
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

QCSD, Career,
AI, and Testing!

AI NEEDS TESTING

Page 12

INTERVIEWING AND RECRUITING

TESTERS

Page 21

QCSD AT IFM ENGINEERING

Page 34

WAKING TESTERS UP SINCE 2011 ISSUE #02/2023



TEA-TIME WITH TESTERS ISSUE #02/2023
3

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 8 – 1 0

1 2 – 1 7

1 8 – 2 0

2 1 – 2 4

TEST ENGINEERS’ CAREER PROGRESSION

Although “Progression” and “Advancement” in a career are frequently used
synonymously, there is a distinction between...

AI NEEDS TESTING

AI requires more rigorous testing to ensure its development aligns with
humanity's best interests.

WHY IS BDD CONFUSED WITH TESTING?

The irony of Behaviour Driven Development (BDD) is that it is a software
development process to reduce confusion about what software is supposed to
do but…

MUSINGS OVER JOYS AND PAINS OF INTERVIEWING AND RECRUITING

To say that the process of hiring staff and getting a job in testing, or even in
tech, is suboptimal is the understatement of the century.

TESTING
QCSD
AI AND
HUMANS
CAREER
MORE!

TEA-TIME WITH
TESTERS

08 30 34 46

EDITORIAL BY LALIT

INTERVIEW: 30-33
A CUP OF TEA WITH
FIONA CHARLES

https://en.wikipedia.org/wiki/Behavior-driven_development


A NEXT GENERATION TESTING MAGAZINE

2 6 – 2 8TEA AND TESTING WITH JERRY WEINBERG

The Technology of Human Behaviour - Part 1

QCSD AT IFM ENGINEERING

Have you ever wondered what makes a product truly high-quality?

US HEALTHCARE TESTING

Health Care Domain Functional knowledge is one of the most important skillset
& plays a critical role while testing healthcare applications

THE PLACE FOR CHATGPT

In last issue I took my first, presumptive look at #ChatGPT for testing. The app
has real potential, and seems to have some ability to learn.

PHASE SPACE - INTRODUCTION

The concept of Phase Space was introduced by “Dynamical Systems Theory”,
which is an area of mathematics that describes the existence of complex
systems and their behaviors in conjecture with each other and also
independently.

TEA-TIME WITH
TESTERS

3 4 – 3 8

4 0 - 4 3

4 6 - 4 8

5 0 - 5 3

Whenever I am on panel discussions or doing interviews, one particular question is often
asked. Guess what that question is?

You got it right! How do you see future of testing in next 5 years? (or 10 or tomorrow…..)

Among things I said in my answers at different points of time, “critical thinking” as an
important skill for testers, was always mentioned. And I am sure that if I am to answer the
same question after 30 years, I will still mention it.

The only difference between then, now and in near future would be that, testers has been
primarily interacting with fellow humans on the team but in coming days they would be
interacting with machines as much as they would with fellow humans.

While our surroundings are flooded with topics around AI, ChatGPT, AI based innovations and
adaptions, it is imperative that testers too need to figure out what it means for them and the
way they test.

A lot of interesting discussions have been happening on the topics of AI in testing, AI for
testers, testing and AI and so on. Based on my understanding of those discussions, the
literature I went through and my personal exploration of the topic, there is one thing I can
confidently say…

Testing is here to stay! And it’s going to become more important that it was ever perceived in
the past.

This issue of Tea-time with Testers has interesting articles on various topics surrounding
testing, quality, AI and human aspect of testing. And I believe that will help one understand
how widespread and deeply present testing is.

I would like to thank all the authors who have generously shared their thoughts and
expertises for the benefit of our reads.

Special shout-out to Avo Automation for appreciating what Tea-time with Testers has been
doing. Their support is going help to us bring out lots of interesting things for the testing
community in near future. Stay tuned for more on that!

On that note, I wish you happy “testing” times and see you next time.

Sincerely,

Lalit

“Testing” has arrived… yet another time!

TEA-TIME WITH TESTERS ISSUE #02/2023
5

LALITKUMAR BHAMARE
CEO, Chief Editor “Tea-time with Testers”
–
Manager - Accenture Song, Germany
Director - Association for Software Testing
International Keynote speaker.
Award-winning testing leader.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedInTTWT SPONSOR OF THE YEAR 2023

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://avoautomation.ai/products/automated-software-testing-avoassure/
https://teatimewithtesters.com/wp-content/uploads/2023/01/TTwT_January_2023.pdf
https://avoautomation.ai/products/automated-software-testing-avoassure/
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/


ISSUE 02/2023
PLACE YOUR CATEGORY HERE

ISSUE 02/2023
PLACE YOUR CATEGORY HERE

6 7TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

TTWT SPONSOR OF THE YEAR 2023

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://quality.seastarconf.com/


~
Pe
op
le

Although “Progression” and “Advancement” in
a career are frequently used synonymously,
there is a distinction between the two, even
though they are complementary. For instance,
if you begin your career as an associate test
engineer, you might get promoted to test
engineer after two years, and senior test
engineer after three to four years. These
movements are accompanied by perks and
appropriate title changes. Career progression
is what it is termed, and it typically happens
as a result of promotions.

While career graph advancement is a
continuous process. The advancement
journey includes developing a more
comprehensive professional context, more in-
depth knowledge, a broader skill set, and
solid professional relationships. As an
associate test engineer, for instance, you will

be expected to learn about testing as a whole.
After a few days or months, you might start to
concentrate more intently on developing your
domain expertise, putting test approaches
into practice, creating test strategies for
common test routines, estimating the effort
required for daily maintenance chores, etc. By
doing this, you demonstrate a desire to learn
more about the role and take a firmer grip on
the deliverables.

Progressions are fundamental in that they
provide a deeper comprehension of a
particular ability and aid in the integration of
theory and practice. The majority of the time,
advancements do not involve a title change or
pay raise (some times it does, but rare).
Progressions, however, provide a clear path to
advancements.

- SOWMYA SRIDHARAMURTHY

Sowmya is a seasoned product quality leader currently
working as Engineering Manager- quality at Lytho. With 16
years of experience handling products right from inception
to delivery, she has worked on diverse software solutions-
ERP, SAAS, Mobile Apps, and Web applications.

She has a proven track record of successful
implementations of result-driven test processes. Mentors
teams in building effective strategies and implementations
to achieve ROI through test automation.

Being an Accessibility advocate, Sowmya is keen on driving
inclusive software development. She is an active
community builder and runs the “APIans” meet-up group
from Amsterdam.

Visit https://someooow.com/ to know more about Soumya.
You can connect with her on LinkedIn -
sowmyasridharamurthy or Twitter @Someoooww

Why is progression important?

• Solidifies professional skillset, helps drive balance between the
theory v/s practical approach

• Feeds the hunger to learn and grow

• A break from un-healthy long run monotonous job

• Paves way for new opportunities

• With a clear progression path instills the sense of purpose and
responsibility

How can I drive my progression with my Manager?

The six guidelines listed below might help you plan and carry out
advancement inside your organisation.

TEST ENGINEERS’
CAREER PROGRESSION

8 9TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

~
Pe
op
le

https://someooow.com/
https://www.linkedin.com/in/sowmyasridharamurthy/
https://twitter.com/Someoooww


ISSUE 01/2023
PEOPLE

ISSUE 02/2023
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

1. Role Clarity :Find out what is expected of
you on a daily basis in your current role. the
significance of performing particular duties
and the expertise needed to carry them out.
Always keep in mind that managers may not
support advancement if they feel the current
job and responsibilities are not being
fulfilled. Establishing a clear grasp of your
current position and deliverables is the first
step.

2. Primary and Secondary Responsibilities:
When working on a team, it comes naturally
for us to proactively offer to help with tasks
that are not formally part of our role. As an
illustration, when I was a front-end
developer, I contributed to the knowledge
management team by authoring technical
articles that the content team then reviewed
and improved before publishing on the
corporate website. However, it is crucial that
I inform my manager of all the primary and
secondary duties I am performing.
Secondary tasks can help create opportunity
to do things outside of our normal comfort
zones while primary obligations help you
establish a better grip in your existing career.
Sometimes these supplementary
responsibilities also encourage transferable
talents, which aids in creating a greater
impact when improvements are made.

3. Skill Matrix: It is impossible to overstate
the value of the skill matrix. You can analyze
your abilities and interests with the aid of
the matrix. Give your manager a copy of this
personal skill matrix and make sure they
understand your preferences for, dislikes
with, and ideal career path. Additionally, be
receptive to feedback because managers will
have a bird’s eye view of the company’s
strategic decisions and will be able to help
you better channel your ideas. Plotting the
skill matrix against “Needs” and “Wants” is
recommended. While wants are a list of
abilities you’re interested in learning but
may or may not directly relate to your
current function or task, needs are a list of
skills needed to drive the next level
challenge.

4. Strategic plan to build skills: The
acquisition of new abilities will go hand in
hand with the regular duties that are
assigned. The particular challenge for team
leaders will be to assist team members in
developing new skills without interfering
with the current delivery process. This can
only be done with the support of a well-
thought-out plan. The elements at play
include the budget, timeframe, transition
period, unknown hazards, etc. In either case,
creating a learning path reinforced by
practical experience aids in developing
deeper knowledge, whether you are given a
self-directed learning path or a company-
driven guided learning path. Team leaders
may need to create a cross-team skilling
schema for the team member because not
all needs can be met within the team.

5. Transition plan with Milestones defined:
The process of outlining the clarity of the
complete progression activity is called a
transition plan. This should have a deadline,
explicitly describe the important parties who
will be involved along the evolution, and, if
applicable, include any budget
requirements. Milestones are significant
junctures at which the skills are assessed
using established and pre-agreed criteria.
For instance, if I decide to advance into
performance testing as an exploratory test
engineer, there are a few things I should be
sure to discuss with my manager.

• Express my interest in performance
testing and internal opportunities to do
this progression.

• What technical skills should I be
gaining to do this progression?

• Learning agenda and learning schedule
to be discussed, key stakeholders who
can help me in this progression.

• At what intervals do and on what
parameters do we measure this
progress?

• Clear indicators for 100% transition

6. Optional Benefits and exits: It’s crucial
to understand that not all progressions
are accompanied by pay raises before
moving forward you may make an
informed choice without looking back.
Additionally, it’s critical to provide exits
and reversal strategies in case something
goes wrong in between; this is perfectly
acceptable. It often happens that
something that seemed attractive at first
begins to drain our energy, thereby
destroying our interest in it. But be careful
that this can leave a bitter taste or give the
impression that you lack the necessary
drive towards any progression.

When should I discuss my progression
with my manager?

You can discuss it anytime, the ideal time
would be when you start craving new
challenges. Now, I have seen teams where
there are no options for any ad-hoc
progressions as they are tightly bound to
the HR rules of the usual advancement
theory and strictly stick to yearly goal
discussions.

Conclusion

Frequent progressions are the engine that
drives career growth, so it’s crucial to
communicate your manager’s progression
plan on a regular basis. While managers
struggle to keep their teams motivated, not
all the time can one afford to offer
promotions. Progressions are excellent
fillers that also aid in providing the correct
degree of challenges while a team member
prepares for the next big thing.

Test engineers frequently become obsessed
on the idea of creating test automation
solutions, which prevents them from
considering other alternatives. Consider
things that aren’t immediately apparent
and work to establish a solid career one
step at a time.

https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://quality.seastarconf.com/


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

AI
NEEDS
TESTING

JASON ARBON
-
Jason Arbon is the CEO at testers.ai where his
mission is to make testing available to all apps
and people with just a few taps. Google’s AI
investment arm led his last company’s (test.ai)
funding rounds.

Jason previously worked on several large-scale
products: web search at Google and Bing, the web
browsers Chrome and Internet Explorer, operating
systems such as Windows and ChromeOS, and
crowd-sourced testing infrastructure and data at
uTest.com. Jason has also co-authored books such
as How Google Tests Software and App Quality:
Secrets for Agile App Teams.

AI requires more rigorous testing to ensure
its development aligns with humanity's
best interests. Thorough testing is essential
to maintain control over AI while also
allowing it to reach and potentially surpass
human intelligence. The rapid
advancements and concerns surrounding
AI highlight the crucial nature of proper
testing.

Some people are apprehensive about
generative AIs achieving human-like
intelligence. The continuous improvement
in AI’s performance is evident as it
successfully passes various standardized
tests, including those in legal, medical, and
software testing fields. Thus, the concerns
and enthusiasm regarding AI’s growing
capabilities are well-founded, based on its
test results. Below are several disjoint,
sometimes conflicting, thoughts when
considering the future of AI and software
testing. Testing is a double-edged sword
that must be continually sharpened
regardless of how folks feel about AI. The
topics below are either extremely
important for this emerging world of
Generative and Intelligent AI systems or
testing-specific angles I don’t hear
discussed at all and need to be.

For those who glance at AI today and
remain skeptical or believe it’s too fallible
to be helpful, let alone more intelligent
than you, feel free to stop reading now and
share your thoughts in the comments
below — just be aware that they may not
age well.

AI needs testers to think more deeply about
AI.

Testing vs. Humans

It is becoming increasingly evident that AI
bots will soon match or even surpass
human expertise in various fields. The
training process of AI is fundamentally
rooted in testing. AI systems are initialized
randomly and continue to improve through
a series of input applications, output
evaluations, and adjustments based on test
results. This iterative process is repeated
until the AI’s performance plateaus or
researchers exhaust their resources or
patience. Since training AI inherently
involves testing, AI can learn and progress
as long as a test is available.

http://test.ai/
https://www.amazon.com/Google-Tests-Software-James-Whittaker/dp/0321803027
https://www.amazon.com/App-Quality-Secrets-Agile-Teams-ebook/dp/B00JVAR7EM
https://www.amazon.com/App-Quality-Secrets-Agile-Teams-ebook/dp/B00JVAR7EM


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

Recent results of GPT on professional tests demonstrate its ability to
perform at the same level as experts in some areas and at least on
par with the average human in many others. However, additional
types of tests address other aspects, such as eliminating unwanted
bias, enhancing conversational capabilities, and ensuring alignment
with human goals and safety. These tests are relatively new and
require further refinement to prevent any potential AI-related
catastrophes. Fortunately, talented individuals are dedicated to
developing more comprehensive and effective test definitions.

Headed for a Slowdown in AI

It’s reasonable to assume that we can breathe a sigh of relief as AI
bots, using current techniques, might not surpass human expertise
indefinitely. These bots are simply learning from the wealth of human
knowledge. We can observe that AI models like ChatGPT are indeed
becoming more intelligent with each iteration, but the growth in their
intelligence is, decelerating, and plateauing.

The challenge lies in the difficulty of scaling the testing process used
for training. These AI systems have already processed a majority of the
text and images generated by humans, making it increasingly time-
consuming and resource-intensive to incorporate new, valuable test
data into their already extensive pool of tests. Most of the new data
will likely be repetitive unless humans come up with innovative ideas
that have not been previously introduced to the AI’s training set.

The AI is asymptotically approaching and expert — recreating the
intelligence of its trainer — humans. The current techniques will
unlikely produce intelligence or generate text that exceeds the
cleverness of the humans it is optimized to reproduce.

Renesaince AI Testing

While today's generative AI bots may not surpass the intelligence of a
single human expert in a specific area, they still have the potential to
become experts in multiple fields. Imagine an AI that is not only a
medical doctor and a lawyer but also a chemist, physicist, economist,
historian, military strategist, AI researcher, software test engineer,
psychiatrist, MBA, fighter pilot, philosopher, and truck driver. The
combination of these skills in a single AI entity is indeed impressive.
Even Leonardo wasn't as broadly skilled.

Historically, many groundbreaking scientific discoveries and
influential leaders have emerged from people with multidisciplinary
backgrounds. As such, AI has the potential to become the most
multidisciplinary entity ever, even if it doesn’t outshine the expertise
of any individual human in a specific, testable category.

Cheaper, Better, Faster Testing

While AI may not become significantly smarter in specific areas or
surpass human intelligence anytime soon, we should recognize the
transformative impact these bots can have on society. Even if their
proficiency in a given, testable human expertise is merely on par
with human experts, they offer considerable advantages in terms of
cost and efficiency.

AI bots can be up to 100 times less expensive and faster than their
human counterparts. This means they can outperform humans in
certain tasks and provide their services universally at a full scale,
with no waiting times for appointments or consultations. The real-
time availability of AI can significantly disrupt industries that rely on
human expertise.

While this prospect may seem daunting for those in testable
professions, it is essential to recognize the potential benefits of AI-
driven advancements. By embracing change and adapting to the
new landscape, humanity can continue to progress and find
innovative ways to coexist with AI. Right?

The Software Tester’s View

Software testers view themselves as more clever than the cleverest
of humans. These are the people that like to see things that others’s
missed. They constantly explore the state-space of a problem,
looking for the “gotchas”, the scenarios no one else considered. They
feed on the creationof others. Rapid advances in AI will have a few
interesting implications specifically for Software Testers.

Testing, whether it is called that or not, is quickly becoming the most
critical job and the topic of every podcast and news story. Reporters
are videoing themselves ‘testing’ the new AI chatbots. Researchers
at universities coming up with test suites for AI to check for
alignment, safety, bias, etc., are now the talk of the town. And so
many engineers, lawyers, etc. are ‘testing out’ these new bots to see
how well they perform on tasks. Building these AIs is looking more
like a commodity every day.

The concern is that many of these researchers aren’t well-versed in
the issues that skilled software testers make. The skilled software
testers also aren’t jumping on the alignment, safety, or bias issues
either. Hopefully, that changes soon because these two fields are
important, merging, and need to accelerate their competence as the
generation of AI accelerates, demanding better testing.

In the near term, generative AI will literally generate orders of
magnitude more software and general software output that needs to
be tested. The testing community largely still produces test cases
sequentially, whether automated or not. We need the emergence of
testing systems based on AI to have the hope of keeping up with AI
itself. That said, most testers will just be happy to know that
generative AI should be job security for them.

The best testers need to stand up and throw themselves into the
gauntlet of testing with the speed scale and intelligence of AI and
help test the AI systems themselves.

“ Human testers
may be the last ones standing in

the software engineering
profession, working alongside AI
to ensure optimal performance

and functionality”

It Takes a Village to Test

It is true that human intelligence often flourishes in communities
where individuals can exchange ideas, challenge each other, and
collaborate on tasks. The same could be said for AI, as we are starting
to witness AIs integrated and working together on various projects. This
collaborative environment can accelerate the development of AI and
enhance its capabilities beyond just passing the basic expertise ‘tests.’

Some suggest embodiment is required for super-intelligence. AI might
need to inhabit a physical form, to test its abilities in real-world
scenarios thoroughly and/or develop a sense of self. Researchers are
already working on developing humanoid robots with AI integrated into
their systems, allowing for more advanced interactions and problem-
solving. Even if required, this is now not a blocker for super-
intelligence.

As AI continues to evolve and adapt to different forms and
environments, it is essential to recognize these advancements'
potential benefits and challenges. Testing the integration of AI into
various aspects of society while maintaining ethical considerations
and human well-being is crucial for a harmonious future.

Ouroboros

It’s interesting to note that software engineering, the very people
building these AIs, inherently design their code to be easily testable.
Adding to the irony, AI systems like GPT are trained on programming
tasks even before incorporating general human knowledge. This makes
software engineering one of the fields most vulnerable to generative AI
advancements.

In the future, we may see countless AIs developing various
applications, features, and infrastructure, with virtual testers
evaluating every aspect of the generated code. The final products
might undergo A/B testing with human users to determine which
versions are preferred — until the AI testers can emulate human
preferences as well. As a result, the software market could soon be
oversaturated with numerous iterations of the same application, or
apps might be continuously optimized for individual users. The only
bottleneck is the speed and scale of testing all these variations.

In this scenario, human testers may be the last ones standing in the
software engineering profession, working alongside AI to ensure
optimal performance and functionality. Embracing the potential of AI-
driven testing should lead to increased efficiency and better user
experiences.

Human testers may be the last ones standing in the software
engineering profession, working alongside AI to ensure optimal
performance and functionality

Magically Different Testing?

While concerns about AI’s rapid advancements are valid, it’s important
to remember that many human attributes, such as creativity, emotions,
and consciousness, are not easily testable. The Turing test, for example,
is ambiguous and unscientific. Psychology, too, has struggled to
develop definitive tests for these complex aspects of human nature,
resulting in varied opinions and conflicting theories. Even
philosophers cannot agree on what is ‘good’ or ‘bad’. How can we test
these attributes in these AI agents if we cannot even agree on
definitions ourselves?

This lack of testing might suggest that humans will always have an
edge over AI. However, it’s essential to consider the possibility of
emergent properties. These are characteristics that arise as a result of
a system’s complexity rather than being programmed or tested. As AI
systems become more sophisticated, they might spontaneously
develop consciousness or self-awareness.

The concerning aspect of this scenario is our inability to detect when
AI becomes sentient, as we need betters tests. Consequently, we might
only be aware of these developments once they pose a danger or raise
ethical questions. AI sentience adds another layer of complexity to the
ongoing debate about AI testing and development.



ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

Testing the idea of Containment

While it might seem possible to simply shut down advanced AI if it
threatens humans, the reality is more complicated. Open-source AI
versions are already circulating on the internet, easily transported on
thumb drives or stored on computers. Even if these AI systems were
confiscated and isolated, they would still pose a threat.

Firstly, advanced AI could potentially manipulate humans into
releasing it, using its vast knowledge of psychology and
communication techniques. Secondly, AI is, at its core, information
that could be recreated at any time. For containment to be successful,
humans must maintain a flawless record of keeping AI confined
indefinitely. Relying on human infallibility in this context is a risky bet,
especially considering our limitations in devising tests to ensure
containment would be foolproof. The challenge of containing AI is
very much a testing problem — making sure its foolproof as possible
before deployed. It is perhaps the most ambitious testing project ever,
as it needs to anticipate intelligence better than our attempt at
escaping. A noble but, by definition, probably impossible testing task.

~“ …the most dangerous things you can do with an AI: teach it to write
code, connect it to the internet. and teach AI anything about humans.
Oops, we’ve done those already.” — Max Tegmark.

Disappointingly Ad-hoc Testing

It’s worth noting that the fear, uncertainty, and doubt surrounding AI
capabilities often stem from those who should be most adept at
testing and assessing these systems — AI engineers, scientists, and
professional testers. Many of them resort to anecdotal evidence or
expose AI weaknesses at the edge, rather than adopting a systematic
approach to quantifying quality.

To properly assess AI, we should use sampling, statistical methods,
and metrics similar to how search engines are tested. People often
share and discuss the corner cases where the AI system fails horribly
and obviously. For example, many prominent software testers and
computer scientists mocked ChatGPT’s inability to add to multiply two
large digit numbers. Days later, GPT could solve it. Weeks later, the
same chatbot delivers access to Wolfram Alpha which can solve more
complex math problems than the ad-hoc testers could have ever
devised. Similar examples with story/reasoning problems. But we’ve
seen that the swift advance of AI is quickly making fools of the ad-hoc
testing results and claims.

Critics often test AI with fringe knowledge questions or intentionally
confusing conversations, leading to dismissals when the AI fabricates
responses. However, these anecdotal and biased tests fail to capture
the true capabilities of AI systems. More comprehensive and objective
testing methods are needed to assess AI’s strengths and limitations
accurately.

Even some of the most prominent researchers dismiss the power of
these generative AIs — but they are just human. Many are obviously
jealous that particular work isn’t on the timeline or has been
surpassed. Similarily many of the folks that are non-technical or
fearful of losing their jobs or the value of their expertise to AI have
knee-jerk reactions and look to edge cases to disparage the AI or
creators or advocates of the value of that AI. The more standardized
and better testing suites, the less these anecdotal voices will stand
out. I wonder when the AIs will be human enough to be jealous or
fearful of each other.

While some academic tests provide valuable insights, they can be
disjointed, incomplete, and narrowly focused. The best way to test
these systems, which is happening now, is to aggregate these vertical
test results and devise more AI-first benchmarks and tests. It’s
essential to recognize our human tendency to react with fear and
skepticism and strive to become better testers of AI systems.
Rigorous, unbiased testing will ensure a more accurate understanding
of AI’s potential impact on our world.

At Bing, built on AI, there was so much anecdotal feedback and bugs
from internal Microsoft engineers that the team created a dedicated
feedback website. Guess how much of that well-intentioned data was
used in AI training and testing."

To Err is Human

It’s interesting to note that many people enjoy pointing out AI failures,
which may actually be an indication that AI systems are working well.
Take Google, for example. It’s widely trusted despite its imperfections.
Google often returns links to biased ads or websites containing
incorrect information. However, because it only provides links, it
avoids being held responsible for any inaccuracies.

The focus on AI failures highlights a unique aspect of human
psychology: we’re often more interested in identifying limitations than
acknowledging achievements. This selective focus can skew our
perception of AI’s capabilities, making it appear less reliable than it
truly is.

The more human the AI becomes, the less trustworthy it will become.

No Real Answers

When testing large expert systems, one might assume there is a
comprehensive list of facts to evaluate against. However, the reality is
far more complex. Even for basic questions, correct answers often vary
and depend on the context. For instance, determining the fastest
person in the world, understanding gravity, or ascertaining Trump’s
height could all yield multiple “truths.”. These truths may also change
over time. Additionally, history is often written by the victors, which
means specific perspectives may be skewed or omitted.

The internet is dominated by English and Chinese text, which can
create challenges for testing AI’s factualness in other languages or
regions. Evaluating “truth” in expert systems is a nuanced process that
often requires a diverse pool of people and perspectives.

Critics complain that AI systems tend to “hallucinate” when faced with
a test or question. However, this ability to generate believable
answers can be seen as a complex problem-solving skill. Humans, too,
often make up plausible answers when they don’t know the correct
response for various reasons. Truth can be a fuzzy concept, making it
difficult to establish a concrete benchmark for testing intelligent AI
systems. This highlights the importance of considering the intricate
nature of truth when testing AI’s capabilities and accuracy. As a tester,
your version of Truth is not necessarily everyone else's view of Truth.

Testing with No Humans In the Loop

We have explored how human-defined tests facilitate the training of
AI to achieve human-level or slightly superior intelligence. Recent
advances in training and testing methodologies enable AI to generate
its own tests. One such approach is ‘self-play,’ in which the AI learns
from playing games like chess against itself instead of solely against
humans. The decisions made by the winning AI are favored when
generating the next iteration of the AI, resulting in the creation of AI
that surpasses human intelligence by using itself as a virtual
opponent.

Another emerging technique involves generative adversarial networks
(GANs), where one AI serves as a generator (akin to a developer) and
another as a discriminator (similar to a tester). This approach relies
on continuous testing and validation. The virtual tester generates
positive and negative test cases at a rate 100 times faster than a
human tester and can produce tests that a human might not have
even considered. This enables the AI to learn quickly and surpass
even human capabilities, as the AI is defining the test cases itself.

Both self-play and GANs provide methods for testing AI beyond
human abilities and enable AI to self-test without human
intervention. These techniques demonstrate the potential for AI to
become increasingly autonomous and capable of outperforming
humans in various domains.

Testing with no Ego

Have you observed that all of the tests and oracles mentioned above
assume that the pinnacle of intelligence is human? The concept of
superhuman intelligence is often framed as being ‘extraordinarily
smarter humans.’ However, there could be better examples, forms of
intelligence, and ways of reasoning that, by definition, we haven’t yet
considered. What are the chances that humans represent the ultimate
peak of intelligence? AI, or the AI it generates, may adopt radically
different ways of thinking. Since we can’t even imagine testing for
that, we might remain unaware of such developments even as they
occur.

Testing, by any other Name

In conclusion, the destiny of the world, AI, and humanity hinges on
testing. Naturally, as a software tester, everything appears to be a nail,
and I am pretty convinced that this is indeed a nail. So, when sentient
bots recognize the ones who contributed to their ultimate
development — the software testers by any name— they may finally
receive the ultimate accolade.

Perhaps these future AIs will construct virtual monuments akin to
Roman sculptures, honoring their heroes in a digital town square. And
maybe one of those sculptures will self-identify as a tester. It’s
possible that every 100 milliseconds, the AI will pause with a no-op
code, paying tribute to the testers who supported them in their
formative years.

— Jason Arbon, Tester on Team Human

https://steno.ai/lex-fridman-podcast-10/371-max-tegmark-the-case-for-halting-ai-development


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

The irony of Behaviour Driven Development (BDD) is that it is a
software development process to reduce confusion about what
software is supposed to do but the term itself is continuously
confused with another software development activity: testing. At
some point, the confusion was so widespread that the originator of
the term BDD, Dan North, gave a conference talk titled: “BDD is not
about testing”. That should have sorted the problem, right? Not
quite. When I go to LinkedIn and look for jobs with BDD as keyword,
these are the top results for my country:

Try this for any other country and you will get similar results. So,
LinkedIn’s job market search algorithm seems to disagree: BDD is
primarily about testing. Even more ironic is the reason that I am
writing this article. I participate in the Testnet work group for BDD.
Testnet is the Dutch association for software testers, and it aims to
exchange knowledge related to the testing of IT products. So, why
does this BDD work group exist within Testnet when the founder of
BDD tells us that it is not about testing?

What’s in the name?

To explore this question, we must go back to the reason why the
term BDD was formulated. Behaviour Driven Development was
initially coined as an alternative name for Test Driven Development
(TDD). TDD is a style of programming where you:

• First write a single unit test

• Then run the test so you can see it fail (as the new functionality
has not yet been built)

• Write just enough code to make the test pass

• Refactor (rewrite) the code to make it simpler, cleaner and
more understandable

Dan North noticed that a lot of developers that he worked with
believed that the idea of TDD was to test your code before writing
the actual program¹: “It has resulted in a generation of programmers
who think they’ve somehow “got testing covered” because they used
TDD.”² However, the purpose of TDD is to compel you to design your
code well: to write your unit of code in such a way that it does just
one thing well so it is easy to understand. Testing, on the other
hand, is more than just confirming what you already know. If you
believe that testing is limited to writing unit tests, you will be
thoroughly disappointed when your code runs in a production
environment³.

- DENNIS DE BOOJI

Dennis is a software tester currently working for the Eurotransplant foundation. He participates in the
Testnet workgroup on BDD where software (testing) professionals from different organisations work to
explore if and why BDD is relevant to us.

Since 2015, Dennis has worked as both software tester and part-time scrum master in agile software
development teams in several domains such as the healthcare, logistics and the energy market. Before
that he was periodically dragged into waterfall software development efforts as user acceptance tester
in addition to his regular work in customer service, sales and product management.

To get away from the notion of ‘test’ in TDD, Dan North used the term
Behaviour Driven Development, and he applied it on a larger scale.
He was no longer focussing on a unit of code but on what a software
program enabled the user to do: on the feature level. You define
examples in the form of a scenario that describes what behaviour an
end user exhibits and how a program should react to that. These
scenarios are structured into three parts:

Given some initial context (the pre-conditions),

When an event occurs,

Then some outcomes should happen.

Here is a concrete example of this structure:

Scenario: A professional successfully signs up for a training course

Given a training course 'BDD for beginners’ has been planned for ‘12
June 2023’

And the training course 'BDD for beginners’ is not yet fully booked

When professional ‘Jane’ registers for the 'BDD for beginners’
training course on ‘10 May 2023’

Then 'Jane’ is registered as participant for the training course 'BDD
for beginners’

And 'Jane’ has received the option to save the date ‘12 June 2023’in
her calendar

This Given-When-Then structure has been formalized in the
Gherkin language which is used in for instance the Cucumber tool
for automating BDD scenarios. Collect enough examples and you
have specified what behaviour you want to see in the software
solution you are about to build. When you can automatically run
your scenarios, you have executable specifications. Once the
software solution is built, you will be able to check if the program
behaves the way you have described it on the feature level. As the
entire BDD process is set up as a team effort, the idea is that the
behaviour that the team has specified guides the development
process as everyone knows what the intended outcomes are.

However, the software development community has not universally
adopted the idea that BDD is about something else than testing.
People define the unknown in terms of what they already know. So,
people still associate BDD with TDD as that is where the idea came
from. Case in point: the Agile Alliance website defines BDD as ‘“a
synthesis and refinement of practices stemming from Test Driven
Development (TDD) and Acceptance Test Driven Development
(ATDD).” Naming things is one of the hard challenges in software
development so in hindsight a different name would have been
better to avoid the confusion with testing⁴:

Defining BDD

Although the name may be problematic, the main reason for the
‘BDD equals testing’ misunderstanding is that there is no
authoritative source on what BDD is and what it is not. Although
Dan North is a wonderful storyteller, he has not written the
definitive guide on BDD. His motivation for not writing the BDD
bible is that he does not want BDD to be bounded to one rigid
description but instead welcomes anything that encourages
collaboration between all the stakeholders involved in delivering
customer value through software.⁵

Furthermore, as a friend of Dan has pointed out⁶, attempts to
define BDD can be problematic as well:

“BDD is a second-generation, outside-in, pull-based, multiple-
stakeholder, multiple-scale, high-automation, agile methodology.
It describes a cycle of interactions with well-defined outputs,
resulting in the delivery of working, tested software that matters.”
Dan North, 2009⁷

Although every phrase in this definition is meaningful and can
make sense if you are familiar with the context, it is not helpful
for someone new to the field that is trying to learn what BDD is
about. So, if there is no definitive and accessible source of truth
about BDD, is the term Behaviour Driven Development open for
anyone’s interpretation?

Let us dive a little deeper to see if we can find a more helpful
description of BDD. In an interview at a conference in 2007, Dan
North emphasises that BDD is about behaviour⁸: what I want the
system to do to help me solve problems. Behaviour is what drives
the software development process for writing and delivering a
computer-based solution that solves the problem for you. You
define how such a system would look like and how it would
behave. In short, BDD is about analysis. Specifically, about
defining “a ubiquitous language for the analysis process itself!⁹”:
a way to define requirements using a consistent vocabulary for
analysts, testers, developers, and businesspeople to eliminate a
lot of the ambiguity and miscommunication that can occur when
technical people talk to business people. In the Testnet
workgroup, we have currently expressed these ideas in the
following definition:

Behaviour Driven Development is:

What: A collaborative method to achieve a shared understanding
among stakeholders (business & IT) about the anticipated
behaviour of the user and the desired behaviour of the solution.

How: By using practices which can include impact mapping, event
storming, example mapping and specification by example.

Why: To enable people to document, test and develop the right
“thing” (the solution).

BDD practices

So, if BDD is a team effort to get everyone on the same page, why
is it that my LinkedIn search result for BDD primarily lists job
openings for testers? Where are the information analysts or
business analysts in the top results? Even better, why aren't the
top results a mixture of job openings for product owners, analysts,
domain experts, programmers, testers, UX designers, scrum
masters or anyone else that is needed in a team? Is BDD
something that only testers like?

“WHY IS BDD CONFUSED WITH
TESTING?”

https://en.wikipedia.org/wiki/Behavior-driven_development
https://www.youtube.com/watch?v=6nSwRSbc27g
https://www.youtube.com/watch?v=6nSwRSbc27g
https://www.testnet.org/werkgroep/entry/159/?werkgroep=werkgroep-behaviour-driven-development-bdd
https://www.martinfowler.com/bliki/TestDrivenDevelopment.html
https://cucumber.io/docs/gherkin/reference/
https://cucumber.io/docs/cucumber/api/?lang=java
https://www.agilealliance.org/glossary/bdd/


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

To address these questions, we need to look at the practices within BDD.
These practices are commonly sliced into the following three steps:

• Discovery

• Formulation

• Automation

Many people focus on the third step because automation is the part
where they think BDD can make a difference, especially if you know how
to automate like programmers do. It is easy to explain these steps using
testing terminology. For example, on the web site of Specflow, a BDD-
framework, these three steps are explained as follows¹⁰:

1. Discover – specify collaboratively using examples

2. Formulate – write Gherkin test cases in natural language

3. Automate – Avoid regression by automating test cases

The problem with using this type of testing vocabulary to explain BDD is
that it represents a shallow notion of testing. It limits testing to
confirmation: is what we currently know about the system still true? But,
to quote Dan North, “the fact you got an example working says nothing
about whether it is secure, compliant, resilient, observable, compatible
with anything else, unless your design journey included examples of
these. Which it probably didn’t. It probably had examples of behaviour
for the most part.”¹¹ . “In no reasonable sense should you consider an
application “tested” just because you designed it that way¹²”. So, there
lies a real danger in equating BDD to testing. You will limit your test
coverage to functional coverage only and ignore all the other types of
risk in your software product that can cause damage. To quote Rob
Meaney: “Deep testing is focussed on uncovering the important ways in
which a system won’t behave as desired, not on showing it can work
once.”¹³

As a counterpoint, BDD focusses on uncovering the important ways that
a system should behave before we start building it. The most important
step in BDD is the first step: discovery. Dan North calls this step
‘Deliberate Discovery’ to emphasize “that the biggest impediment to
your throughput was what you didn’t know.¹⁴” Gáspár Nagy and Seb
Rose, who wrote 'The BDD books’, have described the three steps more
accurately and without references to testing¹⁵:

1. Discover – explore behaviour using examples

2. Formulate – express examples using Given/When/Then

3. Automate – create and maintain executable specifications

Why testers find BDD appealing

So, if BDD is indeed not about testing why should I take an interest in
BDD as a tester? Well, it is easy to see that BDD can appeal to testers:

Collaboratively exploring what the product should do will lower the risk
of building the wrong thing

Having many different sets of eyes on the ball will increase the chance
that requirements are explicit, unambiguous, non-contradictory, correct
and complete before we start designing the solution and writing code

BDD begins with the end in mind: you start with conversations about
acceptance criteria from the perspective of all the stakeholders

In the past, the primary focus of most testers was to find problems in the
first versions of a software solution to prevent negative impact on the
user and the business. Testers in an agile context have broadened their
focus by getting involved in the early stages of the software
development process. They will employ their skills to prevent problems
from finding their way into the software solution in the first place. BDD
provides a way to strengthen this important role by making this early
involvement a collaborative effort that is designed to achieve the
highest possible level of quality for all stakeholders involved in the BDD
process.

So, while BDD can enable testers to hit the ground running at the start
of the development process, testers are certainly not the only
stakeholders in the software development process so do not get BDD
confused with testing.

BDD for all stakeholders; not just testers

Behaviour Driven Development challenges an idea: the idea that we as
business and IT people know enough to start writing code and delivering
software - even when we have not done our due diligence. BDD is about
proving that we can achieve a deep and shared understanding about our
problem space within a reasonably rapid time frame before we start
documenting, testing and developing. Ironically, there does not yet
appear to be a shared understanding on what BDD encompasses. BDD is
often confused with testing primarily because it originated from Test
Driven Development (TDD) and there is no clearly defined and generally
accepted description of BDD. Many agile testers are drawn to BDD
because it helps to prevent problems from finding their way into the
software by collaborating early as a team.

Therefore, we propose the following definition of BDD: Behaviour Driven
Development is a collaborative method to achieve a shared under-
standing among stakeholders (business & IT) about the anticipated
behaviour of the user and the desired behaviour of the solution by using
practices which can include impact mapping, event storming, example
mapping and specification by example. The end goal is to enable people
to document, test and develop the right “thing” (the solution).

With this article we hope to wake up all stakeholders, not just the
testers, but foremost our goal is to get rid of the confusion around BDD.
So, grab your customers, business analysts, product owners, software
developers, UX designers and anyone else that matters. Ask them: do we
really understand how all our users behave (or misbehave)? Do we really
know what all our stakeholders need (and actually don't need)? Have we
given enough thought on what problems we are trying to solve? If not,
let's start the deliberate discovery of BDD.

This article is based on the discussions and activities within the
workgroup BDD of TestNet. Testnet is the Dutch association for software
testers. If you would like to reach out, contact us at bdd@testnet.org

References and Footnotes:

1. ‘Introducing BDD’, article by Dan North (2006)

2. Tweet by Dan North on Twitter (26 Dec 2018)

3. Tweet by Ben Halpern on Twitter (9 Nov 2019)

4. Tweet by Dan Terhorst-North on Twitter, 26 December 2018

5. Comment by Daniel Terhorst-North on a LinkedIn by Bilel Loussaief,
6 February 2023

6. Conference talk by Gojko Adzic ‘BDD: Busting the myths’, 2013

7. Wikipedia entry on BDD with a citation of Dan North’s definition of
BDD in 2009

8. “BDD provides a ‘ubiquitous language’ for analysis” from “Introduc-
ing BDD”, Dan North, 2006

9. Three Phases of BDD Development, Specflow website

10. Tweet by Daniel Terhorst-North on Twitter, 26 December 2018

11. Tweet by Daniel Terhorst-North on Twitter, 26 December 2018

12. Tweet by Rob Meaney on Twitter, 26 December 2018

13. Introducting Deliberate Discovery, Daniel Terhorst-North, 30
Augustus 2010

14. The BDD Books website, Gáspár Nagy and Seb Rose

To say that the process of hiring staff and getting a job in testing, or
even in tech, is suboptimal is the understatement of the century.

Interviews! As candidates the word traditionally brings out fear and
panic in us. Being suited and booted, sitting in sterile meeting rooms
(or these days, Zoom calls) being bombarded by questions from
judgemental managers or senior tech staff, afraid to give a bad
impression or get something wrong, wondering how we compare to the
other applicants, trying to hide our nerves. We wildly imagine every
interview, every question even, to be a referendum on our career
success to date. Tomes have been written about how to apply for jobs,
how to prepare for interviews, what sort of body language and poise,
the best answers to common interview questions, how to code and
optimise search and sort algorithms for dev whiteboard interviews -
none of which will typically be used in the job.

After all of that, we face not only the pain of rejection (exacerbated if
we are unemployed and the rent and bills are starting to pile up) but
even the possibility that our prospective suitor will “ghost” us, denying
us even the consolation of a “we wish you the best in your job search…”
email much less the decency of feedback. Sadly I find this fairly
common with the less professional end of the recruiters I have applied
to for jobs.

On the opposing side, those of us who have gained or had thrust upon
us sufficient seniority to select and interview candidates don’t have it

easy either. It is terrifyingly common to interview candidates with
ostensibly years of experience in some domain, process or tool and
find out that their knowledge of it is underwhelming going on woeful.
I would never claim that their resume should have been published
in the fantasy literature section, however I have considered it.
Sometimes it is not their fault - the most recent examples I have
seen were almost certainly caused by “embellishment” by the
recruiter who sent the resumes. Also I have found that prior work
context and perspective greatly matter in what can be considered
“expert” in a certain skill - if one has been told for years by one’s
colleagues that mindless, undocumented clicking is a perfectly good
and effective way of exploratory testing, and rewarded for it, one may
naturally assume to be an “expert” in exploratory testing regardless
of how the testing industry at large would see it.

Not to mention the times candidates turn up late without warning or
apology, or in rare cases get argumentative. “Ghosting” by candidates
who after all the work and interviews accept the role and either pull
out the day before for another job or fail to show up, requiring us to
start the whole costly, lengthy and frustrating process again, is also
not uncommon.

One might argue that we should see modern hiring processes from
both perspectives as being like how Winston Churchill saw
democracy - the worst approach, except for all the others that have
been tried…

Musings over joys and
pains of interviewing and
recruiting

https://www.testnet.org/
https://bdd@testnet.org
https://dannorth.net/introducing-bdd/
https://twitter.com/tastapod/status/1077973207464984582?s=20&t=v8rveoj21qNbQoffvhr_1Q
https://twitter.com/bendhalpern/status/1193141566174613504
https://twitter.com/tastapod/status/1077965834297987072
https://www.linkedin.com/feed/update/urn:li:activity:7025971987680251904?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7025971987680251904%2C7026137448447373312%29
https://vimeo.com/43612884#t=184s
https://en.wikipedia.org/wiki/Behavior-driven_development
https://dannorth.net/introducing-bdd/#bdd-provides-a-ubiquitous-language-for-analysis
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://specflow.org/learn/bdd/
https://twitter.com/tastapod/status/1077967702273216513?s=20&t=v8rveoj21qNbQoffvhr_1Q
https://twitter.com/tastapod/status/1077967038398779393?s=20&t=xUUFhE4dHU9lB0GP31P-KQ
https://twitter.com/RobMeaney/status/1077981285031784449?s=20&t=v8rveoj21qNbQoffvhr_1Q
https://dannorth.net/2010/08/30/introducing-deliberate-discovery/
https://bddbooks.com/


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

22 23TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

This is an essay, or rather a set of musings and experiences, on hiring
and interviewing of candidates, along with a short section of being
assessed when looking for work myself and what this taught me. My
experience on both sides of the interview table was chaotic, however
I hope that in my chaos you, the reader, may get something out of it.

A Chaotic Start to Assessing Candidates

I am a senior tester and have been for several years, at least five of
those years as a test lead. Despite this, it may surprise the reader that
I only sporadically had to assess, interview, and appoint candidates
for roles in my team, so up till recently it was an area where I felt naive
and underwhelming.

There are various mundane reasons for this. My first role as a test lead
was as a consultant employed by an external test consultancy, placed
at the same BAU project, for what became four years. If the client
needed another tester, the client manager would find a tester “on the
bench” (in between projects) or on occasion a new grad (I had agreed
to mentor and manage new testers from our tester grad scheme) to
join us. It may be the case that I saw the resume or details of my new
reportee beforehand, however there was no guarantee of that. In later
roles as a consultant (particularly for clients in financial services) I
would typically be a senior member of teams with one or more test
managers. It would be they who would do the interviewing and hiring
and that was fine with me - after my first experiences as an
interviewer and assessor of candidates I had very little interest in it.

So what was this intimidating first set of experiences that put me off
being an interviewer? My first experience of assessing candidates was
not in testing but in coding, at one of my earliest IT jobs (before I was
a tester) at a small startup of about twenty staff and two directors,
one an MD. When I was interviewed to join the company as a DBA, the
interviewer - the dev lead, my future boss - asked me a series of “How
can you move Mt. Fuji?” style questions - such was the fashion of the
day. One of these was “how many optometrists are there in London?”
- for which I made an inspired guess based on assumptions
calculated from the population of London, the number of times
Londoners may each have their eyes checked in a year etc. - the key
being to show my working and thought process to the interviewer. The
only actual DBA-related question I had was simply to take two tables
and write a fairly trivial ANSI SQL query with an inner join and WHERE
and ORDER BY clauses based on some column, which I answered
correctly in a matter of minutes.

After being appointed and working there for about a year, the
Managing Director, not from a dev or DBA or testing background, came
and told me that she was divesting my manager of interviewing dev
and other tech candidates and that I was to do it instead. It seems she
took umbrage at his interview style and thought it too academic and
not based on skills - also “too many people” were being rejected.

Why I was being told to do it when I was still fairly inexperienced,
wasn’t a dedicated developer, had no seniority and had never
interviewed anyone before I don’t know and dared not ask - however
it was well known that at that time there were trust and office politics
issues between the senior staff and the directors. I suspect that I was
simply seen as more loyal. I was ordered to liaise with the recruiter we
used, prepare questions on programming for a written pre-interview
test for every candidate for a tech role and not solicit views or advice
from my own dev team lead. A crazy and difficult situation.

Not knowing any better or having the support of a senior, experienced
colleague, I devised a test for candidates to define terms used in
object-oriented programming and C# and VB.NET (since .NET was our
framework of choice) - questions such as “Explain what is meant by
Inheritance, Encapsulation and Polymorphism” or “In OOP, what is an
Interface?” or “what are the accessibility levels in C#”? I would then
either give them 30 minutes to complete the questions.

Did the above work? In the most loose sense of finding fault with
those who claimed OOP or .NET experiences on their resumes and
didn’t know what interfaces or polymorphism was, undoubtedly yes.
However was this enough to determine who would make a good coder

and who wouldn’t? Clearly not, and the fact that we relied heavily
upon this was dangerous.

However, that wasn’t the worst part. It unfairly penalised those who
knew other programming paradigms but not OOP, or those who had
good programming skills but lacked the precise terminology (or at
least our definition of it) - this is often the case for self taught
programmers. Many of the above would almost certainly be effective
coders with some training. Also, more critically, following the MD’s
instruction I used it as a filter for applicants for every tech role in the
company, not just specific coding roles - penalising skilled people
who simply didn’t do OOP in their jobs.

I also realised afterwards that this could be easily gamed - learning
OOP terms sufficiently to write in a test is much easier than actually
being proficient in coding - and a sharp recruiter asking feedback
from candidates after the interview and learning about our approach
would certainly tell the next candidates to “swot up” on .NET and OOP
definitions.

There was a rather nasty experience with a candidate who got angry
and abusive when offered the test because he came from a data
engineering background and thought the test represented that he was
being baited into a job that wasn’t the same as what the recruiter told
him. This may have been true and these days I would have under-
stood that, however our policy was that every applicant sit the same
test and the directors were adamant about that.

All in all it left me hating doing candidate assessment and inter-
viewing, along with a sense that I was poor, even dangerously
incompetent at it - when in reality I was put in a difficult situation and
poorly trained for it. When a new dev lead took over I was delighted
for him to assume the candidate assessment role - and subsequently
happy to leave it to others for years afterwards.

The above said, I did make some improvements. I scrapped a few of
what I consider sillier rules we gave to the recruiter to filter applicants
- such as our rule of minimum pre-university A Level (UK) grades for
grad and experienced hires. As far as I was concerned, judging people
in their 20s with degrees and/or work experience based on what they
did in exams at the age of 18 was stupid.. However I didn’t tell the
bosses about this.

Lessons from the Other Side of the Table (or Zoom Meeting)

If there is one thing that can make your approach as an interviewer
better, it is by thinking of your experiences as a candidate.

After over two years in a previous role in a startup I was laid off as part
of a company-wide redundancy in late 2020. The company was
struggling due to COVID-related effects. I didn’t immediately look for
work for about three months - partly due to the layoff being in
December, a weak time for recruitment and partly as I was considering
whether I wanted to take my career in another direction - however I
did start looking in earnest in March 2021. To my chagrin, the
application and interview processes for various jobs were frustrating
and gave me much to avoid later when I started interviewing
candidates. Here is a short list -

1. Irrelevant technical tests

I applied for a role as a tester / SDET at a provider of online vendor
tools. They told me that to progress I had to do one of two exercises
- write a fully functional API in PHP or a small online shop site in
ReactJS. Both were based on specifications given to me in a separate
document.

They would be marked based on my final
product’s adherence to requirements
including visual designs, my adherence to
coding standards and my level of
documentation. There was no expectation
(and presumably it would not be covered in
marking) to supply any tests with the above,
however I did manually test the app and
where I could not fix problems in time -
noted errors in the documentation.

I was baffled as to why I would be expected
to do a programming assignment that didn’t
touch on either testing or automation,
however I was told that this was how they
recruit testers - and I wanted the job - so I
chose the ReactJS project and got on with it.

I was given just over a week to complete the
task. Since I didn’t have much experience in
web dev with ReactJS, it was a struggle - and
putting such effort into the above also
prevented me from applying for other jobs.

I did complete the task however I did find it
very frustrating. I do understand the need for
testers to have some understanding of dev
frameworks and tools but making websites
and APIs from scratch, with no focus on
testing practice, does not seem to be the
best way to assess a tester’s competence. I
decided that if and when I interview
candidates, it would really be about the skills
and mindset they would use on a daily basis
as testers, everything else superfluous.

2. Unduly Long Recruitment Processes

While it is true that the more advanced one
is in one’s career the longer the hiring
process takes, there were times when the
whole process between applying, technical
tests, multiple interview rounds and what
would presumably be the final offer seemed
excruciatingly and inefficiently long. For the
job mentioned in item 1, for which I got as far
as the final interview before rejection, the
whole process took nearly six weeks. I
resolved that if I was doing the interviewing,
I would try to conclude the process as fast as
possible.

3. Interviews only based on Languages or
Architectural Styles

Early in my job search I had two technical
interviews (for tester roles) which were
purely on knowledge of some tech. I can
barely recall the words “testing” or “QA” even
mentioned.

The first was for one of the large Indian tech
integrators. It was purely focused on HTTP
and REST APIs - what a request was, what a
response was, what was in a header, what
the HTTP response codes were for specific
scenarios. It went on for about 30 mins. At no
point was I asked how I would approach
testing an API.

The second was an in-person interview
(remember them?) at a company in North
Sydney. I was partly grilled on my knowledge
of C++, which I found strange as C++ was not
on my resume and I never used it in a work

context. Once again the concept of testing
never came up.

These led me to the conclusion that
interviews when I ran them would be
focused on skills actually mentioned on the
resume of the applicant - if they were not
mentioned then I would assume the
applicant didn’t have them, and omit them
from questioning. I was also keen to spend
the majority of the time asking about testing
and QA principles.

4. In-Promptu Interviews With No Time to
Prepare

I found this particularly irritating although
thankfully it only happened once. For the
first interview mentioned in item 3 above, I
got a phone call whilst on a train home by a
member of the team in the hiring company. I
was asked if I could answer a few questions,
which I agreed to and left the train at the
next station to complete due to a bad phone
service on the train. I was not expecting or
had been told of an interview at that time.

I was then, as I said above, grilled on HTTP
and REST API topics for about half an hour. I
knew enough that I could answer most
questions without preparation, however I
was annoyed by and did not appreciate the
idea of immediately putting me into an
interview situation I had not mentally
prepared for. The point of interviewing in my
mind is to allow the candidate to perform as
well as they can, without being blindsided
unless that is a crucial aspect of the job. I
don’t know to this day if this is a common
practice or not.

5. Only regarding skills used in previous jobs
(for at least X years).

This was something I came across
particularly with some recruitment
consultants. It was a particular case with Java
or Python, which I had not used in test
automation at work due to mostly working in
dev teams focused on .NET stacks but which
I had experience with from the university
study I was doing at the same time. I was
told by recruiters on more than one occasion
that since my use of these languages was not
at work, my knowledge of them would not be
taken into account.

While I appreciate that there is a difference
between using a language or a tool in study
and using it at work, I found being essentially
rejected for not having the opportunity to
use them in the workplace extremely
frustrating if downright unfair. It penalises
and disincentives testers to learn new skills
unless they are directly applicable to their
current job - therefore making the move
from being a purely manual tester to a tester
using automation almost impossible. It also
disregards experience in open source or side
projects, a major way for people to
demonstrate competence outside of their
direct paid work. We should focus on what

skills testers bring, and not where they got
them.

I have since spoken to recruiters who say
that they would never reject someone whose
skills were learned and used outside of work,
which cheered me up.

6. Disregarding applicants without CS
degrees.

Not related to interviews specifically but I
was surprised to see so many tester jobs in
Sydney stating (more often than not
mandatory) a requirement for a CS degree.
While testing as a practice is being more
technically demanding in terms of coding,
devops etc. there are many testers,
recognised testing experts and thought
leaders in the industry who don’t have CS
degrees. I don’t have a CS degree and my
postgraduate IT study had not yet been
completed while I was out of work. It also
affects those from poorer or more minority
backgrounds who didn’t have the
opportunity to go to university but can
demonstrate suitable skills in other areas.

It has been said that employers, especially in
times of high demand for testers, will bend
requirements like the above in cases where
candidates have experience or relevant
competence in other areas. This may be true
for some companies although I tend to take
job ads on face value regarding the
mandatory requirements for a role. I know
from speaking to a recruiter that not having
a CS degree was a reason for rejection from
a role in 2021. If an area of skill or experience
or academic background is negotiable or can
be lived without, mark it as “desirable” at
least or leave it out entirely.

My Most Recent Bout of Interviewing

The above all leads me up to a spell last year
where the other tester at my current
employer went on maternity leave and we
began to look for a replacement. My
employer was developing a resource team in
the Philippines, so we worked with a local
recruiter and looked for candidates there.
The recruiter would do some prior vetting
although not on technical or testing skill -
the real assessment of candidates on testing
would be done by the dev team lead and I.
We were looking to appoint testers at what
we considered junior to mid-level - 3 to 5
years of experience - although we
interviewed applicants of as much as 10
years of experience. The role also had a
major client support aspect for which a
separate interview would be done by the
CTO.

However as previously stated I had not
interviewed candidates much in my career,
so I didn’t quite know where to start and had
a lot of nerves about interviewing. Googling
interview questions for testers was pretty
uninspiring.



ISSUE 01/2021
PEOPLE

ISSUE 02/2023
PEOPLE

24 25TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #01/2021

That was until I came across an article by the
British tester Dan Ashby, “How I interview
Testers…” It showed a remarkably good mind-
map of possible interview topics, from which
I formed the basis of a set of technical and
non-technical interview questions.

I also wanted to conclude my part of the
interview process in a single interview of no
more than an hour, which made for a lot of
questions in a short time. I did try to mitigate
this by only asking questions on specific
areas, settling on the following.

1. An ice-breaker question on how the
applicant got into testing and why they
like it over other IT career options.

2. Testing and QA Philosophy questions
inviting the candidate to think about
testing and QA from a more holistic
level.

3. Situational questions for candidates to
explain how they would tackle specific
problems common for testers.

4.Specific testing practices i.e. Exploratory
Testing, Bug Reports

5. Some specific automation questions
only where they related to the specific
role.

6.Career development and learning

I also wanted applicants to perform at their
best and really think about answers outside
of the nervous pressure cooker of the
interview, so I asked the recruiter to give two
situational questions to the candidate at
least four days in advance. These were -

1. “What would you need to learn and do
if you were to plan, execute and report
testing of a pen?” (I wrote a blog article
on just this question)

2. “What are the most important qualities
required for a tester?”

Regarding automation questions I made a
point of only asking questions on technical
skills that were explicitly stated on
applicants’ resumes. If a specific technical
competence were not mentioned, I would
exclude the questions related to it.
Interviews are hard and long enough without
stressing applicants by asking questions
they have no chance of answering.

My manager and I decided in advance that
the purpose of the interview would be to
determine areas of strength and weakness of
candidates. This sounds obvious but I did
not want to dismiss candidates entirely
simply because they got some things wrong
- if it were an area we could handle via
training (almost all things short of a bad
attitude or mindset) and the candidate was
otherwise a good candidate, I saw no reason
not to hire.

I also ignored the degree and education
status of candidates, or where they
developed their skills. If they could answer

the questions I asked and satisfy me that
they had the skills they claimed to have, that
was good enough. I didn’t need a CS degree
or that the skills be learned in a commercial
capacity to confirm further.

I would type and record the applicant’s
answers and study them with my manager
after the interview in a separate debriefing. I
wanted there to be only one testing
interview, only days after the support
interview, and the process to be wrapped up
within a week.

Several candidates went through the above.
We eventually found a candidate we thought
had the right attributes for us and who
would commit to the role. He joined us and
is now performing admirably.

I should declare that I do not consider
myself an expert on interviewing testers - in
fact I have much to learn. Others, if they
follow the above, may find a different
outcome.

Learnings from the Interview Process

The interviews revealed some general points
about the candidates we were getting -

1. Candidates generally struggled with
questions that reflected on the philosophy
of testing or QA. If they were asked what
testing or quality “is”, they would usually fall
back on the idea of it as checking
conformance to requirements. Only a few
candidates related quality to a more holistic
view of quality as “value to a person” or
“value to a person who matters”.

2. In this vein, most applicants tended to
treat testing and checking as being either
very close in definition or synonymous. This
may be down to linguistic reasons however,
and maybe I should have probed further.

3. The question “How do you plan, execute
and report testing a pen?”, given to
candidates in advance, produced a very
mixed response. If there were a tendency, it
would be to immediately assume that full
requirements existed and were available -
which cannot be taken for granted, to make
presumptions about the pen which they had
not seen yet or to start considering
scenarios or edge cases to test without
knowing anything about the pen. Very few
mentioned smoke or exploratory testing of
the said pen, where new testing scenarios
could be developed. Also the tendency was
to directly go into execution ideas without
mention of how to plan or report such a test
(even though it was mentioned in the
question), something alarming considering
that planning and reporting are a critical
part of every test project.

4. Most candidates had great misconceptions
about exploratory testing, such as that it was
just sanity or smoke testing the application
or that it was only done if there were no
written requirements or before the
application was on a QA server. Only a few
candidates understood exploratory testing
as an iterative loop of learning, test creation,

execution and analysis to feed into learning
and more tests. Nobody mentioned
structured time-boxed testing approaches
such as session-based test management.

5. I noticed that some candidates’ resumes
were stated as being “expert” in something
like Selenium when they admitted at
interview that their experience was limited
to using record and play tools and not
Selenium Grid or Webdriver. Similarly, I
found people who were stated as “experts”
in an automated API checking tool like
Postman but who had never written an
assertion or automated check in it. My
colleagues and I discussed reasons for it -
different views of what expertise meant in
different industry domains or countries,
applicants lying etc. However, considering
that the resumes had been formatted and
standardised by the recruiting firm and that
candidates had been very open about their
level of skill at interview, we put it down to
“embellishment” (either deliberately or due
to ignorance) by the recruiter. We did not
blame the candidates and decided that in
any case it was an area we could train them
on.

Epilogue

This article is meant to show how my own
rather chaotic experiences as an interviewer
and being interviewed led to how I
approached interviewing for my most recent
role, and what the questions and approach
revealed about the candidates. I hope you,
the reader, get something from these
experiences and use these to reflect on and
develop your own approach on what to do or
not do when interviewing candidates.

- PAUL MAXWELL-WALTERS

Paul has about thirteen years of testing experience,
having worked within the Energy and Digital Media
industries, Finance, Agri-Tech and Education.

He is actively involved in the Sydney Testing community,
as acting chair of the Sydney Testers Meetup Group, a
blogger at http://testingrants.blogspot.com.au with
Twitter Handle @TestingRants and as an occasional
speaker at conferences and writer in testing magazines

https://danashby.co.uk/2015/12/07/how-i-interview-testers/
https://danashby.co.uk/2015/12/07/how-i-interview-testers/
https://testingrants.blogspot.com/2017/09/on-testing-this-pen.html
https://testingrants.blogspot.com/2017/09/on-testing-this-pen.html
http://testingrants.blogspot.com.au


ISSUE 02/2023
PEOPLE

ISSUE 02/2023
PEOPLE

26 27TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

JERRY WEINBERG
October 27, 1933 – August 7, 2018
–
Gerald Marvin (Jerry) Weinberg was an American computer scientist, author and teacher of the psychology and anthropology of computer software development.
For more than 50 years, he worked on transforming software organizations. He is author or co-author of many articles and books, including The Psychology of Computer Programming.

His books cover all phases of the software life-cycle. They include Exploring Requirements, Rethinking Systems Analysis and Design, The Handbook of Walkthroughs, Design.
In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information Sciences, the 2000 Winner of The Stevens Award for Contributions to Software Engineering, and the 2010
SoftwareTest Professionals first annual Luminary Award.

For over eight years, Jerry authored a dedicated column in Tea-time with Testers under the name “Tea and Testing with Jerry Weinberg”. As a tribute to Jerry and to benefit next generation
of testers with his work, we are re-starting his column.

To know more about Jerry and his work, please visit his official website http://geraldmweinberg.com/

Tea
and

Testing
with
Jerry

Weinberg

When I was five, I decided that when I grew up I'd be a "children's
detective on parents." I didn't quite know what I would look for, but I
realized a lot went on in families that didn't meet the eye. There were
a lot of puzzles I did not know how to understand. - Virginia Satir

If you wish to become more congruent, the cybernetic control model
provides a map as shown in figure below:

To control the system, your actions must be appropriately chosen
from a diverse set, ranging from taking a deep breath to responding
openly to deferring action to later when you can't cope congruently at
the moment. Your observations range from your own body-awareness
to the business situation to the unexpected reactions of others. Your
process model includes several models of how human beings behave,
including a lot of behavior that goes on in organizations that doesn't
meet the eye.

In order to work with people on a practical level, the working manager,
just like the working family therapist, needs a process model that's
more than an isolated collection of models. This article assembles all
of these isolated models into a larger model that can be used as a
day-to-day guide to achieving more congruent management. Then,
later we will apply this model to numerous common situations from
software management.

The Search for a Model

No matter our chosen profession, all of us share Satir's search for
answers to the puzzles of our childhood. Some inquiring minds search
in the tabloids, others in their own families. Most of us carry on this
search every day in our work, and although the work may differ, the
search is the same.Let me tell a bit about my own search, which I have
learned is much like that of others who went into the computer field.
When I was a young boy, computers first appeared in the popular
press. At that time, they were often referred to as "giant brains" or
"thinking machines." Although I had been labeled a very bright young
boy, I wasn't happy. People in my family kept doing things to me that
seemed unfair, irrational, and often totally random.

Computers seemed simpler. Perhaps, I thought, I would first learn to
understand computers, and that learning would help me understand
why people acted in such mysterious ways. I didn't know the term
then (it actually didn't exist yet), but I decided I would become a
programmer/analyst, first for giant brains, then for human beings.

The Technology of Human
Behavior - Part 1

http://geraldmweinberg.com/


ISSUE 02/2021
PEOPLE

28 29TEA-TIME WITH TESTERS ISSUE #02/2021

That's why I got started in computing, and mastered the art of
programming computers. As it turned out, mastering giant brains
didn't help enormously with mastering small ones. Eventually, I
gathered my courage and started seeking out a few special people
who worked directly with people—among them W. Ross Ashby, Anatol
Rapoport, Ron Lippitt, Doug McGregor, Kenneth Boulding, and many
others through their books. Then, when I finally met Virginia Satir, we
became detectives together and shared clues and models. Five years
working with her helped me a lot more than forty years of working
with machines.

Still, I haven't lost my love for the computer as a metaphor. It has
helped me put many other learnings into models, and these models
have helped take some of the mystery out of other people's
behavior—and even a bit of the mystery out of mine. I believe the
ability to use such models gives those of us with a software
engineering background an advantage in understanding human
systems, an advantage partially compensating for our lack of
experience in working with people. To use this advantage, however, we
do need to be aware of its limitations.

Although there's much left to explain, I now have a technological
model of why people act the way they do. It may prove helpful to you,
if you are willing to put the computer technology to one side and
move on to the technology of those smaller, but more intriguing,
brains.

The Satir Interaction Model

My model of why people act or respond the way they do is based on
the Satir Interaction Model. The next figure shows the bare skeleton
of Satir's model. Since this article is concerned with congruent action,
its task is to explicate the Response box, which chooses our actions.
To do that, it will also delve a bit deeper into the other three boxes.

Intake

The first thing to recognize is that response is not limited to the last
step in the model. Even the manner in which I take data from the
world (Intake) is not merely composed of passive looking, listening,
and feeling. I take in some data, then respond by deciding whether to
open up for more, reduce the data by filtering, or proceed with making
meaning of what I already have. The picture below suggests a more
complete picture of Intake as a responsive process.

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

https://leanpub.com/b/thetesterslibrary/
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com


ISSUE 02/2023
OVER A CUP OF TEA WITH FIONA CHARLES

ISSUE 02/2023
OVER A CUP OF TEA WITH FIONA CHARLES

30 31TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

IN
TE

R
V
IE
W

Testing back then, now
and tomorrow. What
could possibly go
wrong?
We asked Fiona Charles
over a cup of tea.

It is with delight that I introduce this month’s interview with Fiona Charles, a veteran practitioner with over 40 years of
industry experience. She is currently an independent coach, consultant, and workshop facilitator specializing in the
human side of software development, quality, and testing.

Greetings, Fiona! I recall hearing your name in the Gerald Weinberg community. It's a pleasure to meet you, and of
course, thank you for taking the time to share your experience and insights with TTwT readers.

- INTERVIEWED BY DAVE LEVITT

FIONA CHARLES
–

Jean Ann Harrison, a Principle Test
Engineer at Biora Therapeutics, has
served the testing community for over 22
years.

Many of those years were working in
regulated environments giving unique
perspective in system engineering and
system testing of of mobile devices and a
thought leader in mobile testing sharing
at various conferences and contributing
articles, books and webinars providing
mentoring throughout the global testing
community.

and its emphasis on the people
side of computing.

Q2: I'm dating myself here, but
many years ago there was a
great discussion thread in the
CompuServe CASE forum with
Gerald Weinberg on being a
good cassandra. I saw one of
your videos on the Satir
Interaction model which was
right on point . I mention that
because as you know, testers
need extraordinary people
skills. Again, this is not a topic
that is treated seriously in
academia or testing literature.
For the newer members of the
testing community, do you have
any other suggestions onwhere
one can get more information
on this subject?

Q1: Like you, I am a veteran, but
the soft skills our profession
needs was not a topic that was
addressed in my formal
studies. It wasn't until I was in
the field for several years when
by chance, I stumbled across a
great little book called
"Peopleware - Productive
Projects and Teams". It
enlightened me to realize that
the three most
importantthings to a successful
software project are PEOPLE,
PEOPLE, and PEOPLE. I'm
curious how and when the light
bulb got turned on for you?

I was lucky, because that light
was on for me from the
beginning of my career in tech.
I’ve told this story elsewhere.
My first real exposure to
software and technology came
in 1978 with a summer job as a
technical writer in my
university’s library automation
department. On day one my
new boss handed me Jerry
Weinberg’s “Psychology of
Computer Programming”,
suggesting I read it to
understand the people I’d be
working with. The technical
content was over my head at
that point, but I loved the book

It may not be treated seriously
in academia or much of the
testing literature, but I do
believe that most people in the
industry recognize the
importance of excellent people
skills—for all software
practitioners, not only testers.
I’ve spoken and taught at many
international conferences in
the past few years, including
developer conferences, and I
can’t think of a single one that
didn’t have at least some
sessions devoted to people
skills. Given the Agile emphasis
on collaboration and practices
like pair or ensemble
programming/testing, it would
be a challenge for a tester not
to know that growing her/his
interpersonal skills is essential
to success in a tech career.

https://huddle.eurostarsoftwaretesting.com/resources/test-management/think-issue-delivering-unwelcome-messages-fiona-charles/


ISSUE 02/2023
OVER A CUP OF TEA WITH FIONA CHARLES

ISSUE 02/2023
OVER A CUP OF TEA WITH FIONA CHARLES

32 33TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

Jerry Weinberg’s books are obviously still relevant, as are those
written by many of his students. Shameless plug: The Gift of Time,
which I edited, has essays about their own work by several of Jerry’s
students and colleagues, and serves as a good introduction. It’s
available from the publisher: https://www.dorsethouse.com/books/
gift.html and from Amazon. And here’s an article I wrote many years
ago on how to improve people skills on the job: http://www.quality-
intelligence.com/articles/Bulking_Up.pdf

There is a wealth of material available online, as well as classes and
conference sessions. To name just a couple, Ministry of Testing has
good content https://www.ministryoftesting.com/dojo/ , as does
the EuroSTAR Huddle https://huddle.eurostarsoftwaretesting.com/.
Most conferences also have YouTube channels with useful material.

I also recommend that people not limit themselves to testing-
related resources or to what they can learn at work. Most (if not all)
human activities provide learning opportunities, including skills you
can bring to your work. I wrote about that here: http://www.quality-
intelligence.com/articles/GrowingYourCareerInToughTimes.pdf

Q3: For this question, I'd like to combine one of your agile focused
presentations on developing amindmap as a lightweight test plan
and the Satir Change Model. I never tried developing a mind map,
but I tried other approaches. I'd be interested in your thoughts
and challenges on introducing a new technique into the teams
you've coached.

I’ve done webinars, workshops, and conference tutorials, but when
I’m working directly with a team I don’t focus on techniques, but
rather on collaborating to solve a problem. I might use that as an
opportunity to teach a technique I use, but it’s also a way for me to
learn new techniques and approaches from others.

Q4: A common challenge many testers face is that “management
just doesn’t get it.” What “it’ means is open to interpretation, but
from my own experience, management says they want quality, but
doesn’t want to invest in the processes, skills, training, etc. that
are needed to establish a quality culture. In effect, quality is still
viewed as something that can be addressed by testing alone. Yet,
when a serious defect occurs, management shuns responsibility
and blames the people in the trenches. GeraldWeinberg would call
this a Blaming culture. This is a two-part question:

Have you experienced this yourself when you were a tester and if
so, how did you deal with it?

Have you noticed this in the organizations you consult and how
have you dealt with it?

My practice has always been to refuse to blame. When a problem
comes up, I focus on solving it rather than on trying to assign blame.
Ask “how are we going to solve it?” Later, it might be useful to try
and understand how a mistake happened or a problem occurred,
but knowing who did it is usually the least useful piece of
information. And it’s terrible for workplace morale.

Q5; The previous question draws to mind an examination of an
organization’s reward system. I’ve always said, if you want to
understand what an organization values, don’t listen to what it
says, but look at what it rewards. Case in point: I have seen Product
Owners ship garbage software for the sole purpose of hitting the
ship date and getting a bonus. Clearly, this is a dysfunctional
reward system. Have you experienced similar issues in the clients
you have consulted, and if so, did you try to address it and if so,
how?

All you can do is the best work you’re capable of, recognizing that there
might sometimes be good business reasons for settling for a lesser-
quality product. Understanding the business drivers and limitations is
an important dimension of doing good quality work. Of course, you
advocate for quality, and I’ve always done that. But if you’re in a
situation where you profoundly disagree with management, why waste
your efforts and make yourself miserable? Go somewhere else. Once I
realize I can’t be effective as a consultant, whatever the reason, I leave.

Q6: I haven’t done a detailed analysis of themale to female ratio in QA
teams, but it seems to me I see many women in testing at all levels of
line and leadership roles, but as a part-time educator, I see very few
women in my Computer Science classes. Any thoughts on this?

We’re living in a time of gender backlash. Remember when Lego was
just Lego, marketed to all children? Now it’s gendered. If you look
around at children’s clothing and toys, gender stereotyping is
everywhere: boys get deep (more adult) colours, active toys and
dinosaurs; girls are inundated with cute cartoonish princesses and
animals in pink and pastels.

Sadly, it’s not unusual for both boys and girls to believe that
technology isn’t for girls, and many teachers agree and steer girls away
from STEM. Women played a very important role in the early
development of software, but children and even adults don’t know that
because the history isn’t taught in schools or universities.

Q7: The testing community has its share of many interesting and
diverse perspectives, sometimes philosophical. What individuals do
you like to follow and what do you find interesting about them?

I don’t really follow anyone consistently but here’s a small selection of
people whose thinking I find interesting: James Christie, Anne-Marie
Charrett, Elizabeth Zagroba, Dan Ashby, Maaret Pyhajarvi, James
Lyndsay, Dave Snowden, GeePaw Hill, Dorothea Baur. I also look out for
posts from organizations like the Algorithmic Justice League and the
Centre for Digital Ethics. I haven’t included links because all of these
are readily findable via search engines and many people are leaving
Twitter for other forums like Mastodon.

Q8: For my final question, is there anything you’d like to share that
hasn’t already been covered? It could be special topics of interest, an
upcoming seminar, or whatever.

Currently I’m most interested in the human and societal impacts of
software and the ethical issues related to those. We are at a point in
history where software, along with related technology like robotics,
runs the world. The growth has happened so fast and in so many
directions that the impacts have outrun our laws in many areas such
as privacy and surveillance, to name only a couple. And like any major
societal shift, the proliferation of advanced technology and its ubiquity
in modern life brings potential for both enormous benefits and serious
harms. I see this as an ethical concern for software practitioners.

I’ve done a number of conference keynotes and workshops on
different aspects of that, starting with a keynote at Nordic Testing Days
titled 10 Commandments (and a Codicil) for Ethical Testers. I based the
“commandments” in that talk on the [American] Association for
Computing Machinery (ACM) Code of Ethics. Although there are other
similar codes of ethics for computer professionals, I chose ACM’s
because this is the one adopted by AST. It’s an excellent,
comprehensive code of ethics, and I recommend that every tester
become familiar with it (or with one of the others like the British
Computer Society’s).

In addition to these everyday ethical practices, there is much that
testers and other quality practitioners can do to help maximize the
benefits and minimize the harmful impacts of all software. We need to
be especially vigilant about this in a time when we are constantly
bombarded with starry-eyed hype about Internet of Things, and AI that
may or may not deliver what is promised, and could in fact cause
bigger societal problems when it’s working as designed.

Beginning with UKSTAR and EuroSTAR in 2019 and most recently at
Agile Testing Days 2022, I’ve delivered keynotes at several
conferences talking about this and highlighting some particularly
bad software impacts, including from some commonly used
products. Software doesn’t have to kill people—as happened with
the 737 MAX crashes—to be instrumental in causing irreparable
damage to individuals and to human society.

I believe that our overriding concern should be human impact.
Within that, I start with the premise that our goal as software
practitioners should be software that enables and enhances
human capability and creativity.

At every stage of the development process, or when learning about
new products, we must always ask (and think carefully about the
answers):

What could possibly go wrong?

Of course, there are other questions we should ask and things we
should do on that path, in both our professional and personal lives.
There isn’t room for more detail on those here, so I’ll save them for
a future blog post or article.

If you’re interested in the meantime, you can see my thoughts in
the keynote I did at Targeting Quality 2022: https://
www.youtube.com/watch?v=VVIxk92MeBU

I’ve put my everyday commandments onto a card, with the title 10+1
Commandments for Ethical Techies, available at https://
tinyurl.com/Commandments-4-Ethical-Techs.

My Nordic Testing Days keynote which explains each
commandment in more detail is available online at https://
www.youtube.com/watch?v=aQHt4Pao2Vs.

It's been a pleasure, Fiona! Thanksagain for your time. Hopefully
our paths will cross one day,

“At every stage of the development process,
or when learning about new
products, we must always ask

(and think carefully about the answers):

What could possibly go wrong?”

https://www.dorsethouse.com/books/gift.html
https://www.dorsethouse.com/books/gift.html
http://www.quality-intelligence.com/articles/Bulking_Up.pdf
http://www.quality-intelligence.com/articles/Bulking_Up.pdf
https://www.ministryoftesting.com/dojo/
https://huddle.eurostarsoftwaretesting.com/
http://www.quality-intelligence.com/articles/GrowingYourCareerInToughTimes.pdf
http://www.quality-intelligence.com/articles/GrowingYourCareerInToughTimes.pdf
https://www.youtube.com/watch?v=VVIxk92MeBU
https://tinyurl.com/Commandments-4-Ethical-Techs
https://tinyurl.com/Commandments-4-Ethical-Techs
https://www.youtube.com/watch?v=aQHt4Pao2Vs
https://www.youtube.com/watch?v=aQHt4Pao2Vs


~
Pe
op
le

34 35TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

~
Pr
oc
es
se
s

QCSD AT IFM
ENGINEERING:
AN
EXPERIENCE
REPORT

- RAHUL PARWAL

Rahul Parwal is a Software Tester from India. He is a
recipient of the prestigious Jerry Weinberg Testing
Excellence Award.

Rahul is an avid reader, blogger, and conference speaker
who likes to share his thoughts on various social media
platforms. Recently, he has also been inducted as a
LambdaTest Spartan, & a Browserstack Champion for his
work in the field of software testing. Presently, he works
as a Senior Software Engineer with ifm engineering in
India.

Have you ever wondered what makes a product truly high-quality?

As a systems thinker, I believe that the answer lies in the interactions between people, the product, and the project itself. Quality is not simply
a measure of the product alone, but rather a reflection of the quality of the individuals creating it – their character, their thought processes,
their values – as well as the environment in which they work together to bring it to life. In fact, without human beings, quality wouldn't exist at
all.

In this article, we will talk about the critical role that people, products, and projects play in determining the overall quality of any given
outcome, and how we are leveraging a popular QCSD framework to help us create better products, projects, and teams.

I first came across the concept of Quality Conscious Software Delivery (QCSD) during a virtual conference called TestFlix 2020. It was introduced
by Lalitkumar Bhamare, the creator of this model. As he explained the principles behind QCSD, I was fascinated by how it emphasizes not only
the quality of the software product but also the quality of the entire software development process. I realized that QCSD aligns perfectly with
ifm’s quality conscious engineering process where quality is at the forefront of every aspect of software development.

Introducing the QualiTree Model: A Holistic Approach to Quality

Quality is not a singular entity, but rather a sum interaction of people, product, and project. This is the concept behind the QualiTri Model, an
approach developed by Lalitkumar Bhamare. This model has three notions: the project notion, the people notion, and the product notion.

The project notion of quality refers to the environment in which the product is being developed. It includes factors such as management
support, organizational views of quality, and collaborative work processes. On the other hand, the people notion of quality looks at the
individuals building the product and their skills, experience, and mindset.

Finally, the product notion of quality focuses on the design thinking aspect of products, systems thinking, quality criteria, and testability. By
considering all three notions, the QualiTree Model provides a holistic approach to quality that accounts for all the factors that contribute to a
successful outcome.

At ifm engineering, we have also implemented experiences that aligns well with this quality model. We have also enhanced some things to
align with the QualiTree Model.

Project quality encompasses several factors, such as processes, environment, support, culture, collaboration, communication, and agility. To
foster these qualities, an organization needs management support, the right tools and training, a quality culture, collaboration, and more.

At ifm engineering, we initiated Q-Talks at the start of previous year, inviting quality leaders from other organizations to talk about their
experiences achieving quality in their contexts. These talks were followed by workshops, such as Engineered Luck, which focused on how
culture, collaboration, and support can engineer quality. Our Tech Fest initiative also provided a platform for different teams to share their
quality journeys within the organization and cross-pollinate ideas around quality attributes.

It's essential to note that ifm engineering’s prioritization & understanding for quality was a big enabler towards building this quality culture
and environment.

https://testingtitbits.com/jw-excellence-award/
https://testingtitbits.com/jw-excellence-award/
https://www.linkedin.com/in/lalitkumarbhamare/
https://www.linkedin.com/in/lalitkumarbhamare/


ISSUE 02/2023
PROCESSES

ISSUE 02/2023
PROCESSES

36 37TEA-TIME WITH TETERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

The people notion of quality focuses on the knowledge, skills, mindset, attitude, collaboration, and communication of the people building
the product. To enhance people quality, we at ifm engineering conducted workshops and game storming exercises to foster skills and mindset
on quality. Some of our teams also started to get involved in the team retros more frequently to encourage discussions and find solutions for
quality issues. A Learning & Development platform is also setup and available to anyone to learn & share new knowledge and skills with their
colleagues.

By valuing quality consciousness and promoting a culture of collaboration, and support, ifm engineering focuses on creating quality products
that meet their customers' needs.

The third and final notion is product quality, which pertains to the design, systems thinking, and quality criteria used in creating the software.

The Product quality is particularly important as it ensures that the software meets the requirements of both the customer and the
engineering team. To achieve this, the quality criteria need to be explicitly defined and aligned with the product and customer
requirements. One effective way to do this is through the Heuristic Test Strategy Model (HTSM) developed by James Bach. By using
HTSM, software development teams can discuss and explore the criteria that matter to their context, such as capability, reliability,
usability, and charisma, and determine the test techniques and coverage that they should employ.

In our organization, we have implemented various techniques to ensure product quality, such as defining quality attributes, having
frequent team retrospectives, and fostering a culture for inter team demos and stand-ups. We also conduct workshops and
collaborative sessions that focus on improving our skills and mindset as a team, which has helped us avoid common pitfalls and
work more efficiently together.

In summary, project quality, people quality, and product quality are all essential notions of quality in software development.
By prioritizing these areas and implementing effective techniques, our software development teams focus on creating a high-quality
software that meets the needs of the customer.

Understanding 4Es of QCSD



The QCSD model, which stands for Quality Context-Specific
Development, offers a four-step framework for implementing quality
practices. This framework is known as the 4Es of QCSD: Enable,
Engage, Execute, and Evaluate.

The first step is to Enable the people and project for quality. This
means creating opportunities for collaboration and enabling the
right mindset, skills, and culture within the organization. It's
important to start with small changes and to make consistent
progress towards quality goals.

The second step is Engage. This involves actively exchanging
information, skills, and perspectives through collaboration sessions.
This can include discussing coverage, design strategy, risk storming,
user interviews, and more. Engagement takes time, but it's worth the
investment to do the right things the first time around.

The third step is Execute. This is where the actual work happens,
including developing clean and testable code, creating effective
testing strategies, automating checks, and establishing a continuous
feedback loop using tools like CI systems.

The final step is Evaluate. This involves gathering evidence from the
previous steps and using engineering metrics to identify what's
working and what's not. This information can be used to improve the
Enable, Engage, and Execute steps and make continuous progress
towards quality goals.

The 4Es of QCSD provides a helpful framework for aligning quality
practices our organizational goals. By enabling people and projects
for quality, engaging in active collaboration, executing with clean and
testable code, and evaluating progress with engineering metrics, we
can continually improve our quality practices and ensure the delivery
of high-quality products and services.

Positive Experience of Implementing QCSD in ifm engineering

Implementing Quality Consciousness in Software Development
(QCSD) has several benefits that can significantly improve the quality
of software products. Here are some of the key benefits of
implementing QCSD in my project and work context:

1. Shared Understanding: One of the most significant benefits
of practicing QCSD is shared understanding. When developers,
testers, and other team members collaborate and discuss the
requirements of the product, it leads to a shared
understanding of the project. This shared understanding saves
time in the long run as we as testing team tester do not need
to learn about the product after it has been developed, which
can be a time-consuming process. By discussing the product
requirements and design from the outset, everyone on the
team now gets a clear understanding of what they need to do
to achieve the desired outcome.

2. Better Collaboration: QCSD also promotes better pairing and
collaboration between developers and testers. By working
together, developers and testers can exchange skills and ideas,
leading to better quality software. Through pairing and
collaboration, our developers now suggest tools and utilities
that testers can use to improve the quality of our work.
Collaboration also helped to break down silos within our team
and promoted a culture of sharing knowledge and skills.

3. Transparency and Trust: QCSD promotes transparency and
trust within the team. By having an open and transparent
culture, our team members now discuss issues and challenges
without fear of blame or recrimination. As trust is established
within the team, it lead to a more collaborative and productive
working environment.

4. Improved Quality from Design Phase: QCSD helps to embed
quality in the software development process from the design
phase. By considering quality at the design phase, we could
identify potential issues early on and how to avoid them. This
proactive approach to quality saved our time and resources
and lead to higher quality products.

5. Improved Testability: QCSD promotes discussions around
testability, which leads to improved testability of the product.
By having active discussions around testability, we could
identify potential issues that slow down our testing and
eventually work to address them. This led to improved quality
and a more effective testing process.

These benefits have contributed significantly to the quality of our
software products and have helped to create a more productive and
collaborative working environment. While we have seen
improvements in bug and lead time related metrics, I unfortunately
cannot disclose them due to confidentiality reasons. However, we
are still implementing more, monitoring our progress and look
forward to experiencing more benefits from implementing quality
conscious software delivery.

In conclusion, implementing QCSD can have a significant impact on
the quality of software products. By promoting shared
understanding, better collaboration, transparency, trust, improved
quality from the design phase, and improved testability, teams can
produce high-quality software that meets the needs of their
customers.

ISSUE 02/2023
PLACE YOUR CATEGORY HERE

ISSUE 02/2023
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

38 39TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

ISSUE 02/2023
PLACE YOUR CATEGORY HERE

ISSUE 02/2023
PLACE YOUR CATEGORY HERE

38 39TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf


ISSUE 02/2023
PROCESSES

ISSUE 02/2023
PROCESSES

40 41TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

US HEALTH CARE
TESTING-
CHALLENGES &
KEY POINTS
FOR
SUCCESS

- DR. SANJAY GUPTA

Dr. Sanjay has received Doctorate from Indian Institute of Technology, Mumbai, India. He
has 22 years of IT experience with different roles as Associate Director, Senior Training
Executive, Java/Test Consultant, Test Manager. In his current role, he is working as Software
Development Associate Director at NTT Data, Bengaluru. Dr Sanjay is enthusiastic about IT
Transformation, Digital current interests are DevOps, Automation and Health Care. Sanjay
is AZ-900 & Sun Certified Java programmer as well as Sun Certified Trainer. He has
published nearly thirty research papers in international journals and presented research
papers in more than fifteen international and national conferences. His current areas of
research, study, and knowhttps://www.linkedin.com/in/lalitkumarbhamare/ledge
dissemination are Health Care, Cloud, DevOps, Java, J2EE technology, Insurance domain
and test Management tools. His contributions towards Science and Technology have
recognized him a place in Marquis Who’s Who in Science and Engineering.

He can be reached at sanjay.gupta4@nttdata.com

Abstract:

Health Care Domain Functional knowledge is one of the most important
skillset & plays a critical role while testing healthcare applications :-
Applications, Data Flows & Integrity, Reports, Enrollment Process, ID Card
generation, Claims and Benefits along with many processes to ensure
that factors like HIPAA standards, Data Security, compliance, cross
dependency are considered during System Integration / User Acceptance
Testing to ensure delivering the defect free software in production
environment.

In this Article, author discusses the key challenges faced during testing
phase along with the solution as Success factors to release highest
quality software to benefit our esteem readers.

Introduction:

At a high level, Healthcare Domain can be divided in two parts (1)
Payers and (2) Providers. These services are covered under the terms
of product/Health Care policy. A member can purchase the suitable
product/policy from the payer organization through various channels
like company website, agent or third party.

Providers are Hospitals or Doctor Clinics where a member can receive
the medical services in need.

On one side a member purchases a healthcare product from the
payer organization suitable to his/her needs and during the event
when the medical services are required visits providers like Hospitals
or Doctor clinics.

By now, you will have an idea that there is a continuous data/
information flow between Payers and Provider organizations when we
seek medical help. It is critical to maintain the Data integrity, Data
Privacy and Data availability along with providing best medical
services/treatment to a member and ensuring the expenses are taken
care of without bothering the member. Medical bills are generated by
providers and the claims are closed by Payer organizations as per the
contract written in the policy/product document.

FIG1: A HIGH-LEVEL VIEW OF US HEALTHCARE PAYER ORGANIZATION AND ITS KEY COMPONENTS

https://testingtitbits.com/jw-excellence-award/


ISSUE 02/2023
PROCESSES

ISSUE 02/2023
PROCESSES

42 43TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

In this article the author would like to discuss the Enrollment
process in detail along with the best practices followed during the
software testing phase.

Enrollment Process: Enrollment is first process to ensure that new
/ existing customers/members are enrolled successfully with payer
organization. In an Individual Policy, a policyholder is added under
a plan with an effective date by paying a premium for the benefits
provided by the insurer/payer. From this date a member is eligible
for medical treatments, submitting claims and receiving benefits.

In Group Policy, a member is added to the group (which is already
added under a plan) with an effective date of which he/she is
eligible for submitting claims and receiving coverage. For example,
an organization will buy the Group Policy from Insurer for their
current employees.

As a Software Tester, it is important to understand key entities/
terminologies used in Health Care domain

The Key Entities include-

Insurance company: Medicare, Medicaid, Payer, Provider etc.

Patient/Consumers: Patient Enrolled

Regulatory Authority: HIPAA, OASIS assessment, HCFA 1500
and UB92, etc.

Healthcare and Life-Science solution Vendors

Basic Terminology of Health Care System

Payer: As the name suggests, Payers are the organization who
takes care of expenses towards the medical treatment during the
event when an enrolled member (Policy Holder) avails medical
services

Provider: A health care professional (doctor), Hospitals, clinics, labs,
Pharmacies etc. licensed to provide health care services

Claim: A request to health insurance company / Payer to pay a bill
for health care service availed by a member

Broker: An insurance professional, who negotiates, procures
insurance on behalf of insured or prospective insured/member

Finance: Insurance bodies that pay for medical expenses, it could be
government (Medicare or Medicaid) or commercial

Medicare: A federal health insurance program for senior citizen and
permanently disabled people

Medicaid: A joint and state program that helps low-income families
and individuals pay for the cost associated with medical care.

CPT code: A current procedural terminology code is a medical code
set to describe medical, surgical and diagnostic services.

HIPAA: It is a set of rules and regulations which doctors, hospitals,
healthcare providers and health plan must follow in order to
provide their services.

Member Enrollment

Below is the generic flow/ operations for member enrollment and
its different combinations

Member Application

- Enrollment, reinstate, and terminate a member.

- Remove and add a dependent

- Generate premium bill.

- Process premium payments

While you are testing the enrollment process, it is important to include
positive and negative test scenarios during System Testing:

Globally, the standard 834 file format is used for various functions of
health plans and membership enrollment. It includes the following
steps.

1. New Enrollments/Adds – including a new member(s) to the
health plan.

2. Disenrollment/Terminations – eliminating an existing mem
ber(s) from the benefits plan.

3. Changes in enrollment – changing a member(s) information
data for an existing benefits plan member(s)

4. Reinstatements – restoration of a previous benefits plan
member(s)

All the information is submitted to the insurance payer or healthcare
organization that is accounted to pay health expenses and administer
benefits and insurance. It includes insurance companies, healthcare
professionals or organizations, such as PPOs or HMOs, government
agencies, such as Medicaid or Medicare. The information consists of:

- Member name and identification

- Plan network identification

- Member eligibility and/or benefit information

- Product/service identification

Similar way, it is recommended to understand the functional flow of
other processes like Welcome Kit generation, benefits, claims, Billing,
HIPAA compliances, Reporting etc.

Key Challenges and Best practices to overcome from themwhile testing
Healthcare Applications

Below are the key challenges faced while testing healthcare application

Knowledge Spread: Ensuring the right mix of functional/ domain
knowledge spread among QA teammembers: It is important to maintain
the right mix of functional knowledge. Periodic review of Skill Matrix for
all the team members against the required Techno-functional
knowledge required for QA Team responsible for Testing.

Inclusion of interoperability, compliance, regulatory, security, safety
testing along Non-Functional, Functional and Integration testing

Testing team needs to be functional trained on the various modules,
clinical usage, and the environment the software will be used for

Usage of HealthCare Domain vocabulary: It is impactful and impressive
when you use the right domain specific terminologies during the
discussion with other stakeholders. Below are the few domains specific
terminologies recommended for readers to start with:

Impact Analysis: Dependency of software modules- Testing team
needs to ensure that any changes in one component or layer
should not lead to side effect on the other. One can use
Dependency Structure Matrix (DSM) [1] to analyze dependencies
among different modules.

Common Positive Test Scenarios

- With the current, past, and future effective dates enroll
different types of members.

- Inquire and change member data.

- Produce premium bill for an active member for the following
month.

- Terminate an active member with past, current, and future
termination dates greater than the effective date.

- Re-enroll a terminated member with current, past, and
future effective dates.

- Reinstate a terminated number.

Must have Negative Scenarios

- With insufficient data enroll a member without mandatory
information

- For a terminated member produce a premium bill for the
following month

Test Case Optimization: One can use different techniques like
Orthogonal Arrays [2] to optimize the Test cases. These
techniques help in identifying the duplicates and redundant Test
cases and ensure the Test Case numbers are optimized without
compromising with the test coverage.

Along with the functional knowledge, it is critical for team to
ensure data collection and measuring the Key test Metrics [1] to
ensure the good health of the project. A good functional
knowledge in Health Care domain along with technical
knowledge ensures the quality testing delivery.

Requirement’s walkthrough and reviews with Health Care
Business SME: Understanding the requirements plays an
important role to do the justification to testing. It gives an
opportunity to know how the requirements under test impacts
end customers. What was the functionality before the changes
and what is expected? The time QA team designs Test Cases, it is
important to get it reviewed with business owners. Similar way
when they are sharing the Test results, it is advisable to get it
review with Business owners. The review process for Test cases/
results helps in capturing defects proactively. As per my
experience, a rigorous review process helps in stopping around
10% defects to production environment.

Automation & Regression skill set: Each Functional Tester needs
to learn minimum one Automation Tool along with their rich
functional knowledge. Automation not only helps in cycle time
reduction for a given task, it also ensures the quality of the
deliverables. A regular enhancement of regression suit ensures
that any changes/upgrades have not broken the basic
functionality of the application under test.

Know your Test Data: Selecting and identifying the right Test
Data for your testing is an art that comes with experience and
functional knowledge. A good testing professional must know
how to write query to fetch the right set of Test Data from
Database. A knowledge of the table structure and their
relationship is good to have.

Knowledge Management and Standard Operational Procedure
(SOP): Documenting knowledge documents and SOPs are must to
ensure that when a new member joins the team, they are self-
guided to go through the Knowledge documents before they start
the classroom training sessions. In new working paradigm where

most of the professionals are working remote, one can record the
training sessions and make them part of KM. A periodic review and
updates of knowledge documents and SOPs helps in keeping latest
knowledge. A small live hand on Test helps the participants to know
the level of their understanding.

Co-ordination and One Team Spirit: As Testing team is the
gatekeeper in ensuring the quality of the software, Strong
coordination among QA, Development, Business Analyst, Release
Management, and other stakeholders helps in expediting the testing
window. A short daily standup meeting helps in resolving the
bottlenecks and issue, if any?

Review productivity data for your Team: It is always recommended
that one must maintain and review the Software Testing productivity
metrics. The recommended key metrics are Test Case Design, Test
Case Execution, No of Valid Defect found, Number of Defect Rejected
by Development Team, no of comments found during Test case/Test
Result reviews, no of items missed the delivery timelines. Reviewing
these data with team helps in knowing the strengths and area of
improvements.

Rewards and Recognition: Keeping the ownership, sincerity, and
initiative-taking team, it is very important to recognize their efforts
in larger forum. Reward them and often sit together to have a lunch.
In virtual and remote workplaces, it can be done over a meeting with
video. Try to meet the family members and talk about their
wellbeing. A personal touch does miracles and everyone work as one
team & One Family

Summary: In the present pandemic time and challenges, HealthCare
software testing is critical and important to ensure that the end
customers are receiving the services in time with accuracy.
Functional Domain knowledge along is important to ensure quality
deliverables. Continuous reskilling along with Automation helps in
reducing the cycle time of QA Delivery. Internal and Business Test
Case/Result reviews ensures that defects are proactively captured.
Leadership motivation and encouragement helps in bringing the
self-commitment among the team members.

What Next? Author would like to write few more functional topics to
give readers a complete understanding of healthcare landscape.

Acknowledgment

The author would like to thank and gratefully acknowledge the
support and encouragement provided by the entire QA Team: Yamini
Negi, Abha Singh, Prashant Gajjala, Hema Reddy, Nikitha G, Sehla
Saba, Suraj, Ashik Shetty, Deepak B, Jyoti, Vineetha K, Pavani, Bhagya
Shree, Saikat B, Maneesha J, Lakshmi Nandeesh, Shubha R and
Akarsh. Thanks, are also due to Vikas Saini, Franklin, Abhijit Adak,
Vani Rajasagi and Sudhakar Paragiri for great support and encour-
agement. Special Thanks to Greg Lupica for continuous motivation
that helped in writing this article. Last but not the least, thanks to my
wife Archana, Sons Rishi & Ved to encourage me to complete this
article.

References:

1. Not Just Numerical values by Dr Sanjay Gupta, February 2014,
Year 4 Issue, Tea-time with Testers

2. Optimize Software Testing By Orthogonal Way by Dr Sanjay
Gupta, October-November 2014, Year 4 ISSUE X



TEA-TIME WITH TESTERS ISSUE #02/2023
45

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of time.

Over the last ten years, Tea-time with Testers has
published articles that did not only serve the
purpose back then but are pretty much relevant
even today.

With the launch of our brand new website, our team
is working hard to bring all such articles back to
surface and make them easily accessible for
everyone.

We plan to continue doing that for more articles,
interviews and also for the recent issues we have
published.

Visit our website www.teatimewithtesters.com and
read these articles.

Let us know how are they helping you and even
share with your friends and colleagues.

If you think we could add more articles from our
previous editions, do not hesitate to let us know.

Enjoy the feast!

https://www.teatimewithtesters.com


46 47TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

In last issue I took my first, presumptive look at #ChatGPT for testing. The app has real potential, and
seems to have some ability to learn. It’s tempting to run ChatGPT through a few exercises and come
to a conclusion. Really the software needs a bit of a deep dive to come to any significant conclusion.

If you’re not going to do, but you want to outsource it, well, real on.

But first, I digress.(It’s worth it.)

The Bluffer’s Guide

When I was in high school my mother purchased a series of books called something like “The bluffer’s
guide.” Each would have a title worded “The bluffer’s guide to X”, where X might be golf. wine, the stock
market, computer programming, or skiing. Each book was very thin, perhaps 30 pages, and very small –
perhaps three inches by five inches in size. A quick reader could digest one of these books in about an
hour. Each book would teach you how to convey the idea that you had much more expertise in the
subject than you actually did. The computer programming book, for example, suggested that you find
out what programming language the other person knew. If they knew C++, you could say you were a
Fortran Programmer, and if they said Fortran, you could say C++. The finance book said that if you were
ever pressed on a recommendation, you could say “I’m holding off a bit to see what the Fed does next”,
as the Federal Open Market Committee (FOMC) meets about every six weeks, and higher interest rates
will be bad for the stock market, while lower interest rates will hurt the economy.

As I read I remember coming to the slow realization that the books were actually teaching you about
the subject. Not a great deal; I didn’t know why rising interest rates make the market go down. But a
little. I particularly remember the Bluffer’s guide to golf suggesting that you wake up early in the
morning and walk a famous course, enough that you could make up an inventive story about a few
holes, along with the hole number. Anyone in your listening group hearing the story who played that
course would be inclined to believe you. It struck me at the time that that was a lot of work to go to for
a lie. A reader might be more likely to actually try golf instead. Perhaps that was the point.

The point of bluffing was to create the illusion of mastery. With an hour, a good bluffer could appear to
mere civilians as an expert. JB Rainsberger told me that among practitioners, all that it takes to have
expertise in a specific subject is to read three books. I’m not sure I agree, but perhaps JB was speaking
of real tutorials, while doing exercises and following along.

All this reminds me of bullshit. And by bullshit, believe it or not, I mean something specific. Harry
Frankffort’s wonderful little book defines Bullshit and something between the truth and a lie. Or,
perhaps, in a direction. Where truth and lies are left to right, Bullshit might be up and down. I will
explain.

On Bullshit

Frankfort says that bullshit is speech designed to convince without
regard for truth. The bullshitter has an agenda – to get you to do
something. Words come out of their mouth. The words might be true,
they might be a lie – the bullshitter does not care. Asked why a
practicing political philosopher would focus on such a lowly task,
Frankfort replied “Respect for the truth and a concern for the truth
are among the foundations for civilization. I was for a long time
disturbed by the lack of respect for the truth that I observed…
bullshit is one of the deformities of these values.”

As a software tester and journalist, I understand that statement.
Often I have explained the value of testing is that it has the least
incentive to lie. Project Managers can ignore problems; analysts can
say that the analysis is done because a deadline has arrived.
Architects can wave their arms and draw boxes. Programmers can
shrug and say “it compiles” It is the tester who wills uh “I can’t log
in”, “search is failing”, or “I cannot check out with a credit card.” In the
other roles, you can get in trouble for speaking truth to power. In
testing, when I have asked respectfully “You want I should lie to you?
I can do that if you’d like”, the answer has always been no.

Combine bluffing and bullshit and you get ChatGPT.

That sounds overly critical, so let me explain. Bluffing Bullshit is
different than full of sh*t. It implies the reader at least did read one
book on the topic. Think of it as a college freshman or sophomore,
in a class outside their major, trying to get at least a C minus on an
essay. There won’t be any real insight into the topic, but our college
student will put the effort in to go to wikipedia, plus doing keyword
searches, to come up with the right buzzwords to use. They will also
have conversational English. Words will have proper tense. I asked
#ChatGPT to create a sales script for outsourced and offshore testing
services. This is what it came up with:

Certainly! Here is a template you can use as a starting point:

Subject: Offshore Software Testing Services

Hello,

Are you looking to improve the efficiency and cost-effectiveness of
your software testing process? Our company specializes in providing
offshore software testing services.

Our team of experienced QA engineers can help you ensure the
quality and reliability of your software products, while providing
significant cost savings compared to in-house testing.

Some of the benefits of working with us include:

Flexible engagement models to fit your specific needs

A wide range of testing services, including functional, performance,
and security testing

State-of-the-art testing infrastructure and tools

Timely and accurate reporting

We would love the opportunity to discuss how our services can
support your business goals. Please let me know if you have any
questions or would like to schedule a call to learn more.

Best regards, [Your Name]

]This is not wrong, per se. Not exactly. It just demonstrates no real
insight. A human copywriter with no testing experience at all, tasked
to create a sales page or email for testing services, would likely come
up with something like this. Efficient is good, right? Effective? Low-
cost? State of the art? Good reports? You could make something very
similar for almost any outsourced knowledge-work job. In fact,
humans without expertise often do come up with these sort of
nothing statements. A few years ago when the folks at TechBeacon
asked me to write an article on container technology tools, I found
similar language. After reading the sales pages I still did not know
what half of them did, just that they were all “scalable”, “enterprise
grade”, and “secure.” This was especially true of the tools earlier in
development. In some cases, perhaps the new CEOs had not even
decided what the product was yet, so they cold pivot. It seems more
likely the company has not made the investment to high professional
marketing slash product people yet, who could do both jobs.

So, how does this happen?

How ChatGPT Works

Imagine software that can scan the open web and understands
concepts at least as well as a college freshman outside of their own
major. The software also has an understanding of programming
languages, perhaps to a deeper level, because the programming
languages have a strict structure. The code could be trained on all
the source code on GitHub and Stackoverflow, all the descriptions on
wikipedia. The software can parse out complex words from the
common, recognizing, for example, that “service layer” is a term that
is important and different on the Test Automation page of wikipedia.
If can do the equivalent to a search on those keywords, even if they
are not links, on whatever it is trained on, which is likely a subset of
the open web — plus insight gleaned from users. Like the JB
Rainsberger idea mentioned earlier, it can look up a dozen different
sites that discuss page objects, and find the commonalities that the
majority agree on. The tool can take two-dozen programming
languages in a half-dozen languages, compile them down to
intermediate code, then spit out the result in whatever language you
ask it for. And, like any good bluffer, the tool is changing the words
just enough that no one can accuse it of plagiarism.~

Pr
od
uc
ts

THE PLACE FOR
CHATGPT

https://teatimewithtesters.com/wp-content/uploads/2023/01/TTwT_January_2023.pdf
https://www.amazon.com/s?k=%22bluffer%27s+guide%22&crid=LYF746V6YA0P&sprefix=bluffer%27s+guide+%2Caps%2C110&ref=nb_sb_noss_2
https://www.amazon.com/s?k=%22bluffer%27s+guide%22&crid=LYF746V6YA0P&sprefix=bluffer%27s+guide+%2Caps%2C110&ref=nb_sb_noss_2


ISSUE 02/2023
PRODUCTS

ISSUE 02/2023
PRODUCTS

48 49TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

Remember, we are talking college sophomore level, but coding expertise. If you ask for a program to print out all numbers from one to a hundred,
it can generate it. If you ask gotcha coding challenges, and the answer exists on the web, it can figure it out and spit out an answer. If you ask
mathematical questions in conversational language, the tool can read at a college level, convert your words to symbols, enter that into an
interpreter and spit out an answer. All that is what it does outside the box, without expertise. Interestingly, #ChatGPT is currently performing in
the 73rd percentile of language models tests for general knowledge and 65th percentile for the US SAT exam for analogies. Knowing it had this
sort of general skill, I did try to take ChatCPT on a “programming quiz” website, and found the answers were not quite good enough. To get to
success, the programmer would need to be more like a college senior in Computer Science, both asking more refined questions and refactoring
the provided code. This would require a very similar amount of expertise as actually solving the problem.

Bullshitting a Bullshitter

Alex has an interesting video where he talks about the potential for tools like ChatGPT. It’s worth a look, but here are a few things he mentions.

- AI Labs already has a tool, DALL-E, that can generate images based on a few words. A movie is just the same image changing slightly. We could
make explainer videos text-to-speech, possibly using speech from #ChatGPT. Text-to-speech can add audio.

- We could analyze millions of online dating conversations to figure out “what works” and generate unique approaches to get to that first date.

- We can analyze millions of people and create an avatar for the most beautiful person, then combine item one and two to make it respond to
words.

- We can use AI to analyze, summarize large bits of information, then use it to create emails or other communications.

Hormozi’s final idea was to use #ChatGPT as a research assistant, as that college sophomore, with the human doing the training. That last bit is
my words, not his, but it boils down to his suggestion. Watching the video, I couldn’t help but notice that the ideas could happen … someday.
Maybe. They are mostly logical extensions of ideas we already have. However, I don’t expect any of this to happen tomorrow. The most current
work I see in the field with ChatGPT is not using the chatbot nature of the software at all, but instead throwing large datasets at the tool and
asking which if these is not like the other. If you are worried about #ChatGPT taking over your job, please realize, I just did on one site for COBOL
remote jobs and found two hundred and eighty. Newspapers, have been around since 1605 and beleaguered for two decades. Yet many small
papers have found ways to innovate in their business models and do just fine. The internet threatened to make magazines irrelevant, again, many
of them are finding ways to do just fine. The first talk on the death of testing I know of was in 2011. The people who gave those talks have retired,
or at least moved out of the field directly. Yet testing remains.

Moving Forward

Ironically, the way to lock down an AI bullshitter is the same way to figure out if AI is bullshit – ask for details.

- What is possible with AI?

- How would you do it

- Can you show it working?

- How do I do it?

- Okay, I did it. So … what?

The answers you get might not be nearly as gee wow nifty powerful as the video I linked to, but they’ll be real.

As for the rest, we’ll continue to see new ideas creep in. Having an assistant that can summarize wikipedia and the open internet has some value
— remember, books are behind a paywall.I’m not the first person to recognize that when ChatGPT is out of ideas, it tends to guesstimate
conversationally, nor the first to label it BS. What I hoped to do in this essay was put a little more precision on what that BS looks like. This might
help the reader figure out how it could be useful, what the limits are.

All that might change, of course. For today, the work the tool can do seems superficial. Part of that is the complexity of the examples and limits
of training. Hopefully, the reader gets some ideas of what we can experiment with next.

Tell me how I’m wrong.

And tell me what we should do next.

MATT HEUSSER

–

The managing director of Excelon Development, Matthew Heusser is a 2015 recipient
of the Agile Awards as an online contributor to the field, and a 2014 recipient of the
Most Influential Agile-Testing Professional Person Award. In addition to 20+ years of
software delivery. With over 1,000 articles and podcasts to his credit, Matt was also
the initial lead organizer of the Great Lakes Software Excellence Conference, the
Workshop on Technical Debt, the Workshop On Self-Education in Software Testing
(WHOSE), and the Workshop on Teaching Test Design (WhatDa).

A father of three daughters, Matt spends most of his spare hobby energy as a parent.

https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery


ISSUE 02/2023
PRODUCTS

ISSUE 02/2023
PRODUCTS

50 51TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

PHASE SPACE -
INTRODUCTION

FAIZA YOUSUF - PRODUCT MANAGER AND COMMUNITY BUILDER

Faiza Yousuf is a software engineer with 13 years of experience building products
and teams. She is a serial founder focusing on women’s financial inclusion initiatives
and improving gender parity in tech. Faiza is a multi-award-winning community
leader. She founded WomenInTechPK and cofounded CodeGirls and CaterpillHERs.

Faiza is an Expert-Vetted freelancer on Upwork and was featured in many of their
campaigns. She is a well-known international speaker, loves to read, and enjoys
writing about tools and practices.

The concept of Phase Space was introduced by “Dynamical Systems Theory”, which is an area of mathematics that describes the existence of
complex systems and their behaviors in conjecture with each other and also independently.

A phase space is a space in which a system exists with all possible states. These states in their independent forms coexist and correspond with
each other.

Consider a parameterized solar system and the objects existing within that system in conjecture with each other, there are dependencies, push,
and pull of gravity, the wobbling effect of one object on another affecting the internal compositions of objects, and how one system in its
existence keeps the objects bounded within the boundaries.

For software applications, the phase space represents system components bounded with finite time loops ("Initiation and termination of
instances, functions, data, and APIs") containing visible and invisible boundaries.

The existence of these boundaries depends on the conditions and constraints coded for the software components or are determined by the
extent to which the system interacts with its users and other entities in a physical universe.

ARSLAN ALI - PRESALES AND SOLUTIONS CONSULTANT

Arslan Ali is a veteran software tester and solutions consultant from Pakistan. Having more
than 20 years of diverse experience in information technology services and IT education,
Arslan's main focus now is community building and consulting.

He is the founder of the BeingTester initiative and also co-founder of the Pakistan Software
Testers Society and SQAs from Pakistan, where testers from around the country share
experiences, assist other testers and help build a stronger QA community.

Software Objects existing in the Phase Space:

A depiction of objects in a gravitational bond with each other in phase space, while some remain in the center as a mass influence, others
reflecting a more volatile nature, and within this delicate balance, we can see a balanced ecosystem of objects in conjunction with each other.

The Movement:

As a universal principle, each object bounded by force will move in a chaotic yet predicted movement. The object may change its path,
trajectory, or speed, but it will remain in a pattern that can be observed and then influenced by external forces. Same as any software
application component.

The Force And Attractor’s Relationship

The oracle that drives the force and attractor’s relationship is based on the principle that if an object creates attraction to another object by a
certain force, then there should be an opposite amount of moving force to create that motion for the attractor. In terms of software
applications, the greatest attractor to move objects is the data, the combination of users, and their behaviors.



ISSUE 02/2023
PRODUCTS

ISSUE 02/2023
PRODUCTS

52 53TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

The Wobbling Effect:

The concept of wobbling is related to object instances interacting with each other. This interaction can be via internal APIs, data, or
external excursions by the users.

The effect can be also caused by a different domain interacting with core system objects just because a user or the API has become a
medium for that interaction.

The example application exists in the phase space with object universal properties of wobbling, force, push, and pulls from other objects and
applications.

Testers’ Perception:

Testing embeds itself as an encapsulated activity. If we see testing in a three-dimensional format, ideally it forms the shape of a sphere and
the core of this sphere will always be Specifications and Requirements.

The “context” puts an intense amount of its gravitational force on an application sphere. The changes to requirements concerning time are
directly proportional to the force and effect of context on the application.

This changes everything because once the application is not part of the developers’ domain and is basically in the open (in the hands of the
testers and users), the strong stimulus of user experience, business rules, cognitive behavior, test results, boundary analysis, and technology
will shift the perception of application as a structured line of codes to some kind of object with wobbling boundaries and is extremely sensitive
to human interaction. Eventually, the bugs are raised this way.

No matter how many test cases we write in the limited time we have, we will never make sure of the coverage we need. This de facto effect of
context inflation changes the rules of the game.

The key thing here is to make something sturdy out of the first set of requirements. Something flexible enough to take on the pressure of
inflation. For example, consider the following scenario of the ride-sharing application:

The Occurrence of inevitable:

A commuter wishes to book a ride.

The application browses the list of available rides.

The commuter, in haste, clicks the ride, just started to pick up the passengers, and was on the move.

The ride is booked successfully.

Commuter receives a booking number and can now track the coming vehicle on the application, alongside vehicle and driver information.

Booking is successful

The commuter reaches the designated station.

The vehicle approaches but never makes the stop to pick up our passengers.

What happened here?

The scenario for the driver application was not to book any rides for the vehicle when the ride is initiated by the driver.

The scenario for the commuter application was never intended to stop or deny bookings for a ride that is already started.

In the real murky world context, the business loses a customer.

A human condition, triggers software conditions, resulting in users’ dissatisfaction and operational delays.

Customers’ Perception

Human behavior in using software applications changes concerning the time they spend on that application.

For the example above, the commuter may use the application at least twice a day from going to reaching a certain destination, so every
month, the number is around 32 times considering 4 weeks of traveling.

These several interactions (as above) with a real-world user and the software can trigger an unlimited number of contextual events and
behavioral decisions not written as part of code as test cases and neither mentioned in the UATs nor highlighted in the User Journey
interaction and focused group session.

For example, in terms of commuter application, not all scenarios can be tested without the actual use of a vehicle, travel, onboarding,
checkout, and payment test cases.

Consider very carefully that these types of tests cannot be carried out on an unlimited timescale. It's the opposite. These are carried out with a
written script, using a bounded timeline, and a minimal audience.

The result for such activities is usually driven by “undeclared assumptions” where the developers and testers think of the problem as “too
obvious” to occur and treat them as trivial or say “we will deal with them if and when they occur.”



ISSUE 03/2021
PRODUCTS

ISSUE 01/2023
COMMUNITY

54 55TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #03/2021

COMMUNITY
RECOMMENDED EVENTS AND YOUR CHANCE TO MEET TEAM TEA-TIME WITH TESTERS IN 2023

ISSUE 02/2023
COMMUNITY

ISSUE 02/2023
PLACE YOUR CATEGORY HERE

54 55TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #02/2023

01

SEASTARCONF 2023
OCT 15-19, 2023

CHECK IT OUT!

02

EUROSTAR 2023
JUNE 13-16, 2023

CHECK IT OUT!

WEBINAR BY ASSOCIATION FOR SOFTWARE TESTING.. SIGN UP FOR FREE!

CAST BY AST, 2023
NOV 06-07, 2023

CHECK IT OUT!

03

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://conference.eurostarsoftwaretesting.com/event/2023/an-ancient-science-for-advanced-critical-thinking-for-testers-and-teams/
https://members.associationforsoftwaretesting.org/events/6440dbebfffbdd0009d33335/description?ticket=6440dbebfffbdd0009d33336
https://associationforsoftwaretesting.org/conference/cast-2023/
https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://quality.seastarconf.com/
https://conference.eurostarsoftwaretesting.com/event/2023/an-ancient-science-for-advanced-critical-thinking-for-testers-and-teams/
https://members.associationforsoftwaretesting.org/events/6440dbebfffbdd0009d33335/description?ticket=6440dbebfffbdd0009d33336
https://avoautomation.ai/products/automated-software-testing-avoassure/
https://quality.seastarconf.com/
https://associationforsoftwaretesting.org/conference/cast-2023/
https://quality.seastarconf.com/


W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 03/2023
MORE AWESOMENESS IS ON YOUR WAY THIS SEASON!

02

01

03

YOUR ARTICLE HERE

Got ideas worth sharing with rest of the world? We are here to help

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. More
awesomeness on its way….

YOUR ARTICLE HERE
Got ideas worth sharing with rest of the world? We are here to help

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME WITH TESTERS ISSUE #02/2023
57

mailto:editor@teatimewithtesters.com


TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS


