow uniformly.
Moreover, the organization has initiated
comprehensive process measurements
and analysis. This is when the most
significant quality improvements in
individual projects begin.

Pattern 5: Congruent

Crosby says that at stage 5, quality
management moves to the highest
level. Managers consider quality
management an essential part of the
company system, as in the American
Express Company, where the CEO has
named himself Chief Quality Officer as
well.

Humphrey predicts that level 5 organizations will have understood
and followed procedures, which everyone is involved in improving all
the time. This provides the organization with a foundation for
continuing improvement and optimization of their process.

Software Subcultures
- Part 3

”In software, conformance to
requirements is not enough to

define quality, because
requirements cannot be as

certain as in a manufacturing
operation."

http://geraldmweinberg.com/

ISSUE 01/2023
PLACE YOUR CATEGORY HERE

ISSUE 01/2023
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

ISSUE 02/2021
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #02/2021

Helpful Hints and Variations

• At times, it's easy to be misled about an organization's pattern.
To take one example, Pattern 1 organizations rarely have much
trouble with overruns, which might make you think they are at
Pattern 3 organization. They reason they don't have overruns,
however, is that overruns generally poor management, and in
Pattern 1, there is essentially no management at all. Thus, there
is nobody with the authority to make the "boomerang" actions
that drive a project into overruns.

• When things are going well in Pattern 2, it's easy to mistake it for
Pattern 3. Only in the reaction to adverse circumstances do the
differences become clear. Both use planned procedures, but only
Pattern 3 people know how to respond effectively to deviations
from their plans.

Summary

1. Philip Crosby's "Quality is Free" ideas can be applied to software,
though perhaps with several modifications.

2. In software, conformance to requirements is not enough to define
quality, because requirements cannot be as certain as in a
manufacturing operation.

3. Our experience with software tells us that "zero defects" is not
realistic in most projects, because there is diminishing value for the
last few defects. Moreover, there are requirements defects that tend
to dominate once the other defects are diminished.

4. Contrary to Crosby's claim, there is an "economics of quality" for
software. We are not searching for perfection, but for value, unless we
have a psychological need for perfection not justified by value.

5. Any software cultural pattern can be a success, given the right
customer.

6. "Maturity" is not the right word for sub-cultural patterns, because it
implies superiority where none can be inferred.

7. We can identify at least six software sub-cultural patterns:

• Pattern 0: oblivious

• Pattern 1: variable

• Pattern 2: routine (but unstable)

• Pattern 3: steering

• Pattern 4: anticipating

• Pattern 5: congruent

8. Hardly any observations exist on Patterns 4 and 5, as almost all
software organizations are found in other patterns.

9. In this article series, we shall be concerned primarily with Patterns
1-3—how to hold onto a satisfactory pattern or move to a more
satisfactory one.

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

https://leanpub.com/b/thetesterslibrary/
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com

ISSUE 01/2023
OVER A CUP OF TEA WITH JEAN ANN HARRISON

ISSUE 01/2023
OVER A CUP OF TEA WITH JEAN ANN HARRISON

22 23TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

IN
TE
R
V
IE
W

Regulated software,
mobile apps, healthcare
apps, what does it
really mean to test
those?
Answers Jean Ann over
a cup of tea with Dave.

In this month’s edition of TTwT, I have the pleasure of interviewing Jean Ann Harrison.

One of the wonderful things about volunteering for TTwT is the opportunity to meet new members of the testing
community and gain insight about their experiences that we can all relate to and learn from. On that note, I am pleased
to introduce JeanAnn Harrison, who is an internationally recognized practitioner, speaker, and author on testing
complex systems in regulated environments. She also has extensive experience testing mobile applications.

Welcome Jean Ann! Thanks so much for taking the time out of your busy schedule to share your insights and
perspectives on these real-world and challenging topics.

- INTERVIEWED BY DAVE LEVITT

JEAN ANN HARRISON
–

Jean Ann Harrison, a Principle Test
Engineer at Biora Therapeutics, has
served the testing community for over 22
years.

Many of those years were working in
regulated environments giving unique
perspective in system engineering and
system testing of of mobile devices and a
thought leader in mobile testing sharing
at various conferences and contributing
articles, books and webinars providing
mentoring throughout the global testing
community.

standpoint but also looked for
gaps in the design.

Then I moved onto testing
proprietary medical device
systems incorporated 14
developers and was leading a
team of 4-6 testers. These
systems are highly complex as
embedded testing requires one
to not only test the software but
also the firmware and the
hardware separately and
integrated together. This
required an exploratory
approach to my testing as there
was little know how the device
would work as an overall
system. I have also worked on
various mobile applications
which were much smaller in
scale but still complex as they
were architecturally requiring
hardware, operating system and

Regarding length of a project, it
varied. The larger scaled
systems required project
lengths broken up into chunks
of time, usually several weeks
and sometimes months before a
release. Medical device projects
would take much longer –
several months turning into a
year or longer. This is due to the
much-required amount of
documentation required to
remain compliant as well as
completing the development
and testing activities. Taking the
time to not only explore the
system for gaps in the inter-
dependencies often pushed out
the length of the project but was
necessary to protect against
unknowns affecting the patient
or the company.

Just to get a perspective of
testing in the large-scale
projects you worked on, how
large is large with respect to
the number of developers and
testers? How long did these
projects last? What kinds of
testing did you and your teams
do?

Regarding large scale projects: I
have worked on client-server
application systems where 15-20
developers contributed covering
applications written in C++,
PowerBuilder, Visual Basic,
Sequel, COBOL, and Perl. What
I’m referring to here, is for one
company I was a part of 5 tester
team who contributed to the
testing activities eventually I
became one of the senior
testers covering the entire
system including testing
mainframe developed software.

Then, I moved on to more web
application systems requiring
far less complex testing
activities in comparison. These
web applications were
developed a just a few
developers and usually only 1 or
2 of us testers provided testing
activities. These were database
heavy systems where we would
not only test the GUI, the overall
performance from a customer

the software integrated testing.
Number of developers and
testers vary depending on the
company developing the
products. They could range
from 15 developers to 1
developer where testers could
range from 3-4 testers down to 1
tester. Another embedded
system I worked on combined
with 3 teams of 5 or 6
developers because of the
complexity of the system. The
number of testers involved in
testing was probably 15-20
testers at any given time.
Currently, I’m on a very small
team of 2 developers, a systems
engineer and myself who’s the
principal test engineer working
on a combined medical device
system.

ISSUE 01/2023
OVER A CUP OF TEA WITH JEAN ANN HARRISON

ISSUE 01/2023
OVER A CUP OF TEA WITH JEAN ANN HARRISON

24 TEA-TIME WITH TESTERS ISSUE #01/2023

I’ve also been on projects where the Director of Engineering insisted
the testing of the mobile application and all the documenting be
completed in less than a 2 week sprint. This turned out to be
problematic due to the amount of test coverage which could be
completed. Mobile apps require test planning, risk assessment, test
design and finally execution of tests but still there is the problem of
re-testing of any bugs fixed for the size of the project. Sprints should
cover small snippets of tasks to be reasonably tested and
documented or accept the risk of the lack of coverage. This is exactly
why so many mobile apps have so many problems because of the
assumption “it’s easy to test and can be done in a sprint using
automation.” Uhm, okay, good luck with that.

The kinds of testing done by me and my teams were mostly manual
because of the nature of the complexity. It turned out to be faster to
manually test than to write scripts to test and then to moderate
scripts for one-time updates. However, far too many leaders insist
they expect their testing to be automated. Automation is helpful for
efficiency if used in appropriate ways. Applying complete
automation for medical devices isn’t efficient due to need to explore
for gaps in the design along with risk assessment.

Your presentation to Sydney testers is a gold mine for anyone who
wants to gain an appreciation of testing complex systems. (Sydney
Testers) Testing Complex Systems in Aircraft with JeanAnn Harrison
- Bing video, Sadly, I cannot do the entire video justice right now,
but I am curious about what I assume was testing in a regulated
domain. If it was, did you need to utilize an industry recognized
testing standard, such as DO-178C? Who ensured your testing met
the designated standard and what kind of evidence did you need to
provide?

Yes, the aircraft in flight entertainment system was being regulated by
it fell under the DO-178E regulation which is considered a no-effect
safety risk system. However, there was a discoverable effect with
regards to a risk to safety, although minimal. When there was a newly
planned project to update the system, it required preventive testing
and gap analysis prior to software and firmware development. This
activity would lengthen the project or was assessed the impact was
not severe enough to address in the current project. By impact, I
mean risk to airline safety, aircraft safety, communication safety or
affecting my company’s ability to conduct business.

As such, time was devoted to the testing before releasing anything for
airline customer usage and aircraft communication safety.
Remaining compliant required a separation of testing activities and
quality assurance to remain complaint to regulations and ISO
standards. Remaining compliant was hard work applied to discover
gaps in the design portion of the proposed architecture and
requirements for any release as well as the testing activities. Most
commercial software companies are not required to write
documentation of not only what they are going to do in a project but
also what they did do and provide the objective evidence of the
completed project from design, development, testing, risk reviews
and release management.

Medical device projects are similar but remaining compliant to
different agencies and regulations. Testers need to be well versed in
these regulations depending on the regulating body.

In the above mentioned video, you commented there were over
7.000 system level requirements. Talk about complexity! Were these
requirements “thrown over the wall” to you? Were they well-
written? How early in the development process was your team
engaged?

First, those requirements are developed over a period of years and
several releases. This wasn’t one release. This system was built over
time as any complex system is developed. As such, design of
hardware, operating system and software design is done in phased
projects, adding pieces as requirements were added due to
discovered needed or desired enhancements. Because this was a
regulated environment, we had a somewhat agile environment but
not really. Developed software was thrown over the wall but still
following the process that was developed with the entire engineering
and project management teams. Developers liked to say they were
working in an agile environment but in reality, only they were working
in sprints. The rest of the project team members, i.e., system
engineering, testing, project management and quality assurance
teams were all following a waterfall process. This is typical to not
only cover the architecture and design of the overall system (for that
particular release) but also leading to the software development to
be integrated. Then of course there is the testing of the fully
integrated system which did get complicated and did absolutely
require time for providing objective evidence of the testing activities
for that particular release.

Regarding the question on how soon the testing team was engaged
in the project, it was found through late releases, testing needed to
be involved at the design level and even the development of the
architecture. As such, testers became instrumental in developing
requirements for the overall system design as supporting system
engineers. We found gaps that weren’t considered by the architects
or even the system engineers. Testers then became more involved
with software development of requirements as well. This helped to
avoid doing re-engineering of the highly complex system design.
Rushing to release anything is never a good idea but especially in
these complex systems. Getting testers testing early in the process of
architecture and design is a preventive measure and an characteristic
of quality assurance.

What other regulated domains have you tested? What are the
similarities or notable differences between them? Example: non-
functional testing, performance testing, security testing, etc.

My testing has involved medical device systems, insurance, and
aircraft entertainment systems and a brief stint of financial mobile
app. Conducting risk assessments early in the process (at the
architecture and design phase) helps to prevent re-engineering and
delays of projects. Commercial software tends to not be as
concerned about prevention but instead focus is on speed to deliver
a release. Regulated environments cannot take this approach so
prevention helps to keep the momentum of the project moving
forward while delivering a quality product with lower risk.

Notable differences in regulated environments really depend on the
regulating environment and the assessed risk of hazardous situations
caused by the integrated software. Embedded software for a medical
device can be highly hazardous to someone’s life immediately where
a financial app could potentially cause a hazard if a person’s financial
situation adversely affects a person’s mental state causing harm.
This is why assessing risk at all levels of any project is key along with
providing mitigations to avoid or handle the realized risk. If the
overall testing strategy keeps risk assessment and always include
mitigations for any risk, the type of testing conducted is then deemed
part of the testing activities. For example: if no security testing is
done on a financial app release, maybe it was deemed low risk
because that risk is unlikely to occur and thus becomes low priority
over other riskier portions of the testing effort.

I’ll share a particular incident I had in my testing of a medical device:
This device was a diagnostic device but it was diagnosing a patient’s
heart condition by sending heart events to the doctor through a
complicated communication system while the patient would conduct
their daily activities at home or work. However, there were patients
sending back the device to the company because the system
shutdown completely and a new device was immediately sent to the
patient to continue their subscription. What I found was that when
too many heart events flooded the device itself in a short period of
time, the system simply shut down due to reaching a limitation of the
system. As many of our patients rarely had this occur, it was deemed
at first, the frequency didn’t warrant immediate resolution. Upon
further testing and working closely with the lead developer, we found
the project was a hardware limitation of being able to handle a
certain amount of the asynchronous messaging. /With developer’s
assistance we determined a software resolution, of slowing down the
amount of received messages from one communication line until the
device’s limit was capable of communicating with the database
portion of the system. This act actually saved someone’s life as we
received word from a particular physician our resolution saved a
patient under care. Saving someone’s life for that patient and
physician automatically increased the credibility of our company and
our device. One person using our product taught us that we need to
be highly cognizant of the severity of the risk as well as frequency or
likelihood to occur to balance out priorities.

I have never had the opportunity to test a mobile application, but I
am cognizant that working with emulators, while they are getting
better, can still be particularly challenging. Please discuss these
challenges and how you deal with them.

Emulators can be extremely helpful to cover many situations when it
comes to testing a mobile app. However, this is exactly where I have
preached to mobile app teams – first and foremost assess the mobile
app architecture to determine the type of testing appropriate. I have
written many articles, done webinars and conference sessions on the
breaking down of the types of mobile app architectures. Not only are
architecture for mobile apps affect test design decisions but what
type of industry is the app a part, what types of usage expected and
level of knowledgeable users a factor for test design and test
planning to provide strong test coverage. Testing only the GUI of a
mobile app is fine for mobile website as long as the web server has
testing covered. This is where performance engineering of the web
server can make or break a mobile web app.

Emulators are not always appropriate for complete test coverage of a
mobile web app and definitely not for a hybrid app or even a native
app. Far too many mobile app product companies think throwing
automation is the only way to handle complete test coverage in a very
fast release. Using emulators too, gives a false sense of
completeness for native and hybrid apps. It’s so important (meaning
critical to a company’s survival) to understand what types of testing
can be combined and is not reliant of specific conditions of the
device itself. An example of a type of test which could be applied to
an emulator would be doing a series of steps using the app where the
result of the device needs to be in a certain state is appropriate for
an emulation test (and for automation). However, if the device
conditions based on specific limitations of the device’s hardware, like
drainage of the battery, well, the emulator may not be a smart way to
test the condition.

I’ve come across mobile apps which affected other apps behavior
residing on the same device. One of the big mistakes a tester misses
is how notifications and interrupts affect behavior not only of one’s
own mobile app but also if one’s app under test affects other apps in
the device. For example, how does the app under test drain the
battery faster than expected? What is the expected time of the
draining of that battery while using the app under test? Is it
acceptable for the intended use of the mobile app? Does the app run
in the background causing the draining of the battery even though
the app is not in use? These questions need to be assessed but
often times not considered because it’s not part of the GUI testing.
Does the background process cause the device’s battery not only
drain but also does it heat up the internal components of the device?
As temperature is an important test to consider because that battery
can overheat and burn out components within the device like the
CPU. Focusing only on testing the app without considering the entire
system is a mistake many testers and test managers make when it
comes to testing mobile apps.

It’s really important to apply critical thinking skills to evaluate test
coverage and what is appropriate based on certain factors: type of
mobile architecture, intended usage, type of user (i.e, knowledgeable
or newbie user) or both, type of industry, the level of risk to safe
usage. What can be appropriate for automating and what kinds of
tests are appropriate for specific device testing. What kinds of limits
need to be tested like storage, temperature, messaging, interrupts,
etcetera and then add the sequence of actions which can be a factor
in the behavior of any mobile app system or really any application
system mobile or not.

“Embedded software for a medical device can be highly hazardous to
someone’s life immediately where a financial app could potentially
cause a hazard if a person’s financial situation adversely affects a

person’s mental state causing harm.”

ISSUE 01/2023
PLACE YOUR CATEGORY HERE

ISSUE 01/2023
OVER A CUP OF TEA WITH JEAN ANN HARRISON

26 27TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

As it relates to complexity, systems that support multiple platforms
and multiple versions, like Android and iOS, present an explosion of
combinations to test. What techniques to you use to manage this kind
of complexity?

How I have handled the complexity of a system, I study the
architecture, the inter-dependencies of not only the operating system
but also the hardware and how the conditions affect the overall use of
the application. This sometimes requires me to dive into the source
code and see how the app interacts with the operating system and
hardware. Example does the source code recognize turning on the LED
light in the device when it receives a notification and then does the
LED change color based on the type of notification? When does that
LED light up or respond? It really helps me to figure out what types of
tests are necessary to make sure key conditions of the entire system is
tested based on specific releases. This type of test might not be
necessary for one release but it might be a factor if a change was done
to how the operating system handles communicating with software.
Testers need to be aware of any upgrades to operating systems which
are out of their product’s control or specific to the app’s proposed
design.

Not only do I read and study source code but I also spend a lot of time
studying log files especially assessing what is reported in a log when
certain actions are done within the app and see how and when the
app handles the action. This is where I see inter-dependencies of the
system interact providing me with more inspiration for my testing. I
have found memory leaks with this technique which can be difficult to
find and quite time consuming but if not found, can be devastating to
the user or the company’s survival. Taking the time to study log files
is really a necessary part of testing a complex architecture or system.
A tester needs to SEE how the inter-dependencies interact or affect the
behavior of the app. This is critical for apps which are high hazard
risks.

Systems thinking is a fascinating and relevant subject when dealing
with complex systems. Case in point is the enormous, dynamic, and
extremely hard to phantom m ecosystems that emerge. What
diagrams or techniques do you use to help understand and test this
complexity?

One of the most successful techniques I have used is to create a
mindmap of sorts. This helps me to lay out the types of tests and
inter-dependencies so I can see where I need to put my focus and
then prioritize my types of tests. In using this method, I can also list
out my risks for a visual representation which allows me present to key
stakeholders to accept the risks or choose which tests are critical to
be designed and executed. This method helps the team make
educated decisions based on what needs to done, understand the
risks and the complexity of the testing effort.

Do you have any parting words of wisdom or anything else you would
like to share that we have not already covered?

Yes, I want to talk about automation and the application of automation
testing to dispel the idea that automation saves money when it can be
quite costly if not applied efficiently. The assumption that a team can
apply automation to their entire testing effort creates risk for system
integration testing. In mobile app testing, there are many user type
tests which are far faster than writing a script and then needing to
maintain as part of a framework. Leadership needs to allow for testers
to develop a plan in what they should be testing first, decide if it
makes sense to create an automated script as a repeatable test for
future releases or not. Why make an automated script which is not
repeatable but for the sake of automating only? Yet, decisions to

automate no matter what is deemed necessary by some company’s
leadership. System integration testing often requires setting up
conditions within the hardware and firmware (operating system) which
are not relevant for repeatability. This is why I want to say to
leadership to please engage with experienced test engineers who not
only can do automation but be able to disseminate what is
appropriate to automate.

I have incorrectly gained a reputation for not liking automation testing
but what I don’t like is inefficiency in a testing effort. Testing takes
time but planning out the testing effort including designing and
prioritizing tests based on risk assessment is providing quality work
efficiently. The desire is to provide a quality system to a customer but
also maintain a company’s objectives.

https://quality.seastarconf.com/

~
Pe
op
le

28 29TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

~
Pr
oc
es
se
s

TESTING
RECOMMENDATION
SYSTEMS

SOUMYA MUKHERJEE

–

A passionate tester but a developer at heart.
Having extensive experience of a decade and a
half, doing smart automation with various tool
and tech stack, developed products for QA,
running large QA transformation programs,
applied machine learning concepts in QA,
reduce cycle time for organizations with
effective use of resources, passionate working
in applied reliability engineering. Love to help
others, solve complex problems, and
passionate to share experience & success
stories with folks. Authored books on selenium
published by Tata McGraw-Hill’s & Amazon. A
father of a lovely daughter.

The age of digital transformation has brought with it a wealth of information. However, filtering it to be usable can be highly
challenging. It is now possible to understand patterns in user behaviour and then correlate it with other user's behaviour to
predict and help in the decision-making process. The data which is gathered is then processed by recommendation algorithms.
These Recommendation Systems constantly analyse various types of information to provide a user with a variety of valuable
information.

Examples of Recommendation Systems include everyday activities, such as suggesting movies to watch, text to read, products to
buy, etc. A highly functional recommendation system can tremendously reduce the number of attempts to identify the right
content, and is nowadays a critical component of many systems. For many companies, such as Amazon, they help in the
generation of revenue.

Types of Recommendation Systems:

Types of recommendation systems include:

● Based on Prediction

Based on prediction makes use of user and product ratings. The training data holds the ratings given by the user. The overall
goal is use this data and perform the predictions of the items based on the ratings and provide predictions about the items
which the user has not worked with.

● Based on Ranking

Based on ranking is an option when rating information is not available. Companies based on e-commerce or based online do
not need any explicit ranking data and are not concerned about the prediction provided by the user. However, most of them
would be interested in generating a ranking of the products for the given user. The user is also not interested to check what the
system capabilities are showing in terms of rating but only needs the best thing that they will like.

Recommendation System Classification:

ISSUE 01/2023
PROCESSES

ISSUE 01/2023
PROCESSES

30 31TEA-TIME WITH TETERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

Filtering based on content

Filtering based on content always depends upon the attributes of the
items to provide the recommendations. Example: by price, colour,
size, etc. It uses the user's historical information to display choices.
Most of the time user-defined filters can be used. These rec-
ommendation systems look for similarities between the products or
items that a user liked or has purchased previously to recommend a
variety of options in the future.

Example: the user reads an entertainment article.The rec-
ommendation system will then point to the same kind of entertain-
ment articles that the user may like. The advantage is that these
types of models can be quickly created and implemented as the
information is similar, however, the disadvantage is that this type of
model does not learn on its own.

Collaborative Based Filtering

In the above example, the collaborative filtering apps use the user's
ratings as a common instrument to combine users and the ratings.
In this case, the ratings will be generated by a sizable pool of users
and then combined to get the recommendations. Collaborative
filtering uses human behaviour as a basis to sort things up and then
recommends people's behaviour.

Collaborative filtering can be defined by the below approaches and
they are :

● The approach based on memory: This method is based on the
neighbourhood in which the ratings of user and item combinations
were predicted based on the corresponding neighbourhoods. There
are further two ways that these neighbourhoods are defined, they
are:

• Collaborative filtering based on User:

Finding people like you in the neighbourhood and then
providing recommended items they liked

• Collaborative filtering based on Item:

Provide recommendations on the product which is liked by
others, however since the users have behavioural similarity
the new user is also getting the same product rec-
ommendation and vice versa.

● Model-based approach: The machine learning technique is used
to capture the predictions provided based on the rating by
considering the problem as a pure machine learning problem
statement. Machine learning algorithms like Singular value
decomposition, principal component analysis, kind of clustering,
Neural Nets, and Matrix Factorisation etc., can be performed on this
approach.

Current QA Challenges

Most important challenges that Testers face today includes:

Exhaustive testing for products – this approach can get challenging
with complex products. Testers are not given adequate time to
perform all the exhaustive tests. This can be especially challenging
whenteams follow the Sprint pattern of delivery. More and more
features are included in the sprint and can result in less QA time.

Testers OR tests in the pipeline takes time.Everyone wants quick
feedback and with more and more tests being marked critical slows
down the pipeline.

Test Prediction – The Need

There is a dilemma. As our regression suite grows, there is increased
pressure for shortening the testing cycle. To test the software
application’s code effectively, it’s crucial to identify the tests that
only affect the system due to specific build changes. However,
achieving this task manually can be cumbersome since it requires
knowing which tests are affected by the code changes.

This is where a test recommender system comes into play. It can
quickly pinpoint which tests are affected by the code commit and
then select them for targeted regression, which in turn can reduce
test time.

Test Prediction – How was it done some years back ?

While teams execute their automated tests they ingest the execution
data into the database. Most teams used the popular ELK stack to
mine the information and rendered it n dashboards. In almost all
cases they will do the fault tracking or try to do the assessment on
the basis of failure probability. The teams would predict which tests
to run based on the failure probability results.

Issues with the above approach are:

1. Always flags flaky tests

2. Always flags tests with high failure rate

3. There is no correlation between what changed and
what to test.

4. If there is slightest change in the code, the tester
needs to run all tests which is actual wastage of testers
time. Once they start running the complete tests, they will
end up being slow in the entire process

5. Structure of the data is inconsistent for the ingestion

Test Prediction – Targeted Regression

One approach to solving the above issues is through targeted
regression.This approach executes only those tests that are
affected due to a code change.

Test Prediction - Modelling

To identify which tests to run from the regression pack for a
specific code change, you can develop a probabilistic model. In
a probabilistic model, you can hypothesise and perform a
correlation between the parameters. The arameters may be
random or configured in advance.

Example: Assume you live in a city where there are heavy rains
and you know that traffic tends to be more difficult due to
increased water logging and other incidents. We can then go a
step further and hypothesise that there is a strong correlation
between heavy rains and increased traffic incidents.

As mentioned above, a failure probability is being determined
in the targeted regression approach. However in this case the
failure probability (on test execution results), application or
tests exceptions data is correlated with the code coverage data.
Test execution data needs to be consistent / standardised
across apps and hence the reporting structure needs to be
defined. This becomes the backbone to the entire reporting
across QA teams.

Test Prediction – Common Approach to Starting

To summarise the approach, teams need to perform the below:

• Ingest historic execution data to a centralised location

• Get the coverage data by instrumenting the codebase and
understanding the coverage

• Add unit tests in the product

• Capture meta information of the test build having code change
details and apply correlation with the unit test execution

• Understand the probability of the tests that can fail due to specific
codebase changes

Test Prediction – How to build a model?

A gradient-boosted decision tree model (a standard machine
learning algorithm) to build a model. A specific code change will
identify all the impacted tests and determine the likelihood of
failure.

Gradient-boosted decision tree is a machine learning technique for
optimising the predictive value through successive steps in the
learning process. Boosted means that each tree is dependent on
prior trees. The algorithm learns by fitting the residual from the
prior tree, thus improving the accuracy incrementally. It provides
optimizations on different loss functions and provides several hyper
parameters tuning options that makes the functions fit very flexible.

Before doing this, you need to use code coverage tools and start
instrumenting your code because you require some probing tools to
give that code coverage whenever you run your tests. Post that, you
can start doing the correlation with the gradient-boosted decision
tree model.

ISSUE 01/2023
PLACE YOUR CATEGORY HERE

ISSUE 01/2023
PROCESSES

32 33TEA-TIME WITH TETERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

You have a codebase, you instrument your code (instrumentation is something like adding probes in your code), you execute your tests,
ingest the coverage data, quality data, and execution data into the database, and then you run the gradient boosting model on top of that
data.

Now that you have the standardised data, code coverage versus the test that you have executed, and create the model. Once you do the
model training, you can start making the prediction, do the code change, and run the model, and it will tell you the probability of your
test failure. After that, you start ingesting your test selection information again.

When we feed this information back to the model and do the code change, execute your test and run the model, it will give you the failure
probability of those tests. This way you can do the entire process of how you do model training and prediction.

Some tools that will get you started

• Code coverage tools: OpenClover, Istanbul, Jacoco

• Data Ingestion: Python Flask, Springs, ELK, Cassandra

• Test Execution: Selenium, WebDriverIO

• Model Building: Jupyter Notebooks, Anaconda, Spark

If you have any questions, you can reach out to me on bit.ly/lnsoumya or bit.ly/twsoumya

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

32 33TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

REGISTER FROM HERE

https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://members.associationforsoftwaretesting.org/events/63b2c77a11effc0007401710/description?ticket=63b2c77a11effc0007401711
https://members.associationforsoftwaretesting.org/events/63b2c77a11effc0007401710/description?ticket=63b2c77a11effc0007401711

TEA-TIME WITH TESTERS ISSUE #01/2023
35

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of time.

Over the last ten years, Tea-time with Testers has
published articles that did not only serve the
purpose back then but are pretty much relevant
even today.

With the launch of our brand new website, our team
is working hard to bring all such articles back to
surface and make them easily accessible for
everyone.

We plan to continue doing that for more articles,
interviews and also for the recent issues we have
published.

Visit our website www.teatimewithtesters.com and
read these articles.

Let us know how are they helping you and even
share with your friends and colleagues.

If you think we could add more articles from our
previous editions, do not hesitate to let us know.

Enjoy the feast!

https://www.teatimewithtesters.com

36 37TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

How We Got Here

Seventy years ago Alan Turing proposed that real Artificial Intelligence (AI) would be able to interact
with the person through a keyboard and screen just like a human. That is, the way to pass a Turing test
would be if the user could not tell who was on the other end of the network — human or AI. ELIZA was
an early attempt to pass the Turing test. Eliza mimicked what a psychotherapist might do, asking “tell
me more?”. or “how does that make you feel?” or matching a pattern. ELIZA was also easy enough to
trick, and lacked a sense of context. It was … a start. There are plenty of Eliza-like programs available
online. There’s a trivial example from today at right.

Eliza was coded in the 1960’s. The whole program fit in a few pieces of paper. Versions of it were
exported to BASIC, and thousands of young people, myself included, typed it in to run on our early
micro-computers.

There have been plenty of advances since. Natural Language Processing made the computer able to
understand and respond in ways that sound like English. Google gave us the ability to search and rank
ideas to see which are “more correct-er” by seeing which sites are the most referenced by others. 20q
took the game of “twenty questions” and implemented a neural network, so that playing the game
trains the game. Paul Graham proposed a Bayesian Filter to recognize spam email back in 2002. Those
filters would eventually be implemented; something very much like that runs in my gmail today.
Wolfram Alpha isn’t a turning test, but instead promised to provide a sort of structure to the great,
unwashed mass of data on the internet. Wolfram can find Common answers to common questions, such
as how to convert from British Pounds to Dollars.

So would happen if we put them all together, to create a model that seems to talk in a conversational
way?

Enter chatGPT.

The tool has a text-chat interface just like Eliza; you can sign up for free and putter with it. There is also
an API, so if you wanted to ask a lot of questions at scale and save the results in a text file, you could.
How can we learn more, or get past “play with it?”

ChatGPT In the broader world

Allie Miller sent ChatGPT two different requests. In the first, write a
email to a new customer. In the second, she asked to write a “sales
email about AWS on S3 to a brand-new customer. That customer is a
large supply-chain company with over 500 employees, that thinks it
had a data leak. The customer is named Will and he likes basket ball.”
The second script shows amazing detail; click through at for the
example. Daniel Ritter asked it to rephrase the US Declaration of
Independence in the style of the Beastie Boys.

The combination of state (it remembers what you asked last time),
Natural Language (it can make the results read correctly and infer the
question, instead of “just” searching), and access to data via
something like a internet database, is a lot more promising than
google. What does this mean for software delivery? The folks at Sauce
Labs have an blog post where they ask it to generate sample test
code in Cucumber for Google. In a Linkedin Post, Jason Arbon
suggested that chatGPT could be useful for self-education (ask it a
question, learn about a topic), test data generation, and even “getting
help fixing bugs in automation code… you can just give GPT the code
and ask it to fix the problem you have, and it often works ;).”

Personally, I am extremely skeptical about claims of magical AI that
fixes bugs. Still, instead of dismiss them offhand, I want to figure
them out. So I asked for a cucumber example of how to test Google
myself, and got this:

Feature: Search for a term on google.com

Scenario: Successfully search for a term

Given I am on the homepage of google.com When I enter
“selenium” in the search bar and press enter Then the search
results page should display a list of results for the term “selenium”
And the page title should contain the term “selenium”

I tried the tool in a different website – Amazon.com, Buy.com,
Affirm.com I went to a list of the top 100 most visited sites and used
NyPost.com, the 99th ranked one.

Finally, I tried xndev.com, the Website of my company, Excelon
Development. ChatGPT seemed to replace keywords in a way that
made sense – the Amazoon and Buy tests were about searching for a
product, the NYPost was about reading a headline. The Affirm test
was about getting a loan. On the XNDEV.com website, however, the
software struck out, suggesting I “create an account.”

Likely there is a meta-model of what the websites do somewhere,
and the tool is turning the words into Cucumber tests. If Excelon has

such a description in the model, and it might not, it really doesn’t fit
the model of reader-as-consumer that the others are. Now that I’ve
mentioned it, it will be interesting to see if the test gets smarter in
the future.

By now, though, I had an operating model: The software is trained on
data. I knows how to make logical substitution matches, and it knows
how people talk. Given the right data, it came make logical sub-
stitutions that sound right.~

Pr
od
uc
ts

CHATGPT FOR
TESTERS: PART 1

https://www.thinkautomation.com/bots-and-ai/the-history-of-the-turing-test/
https://everything2.com/title/ELIZA+source+code+in+BASIC
https://web.njit.edu/~ronkowit/eliza.html
https://web.njit.edu/~ronkowit/eliza.html
http://www.20q.net/
http://www.paulgraham.com/spam.html
https://www.wolframalpha.com/
https://chat.openai.com/auth/login
https://twitter.com/alliekmiller
https://twitter.com/alliekmiller/status/1604907940389027855
https://twitter.com/dansdata/status/1606296410286002177
https://twitter.com/dansdata/status/1606296410286002177
https://saucelabs.com/blog/chatgpt-automated-testing-conversation-to-code
https://saucelabs.com/blog/chatgpt-automated-testing-conversation-to-code
https://www.linkedin.com/feed/update/urn:li:activity:7008556872173568000/
https://www.linkedin.com/feed/update/urn:li:activity:7008556872173568000/
https://www.semrush.com/blog/most-visited-websites
https://twitter.com/alliekmiller/status/1604907940389027855

ISSUE 01/2023
PRODUCTS

ISSUE 01/2023
PRODUCTS

38 39TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

Jason pointed me to this Youtube video, where the author asks for a sample of C# code to do data driven tests in Webdriver. It looks impressive.
I asked the same question in python, and it was able to find similar code. I asked if there was a pascal version, and the software told me there
is no Pascal Webdriver, but if I could link a library in, here is some sample code. My guess at this point is the software is capable of transforming
from one programming language to another. Thus, if it can solve the problem in one language, it can solve it in others.

Two intriguing things for me were the claims it could generate test data, and that it could find problems in code.

The example below will use a little bit of code. Readers that know a string from an integer, if statements and loops should be fine.

ChatGPT Fixing Errors

First I created a trivial error – I “forget” a quotation mark at the end of a trivial ruby program. The sample program is below, and in Github.

print “Enter your name “

name = gets.chomp().downcase()

if (name == “victor“)

puts “Congratulations on your win!

else

puts “hello, “ + name + “\n“;

end

The first time I gave chatGPT this problem, it removed the “if” statement entirely, only showing the bottom part. After that, I provided the compile
error to ChatGPT. An hour later, when I re-ran the tool, it produced this output.

In an hour, the tool actually figured out how to fix a quotation mark error.

This appears to be ChatGPT approximating what most English speakers would call learning.

The documentation for ChatGPT also has an example of the tool fixing a bug. The sample code picks two random numbers, from one to twelve,
then asks the user what the value is when they are multiplied. In the sample program the programmer forgets to convert a number to text output,
thus causing a crash. The fix does not crash. The program itself generates two numbers and asks you to multiply them, but the comparison tries
to use string (text) comparison and always comes back negative. Here’s some sample output:

I put the initial code ChatGPT generated into GitHub as OpenAiExample01.py. My fix, where I figured to convert the strings to numbers, in is
OpenAIExample02.py.

More on this in a moment. For now, let’s talk about test data generation.

ChatGPT for Test Data

Jason said ChatGPT would be good for test data, so I gave it a simple classic one that I could use at multiple companies over years: Generate
mail addresses. Specifically, five valid and five invalid. Here’s what I got.

https://www.youtube.com/watch?v=zYNVYxO17XQ
https://github.com/heusserm/katas/blob/master/grist/TestDesign01.rb
https://beta.openai.com/examples/default-fix-python-bugs
https://github.com/heusserm/katas/blob/master/grist/OpenAiExample01.py
https://github.com/heusserm/katas/blob/master/grist/OpenAiExample02.py

ISSUE 01/2023
PRODUCTS

ISSUE 01/2023
PRODUCTS

40 41TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

This is, of course, no good. But it is better than two hours ago, when I asked the same question, and the addresses were exactly alike.

The tool has a vote up/vote down button for answers. So I could explain the problem, vote the answer down, and, perhaps, see a different answer
tomorrow morning.

What’s Really Going On

ChatGPT doesn’t seem to be aware in the sense that humans are. Instead, it seems to have access to the internet, a reasonable mastery of
conversational english, and the ability to translate programming languages. Likely, it does something similar with english, as English has a
grammar just like code.

The 20Q question-and-answer game has been online for twenty years. Over that time, it has become so good that you are unlikely to tell if you
are playing with a human. That is because of the rules of the game and the way data goes in. As long as people play fairly, the tool simply
remembers what others have entered as uses it as training data. ChatGPT won’t be able to understand the programmers intent, and sure won’t
translate requirements into code. For now, it might be trained to find common errors, such as string to integer comparisons and conversions
gone awry, forgetting a “end” or curly-brace at the end of a structure, or forgetting quotation marks. Given the error message, it’s likely a human
could write a program to do this. Linters already do about half of the job. Dave Gombert once told me he did once did the other half in his
compiler construction class. There may be some utility for this program for finding broad categories of errors and for unit tests. For that matter,
the Cucumber examples above are trivial. They screen scraping an example from a BDD website, using the context of other websites to do a
search and replace, and then being able to convert languages. That is impressive, yet has little practical utility.

That’s my quick, brief analysis of GPTChat. I could be entirely wrong. At the very least, I’ll come back tomorrow and keep pushing. For that matter,
you might take the tool in directions I have never thought of. For today I thought it was worth taking them time to show my work in public.

What do you think?

MATT HEUSSER

–

The managing director of Excelon Development, Matthew
Heusser is a 2015 recipient of the Agile Awards as an online
contributor to the field, and a 2014 recipient of the Most
Influential Agile-Testing Professional Person Award. In
addition to 20+ years of software delivery. With over 1,000
articles and podcasts to his credit, Matt was also the initial
lead organizer of the Great Lakes Software Excellence
Conference, the Workshop on Technical Debt, the Workshop
On Self-Education in Software Testing (WHOSE), and the
Workshop on Teaching Test Design (WhatDa).

A father of three daughters, Matt spends most of his spare
hobby energy as a parent.

https://www.linkedin.com/in/dave-gombert-5372801/
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery

ISSUE 03/2021
PRODUCTS

ISSUE 01/2023
COMMUNITY

42 43TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #03/2021

COMMUNITY
RECOMMENDED EVENTS AND YOUR CHANCE TO MEET TEAM TEA-TIME WITH TESTERS IN 2023

ISSUE 01/2023
COMMUNITY

ISSUE 01/2023
PLACE YOUR CATEGORY HERE

42 43TEA-TIME WITH TESTERS ISSUE #01/2023 TEA-TIME WITH TESTERS ISSUE #01/2023

It was brilliant being at CAST 2022, the conference of the
Association for Software Testing, in San Diego last year.

Even if I didn't get out on the water like Tina, it was brilliant
to be at an in-person conference again, with the time and
space and atmosphere and context to really talk to people
about the presentations, about themselves, about their work,
and about all the software testing things.

Read the full report by James Thomas here.

CAST 2022 CONFERENCE EXPERIENCE REPORT

EXPERT PANEL BY AST. SIGN UP FOR FREE AND MAKE YOUR 2023 COUNT!

INFLECTRACON 2023
APRIL 20-21, 2023

CHECK IT OUT!

01

SEASTARCONF 2023
MAY 07-11, 2023

CHECK IT OUT!

02

EUROSTAR 2023
JUNE 13-16, 2023

CHECK IT OUT!

03

https://conference.eurostarsoftwaretesting.com/event/2023/an-ancient-science-for-advanced-critical-thinking-for-testers-and-teams/
https://lnkd.in/eknKBSQf
https://associationforsoftwaretesting.org/conference/cast-2022/
https://associationforsoftwaretesting.org/
https://qahiccupps.blogspot.com/2022/11/cast-2022-recap.html
https://www.inflectracon.com/home-2023
https://lnkd.in/eknKBSQf
https://www.inflectracon.com/home-2023
https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://conference.eurostarsoftwaretesting.com/event/2023/an-ancient-science-for-advanced-critical-thinking-for-testers-and-teams/

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 02/2023
MORE AWESOMENESS IS ON YOUR WAY THIS SEASON!

QCSD: AN EXPERIENCE REPORT FROM IFM
ENGINEERING

Rahul Parwal shares an insightful experience report around adoption of QCSD framework at IFM Engineering.

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. More
awesomeness on its way….

CHATGPT FOR TESTERS: PART 2
Matt Heusser with second part of his exploration of ChatGPT for testers.

02

01

03

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME WITH TESTERS ISSUE #01/2023
45

mailto:editor@teatimewithtesters.com

TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

