
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Reflect, Revive,
And Rebound!
THE TRAVELERS OF TESTING AND A

JOURNEY OF STREETS

Page 12

MENTAL MODELS FOR TESTERS

Page 30

TEST AUTOMATION USING ETHERNET

CONTROLLED RELAYS

Page 50

WAKING TESTERS UP SINCE 2011 ISSUE #03/2023



TEA-TIME WITH TESTERS ISSUE #03/2023
3

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU
DOING IT
RIGHT? FIND IT
OUT

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 8 – 1 1

1 2 – 1 7

1 8 – 2 0

2 6 – 2 8

THREE LEADERSHIP LESSONS FOR TESTERS

In the epic Ramayana, there is an inspiring story about leadership that I
often share with testing leaders...

THE TRAVELERS OF TESTING AND A JOURNEY OF STREETS

Twenty years is not a long enough time. It’s too short to write the kind of
things I am going to say here…

TEA AND TESTING WITH JERRY WEINBERG

The Technology of Human Behaviour - Part 2

UNLEASHING THE POWER OF TESTING IN DESIGN THINKING

Have you ever heard of Design thinking? It's an incredible approach that puts
humans at the center of problem-solving, focusing on understanding their
needs and perspectives to create innovative solutions…

REFLECT

REVIVE

AND

REBOUND!

TEA-TIME WITH
TESTERS

08 22 26 36

EDITORIAL BY LALIT

INTERVIEW: 22-24
A CUP OF TEA WITH
GÁSPÁR NAGY



A NEXT GENERATION TESTING MAGAZINE

3 0 – 3 2THE ESSENCE OF MENTAL MODEL FOR SOFTWARE TESTERS

During TestAway Goa 2022 and Worqference 2023, I got an opportunity to attend
a hands-on workshop on "Mental Models" ….

GETTING STARTED WITH KARATE FRAMEWORK

Start with your API automation journey with Karate…

BDD REQUIREMENTS DISCOVERY WITH TESTCOMPASS

Often there appears to be confusion about the concept of Behavior Driven
Development (BDD) and far too often BDD is seen as a testing approach. Is this
maybe because BDD grew from a response to Test Driven Development (TDD), as
explained by BDD pioneer Daniel Terhorst-North?

PHASE SPACE - THE CONTROLLED CHAOS

The greatest challenge for testing software is controlling the time alongside the
completeness of test cycles, in contrast to the complexity of the software
application.

TEST AUTOMATION USING ETHERNET CONTROLLED RELAYS

Software testing of any Hardware in Loop (HIL) system is a very critical and
challenging task. …

TEA-TIME WITH
TESTERS

3 6 – 4 0

4 1 - 4 5

4 6 - 4 9

5 0 - 5 7

If you are reading this, it means a couple of things:

• Someone asked or encouraged you to read Tea-time with Testers.

• You searched for articles and news around software testing and found us.

• You are already a regular reader of the magazine.

Regardless of what your reasons are, I want to first congratulate you for doing the right thing.
“What’s so rewarding about reading Tea-time with Testers, Lalit?”, you may ask! Well, while it
is quite rewarding to read this magazine, I want to admire your “drive” and the “passion” for
testing that brought you here.

In my recent interview, I was asked what differentiates an exceptional tester from good tester.
And it was really not an easy question to answer. Considering the vast nature of Software
testing as an intellectual field of work, there is not just one thing that could make someone
exceptionally good. But the more I come to think of it, the more I realize that there is this
“one” thing, that can help one become exceptionally good. What do you think it is?

“Intrinsic Motivation” is the answer. It refers to one’s inner drive and sincere passion that
makes them pursue things for the sheer joy of fulfillment and satisfaction. It is the desire to
engage in a task or activity because it is inherently rewarding, rather than for external rewards
or pressures. I cannot imagine an individual to become exceptionally good at things without
intrinsic motivation to reach there.

During my conversations, I often hear people talking about having a life beyond their 9-6 jobs.
They have hobbies to pursue, family to spend time with, kids to raise, and anything else that
they truly enjoy doing. And that’s an important aspect to consider too. However, I just do not
believe that an intrinsic motivation necessarily means “extra work” or “over-time” or “grinding
yourself towards a burnout”. I firmly believe that one can always make time for things they
are truly passionate about. It’s all about managing your time and resources smartly, and being
honest with yourself.

Sometimes people ask what will they get if they go extra mile to achieve something? I often
urge them rather not to do it. Extrinsic motivation like money or praise is not sustainable as
much as intrinsic motivation is. Intrinsic motivation prepares us better to handle challenges,
setbacks, and obstacles because our drive comes from within. Daniel H. Pink in his bestselling
book “Drive:The Surprising Truth About What Motivates Us” discusses this topic much in
detail. I strongly recommend our readers to give it a read.

In fact, why to go that far? Simply reading the articles published in Tea-time with Testers
might tell you about the “intrinsic motivation” of all our contributors. Or feel free to talk with
any of our team members who have volunteered to support this community project.

Steve Jobs said, ”Your work is going to fill a large part of your life, and the only way to be truly
satisfied is to do what you believe is great work." To add to that I would say, your intrinsic
motivation will help you do that great work.

Understanding the inner drive can help you reach higher levels of motivation, better
performance, and greater satisfaction in work and life.

Give it a try before AI generates it on your behalf. Pun intended.

Sincerely,

Lalit

GenerAIting intrinsic motivation…

TEA-TIME WITH TESTERS ISSUE #03/2023
5

LALITKUMAR BHAMARE
CEO, Chief Editor “Tea-time with Testers”
–
Manager - Accenture Song, Germany
Director - Association for Software Testing
International Keynote speaker.
Award-winning testing leader.
Software Testing & Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedInTTWT SPONSOR OF THE YEAR 2023

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://avoautomation.ai/products/automated-software-testing-avoassure/
https://www.amazon.de/-/en/Daniel-H-Pink/dp/1594484805
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/


ISSUE 03/2023
PLACE YOUR CATEGORY HERE

ISSUE 03/2023
PLACE YOUR CATEGORY HERE

6 7TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

TTWT SPONSOR OF THE YEAR 2023

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://quality.seastarconf.com/


~
Pe
op
le

INTRODUCTION

In today's technologically advanced world,
leadership is crucial to a business's success.
New generations of leaders are taking over
the torch from established leaders, ready to
make their mark. As your testing career
advances, it eventually leads to more
responsibilities, including management and
leadership. A testing leader's role goes
beyond being an excellent tester. As a testing
leader, you are responsible for the success
and well-being of your team. When testing
leaders take on leadership roles, they usually
do not receive any guidance or training on
leading their teams. Whether you are a new
testing manager, a seasoned one, or an
informal leader, you will benefit from reading
this article. What does true leadership mean?

Let me share a story with you.

In the epic Ramayana, there is an inspiring
story about leadership that I often share with
testing leaders. I would like to share this with
the readers of Tea Time with testers. Let us set
aside the spiritual part of this anecdote and
focus on the leadership lessons it offers.

The story of Jambhavan and Hanuman

Rama learns that the demon king Ravana has
abducted his wife Sita and is holding her
captive in his island kingdom Lanka. To get
Sita back, Rama allies with Vanaras (half-ape,
half-human creatures). Rama seeks help from
the Vanara army to confirm Sita's
whereabouts..

- PRASHANT HEGDE

Prashant Hegde is a empathetic leader who finds
fulfillment in helping others succeed. Prashant enjoys
sharing his experiences by blogging and contributing to
software testing communities worldwide. Prashant heads
the testing unit at MoEngage, a leading insights-led
customer engagement platform. Prashant is an avid
blogger and a frequent speaker at software testing
conferences.

LinkedIn: https://www.linkedin.com/in/prazhegde/
Blog: https://www.prashanthegde.biz/articles

The Vanaras found themselves constrained when they realized that
they had to cross an ocean from the southern coast of India to reach
Lanka to find Sita. Hanuman stands quietly in the corner as the vanara
search party discusses flying across the ocean. He was one of the
ministers in the Vanara army. Hanuman devoted his life to Rama and
sought to help him in any way he could. It's important to note that
Hanuman at the time was a different character from what we know
today. His courage, strength, and bravery were still unknown to the
world. As Hanuman stood on the shore, gazed out at the seemingly
limitless ocean, and contemplated the impossible, a bear-like man
emerged from the shadows. He was Jambhavan, the wise and
experienced mentor of Vanaras.

Jambhavan motivates Hanuman to leap across the ocean. Jambhavan
tells Hanuman that he's the only one in the entire Vanara army who
can do this seemingly impossible thing. A sense of doubt and
uncertainty began to creep into Hanuman’s mind. “How could I
possibly cross this colossal ocean?” Jambhavan calmly reminded
Hanuman of his abilities. Jambhavan said, “Do not allow this vast
ocean to intimidate you. You possess unimaginable strength within
you”. Jabhavan recalls the time when Hanuman was a child and wanted

to swallow the sun, believing it to be a mango. Jambhavan recalled
how Hanuman could fly and reach outer space as a child, triggering
chaos among the gods. As Jambhavan builds Hanuman's confidence,
he convinces him that crossing an ocean shouldn't be a problem for
someone capable of reaching outer space. Hanuman was grateful to
Jambhavan for seeing his true potential and giving him the confidence
he needed. Hanuman took a deep breath and jumped across the
ocean with unwavering faith. As Hanuman leaped over the ocean,
Jambhavan watched with pride and awe.

As they say, the rest is history. Hanuman encountered several
obstacles and demons on his journey over the ocean. There was
nothing that could stop him. Besides finding Sita, Hanuman delivered
Rama’s message to her. While Ravana tried to capture him, he
incinerated Lanka into ashes. In India today, you can find a temple of
Hanuman virtually everywhere, and he is prayed for courage and
strength on every street. The ex-president of the United States, Barack
Obama, carries a statuette of Hanuman with him wherever he goes. It
was Jambhavan who transformed a mere Vanara into the mighty god
we know, love, and pray today.

JAMBHAVAN & HANUMAN
3 LEADERSHIP LESSONS FOR TESTERS

8 9TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

~
Pe
op
le

https://www.linkedin.com/in/prazhegde/
https://www.prashanthegde.biz/articles


ISSUE 03/2023
PLACE YOUR CATEGORY HERE

ISSUE 03/2023
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

LESSON 1: LEADERSHIP ISN'T ABOUT YOU, IT'S ABOUT OTHERS.

Leadership is often misunderstood as occupying a position and
exercising authority. It is typical for traditional managers to direct and
micromanage, to take credit for success and blame others for failure,
and to want to be in control at all times. There is nothing inspiring or
effective about this style of leadership. Several leaders believe that
leadership is all about them. Their designation will make people
respect and follow them.

Firstly, you must understand that leadership is not about you. It's about
others and enabling them to succeed. A leader influences, inspires,
guides, and develops others to accomplish a shared goal. A leader's
role is to enable and empower his or her team members. Leaders help
themselves and others to do the right thing.

Jambhavan selflessly thought about who could do the job and enabled
Hanuman to succeed. Rather than making himself the center of
attention, his focus was on enabling Hanuman and achieving the
collective goal.

As a leader, your ability to unleash others is what matters. Develop the
ability to see potential in others, ignite their inner fire, and guide them
through the toughest situations.

Recognize and encourage your team to rise above their doubts and
achieve the seemingly impossible

Choosing the right person for the job is an essential skill for a leader.
Learn how to delegate effectively and get work done.

Leadership is not about taking credit. It's about giving others credit. It's
about praising people who are doing exceptional work.

Jambhavan helped Rama with the collective goal of finding and
rescuing Sita from Ravana.

Leadership does not come by designation, but by vision.

Learn how to harness individual motivations to achieve an
organization-wide goal.

A leader's responsibility is to understand and prioritize the business's
needs.

To make an impact as a testing leader, ensure your testing goals
contribute to the larger organizational objectives.

As development cycles speed up and deadlines are tightening, testers
are under significant pressure. It is possible for testing teams to
become discouraged and less productive if they are not motivated.

LESSON 2: CONQUER YOUR SELF-DOUBT

Even the great Hanuman had to be reminded about his
abilities. We are no exception.

New leaders and experienced leaders alike struggle with self-
doubt. We doubt our own skills, and abilities, and downplay
our accomplishments. This is also called imposter syndrome.
Impostor syndrome is much more common than we think and
it occurs at all levels. New leaders who fear not living up to
expectations are particularly prone to this.

Self-doubt or Imposter Syndrome: How to deal with it?

Acknowledge your feelings of self-doubt. Distinguish facts
from feelings. Introspect, think about the cause of your
doubts, and figure out what's causing them. Work on those
shortcomings.

The fear sometimes comes from the fact that you do not know
certain things. Leaders of software testing sometimes become
overwhelmed by so many things to handle. Leadership isn't
about knowing everything and being an expert at everything.
It is about influencing, inspiring, and motivating your team to
work together for a collective goal. Instead of focusing on
what you don't know, focus on what you do know.

Be vulnerable. Sharing your feelings with a trusted co-worker
or a mentor(like Jambhavan) can help you overcome self-
doubt.

Make sure you surround yourself with people who uplift and
motivate you. Focus on building self-confidence, and
developing a strong sense of self-worth.

Practice self-care. Remind yourself of your accomplishments
and the hard work you've put in to achieve all the success you
have gained.

I have found that offering positive thoughts to yourself while
meditating helps you overcome imposter syndrome.

ISSUE 03/2023
PEOPLE

ISSUE 03/2023
PLACE YOUR CATEGORY HERE

10 11TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

LESSON 3: GET TO KNOW THE TEAM YOU ARE LEADING

Jambhavan knew more about Hanuman than Hanuman knew about
himself. As a result, Jambhavan was able to effectively coach
Hanuman to reach his full potential. Hanuman's trust and devotion to
his mentor are also evident in the story.

Understand who your team members really are. The importance of
building a good working relationship with your team cannot be
overstated. A strong team is built on a foundation of trust and
connection. Invest time in learning about each team member as an
individual and not just what they can do for you. By knowing your
team well, you can create a working environment that empowers
everyone to perform at their best. Furthermore, gain a deeper
understanding of their strengths, weaknesses, perspectives,
motivations, and goals. Knowing who your team members are will
help you tailor your coaching or leadership style to be more effective
and personalized.

Schedule regular one-on-ones with each member of your team.

Talk about what you can do to help the member reach his or her
personal and professional goals during the one-on-ones.
Try to empathize with the other person's needs, emotions, and point
of view,

Try to connect with your team members personally rather than just
having formal conversations. Engage them in conversations about
their interests outside of work. Discovering common interests that can
help you build a stronger relationship.

Small talk, big benefits

Small talk at work matters. Make sure you take time for small
meetings with your team members before and after meetings. Having
small talk with your peers helps establish relationships and build
rapport.

Value your team members at work and beyond.

Create an environment where team members know each other’s
interests. Make it possible for your team to interact over topics other
than work.

Organize team outings, team building activities, informal get-
togethers, and games for team building to encourage tester
interaction.

Caring leaders bring better results

To be a good leader, genuinely care about your team and their long-
term success. A growing number of top talent is leaving their jobs
after a relatively short period. Caring leaders attract and retain top
talent because they make them feel more involved, engaged, and
valued.

CONCLUSION

Leadership is not about you but about others, your ability to inspire
others matters. Don't let your self-doubt hold you back, and help
those around you to do the same. Take the time to get to know your
team members personally and establish a strong working
relationship. Take a genuine interest in your team and their long-term
success. Leaders also need mentors to advance in their careers. Find
your Jambhavan - someone who cares about you and your
professional development.

Leadership comes naturally to some people, while others learn the
skills to become better leaders over time. The best way to discover
leadership is through practice. Go ahead and put your learning into
practice! As we take inspiration from this tale, let us strive to become
today's Jambhavans. Our workplace and the entire testing community
need more Jambhavans who can unleash Hanumans.

Be like Jambhavan!



ISSUE 03/2023
PEOPLE

ISSUE 03/2023
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

RAHUL VERMA
-
Rahul is a Consulting Tester and Coach with an
experience of 20+ years of experiments. He works
with Trendig, a German company specialising in
this space and also known to be the force behind
the renowned Agile Testing Days conference. His
consulting uniqueness lies in his experience-mix:
Hands-on knowledge on business and technical
perspectives of Quality with respect to its various
dimensions, with a knack for programming and
design. He has presented, conducted workshops
and published articles on a wide range of subjects
related to Quality in various conferences and
forums, internationally.

As a coach he has trained hundreds of
professionals on Quality from a pluralistic
standpoint.

THE
TRAVELERS
OF TESTING
AND A
JOURNEY OF
STREETS

Twenty years is not a long enough time. It’s
too short to write the kind of things I am
going to say here. However, twenty years of
working in the field of testing is long enough
to understand and realize how little I know.
It's a long enough time to do experiments
which are only partially successful. It’s also a
pretty long time to realize that there are
people out there who have explored a
dimension of it, which is completely alien to
me.

A Poem of Travel

My mind is not wired for building long term
memories. I forget a lot of stuff. The opening
of the Punjabi poem that I am going to share
is not even the exact poem that I had read. I
was 17. That was a long time ago. I’ve
forgotten it despite its impact on me and my
style of thinking. What remains is a version of
it in my mind. I don’t remember its author’s
name. Some years back I tried finding that
out. I couldn’t.

“The history traveler, with a baggage of
inventions on his head, started to walk.

And then someone sneezed behind him, and
history forgot its way.”

(In many Indian cultures, sneezing at the
beginning of anything is considered a bad
omen in the sense depicted in the poem).

This poem is so important that I ended up
reciting it during the only meeting (and a
pretty short one) with James Bach years ago.
The topic was belongingness. To explain why
I don’t belong to any particular school of
thought, I recited the poem and translated.

The poem further goes on to tell that Time
needs a highway to travel, but the travelers
often venture into the streets and never
come back.

I’ve always interpreted this poem in terms of
what happens to knowledge in a profession.
In short, this poem is the story of testing and
testers for me.

I don’t belong to any specific school of
thought. I am a pluralist. I believe that
testing, as a field of knowledge, seeks
travelers to travel on its highway. Its ask is
not the streets into which many and most

experts ventured and alas, never came back.
Followers followed.

The One-Way Streets

Someone reached his destination as soon as
he left home

Someone, just like me, remained in a journey
for life

~ Ahmad Faraz

The journey of a highway can be boring and
intimidating to some. The landscapes could be
appealing. So, it’s not uncommon to take a
break, venture into the roads and streets to
explore.

To manage complexity in the subject of testing,
we coined terms and drew distinctions. The
act of drawing such distinctions gave us an
opportunity to go deeper. This is also the way
humans innovate and develop unique styles.
What did we do with these solutions later? Did
we amalgamate these solutions or let the
distinctions stay in their respective universes?

There is a fundamental question to be raised
here. Do we have the intelligence for
contradicting ideas to co-exist in our minds?
At the least, do we intend to do so? If not, how
do we plan to fill the inherent gaps in one style
that could be filled from another style of doing
things?

Around the time I got serious about testing,
Exploratory Testing, Context Driven Testing and
Risk Based Testing were some such
distinctions and types. I am taking these
names as examples, and also because the
related work had a big impact on me. They
highlighted important aspects of the art and
craft of testing. They gave an opportunity for
testers to develop methods, techniques, tools,
heuristics and so on for focusing on those
aspects. To this day, some of the related work
I read during that time, helps me.

This was also the time when some of the well-
known testing certifications were taking shape.
The premise was to create a ground for
organized learning paths and evaluation of a
tester’s testing skills. That was the promise
they made to the overall ecosystem.

It was also the time when I was fighting my
own demons. Rather than on a street of
innovation, I was on a path of ego. I was
focused on performance engineering and I
looked down upon “manual testing” or even
functional testing. I considered my own work
superior to these and by its extension, me as
a superior tester. I am not proud of that time.

A few years later though, I came down from
this high cloud. I realized how deeply
flawed my thinking was.

It was the time when I expected the other
streets to join the highway back.
Exploration, context and risk should have
flown back to the mainstream of knowledge
rather than staying as a long-term
distinction of types. They never truly did.

I started questioning this in my circle. I
asked, shouldn’t every tester develop
exploration skills? If there is something
called context-driven testing, what is non-
context driven testing? Can we still consider
that testing? If there is something called
risk-based testing, what is non-risk-based
testing? Can we still consider that testing?
In a way I believed in the importance of
these ideas more than their originators.
That’s the irony. However, humans are
usually happy with categorized, even cut-
down versions of concepts as they are more
manageable. In short, I was shut down. We
live in a world where more than the idea
itself, what matters is who is promoting the
idea. I was (and I am still) a poor, small
promoter, I guess.

https://www.amazon.com/App-Quality-Secrets-Agile-Teams-ebook/dp/B00JVAR7EM


ISSUE 03/2023
PEOPLE

ISSUE 03/2023
PEOPLE

14 15TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Another irony is that the followers of the
leaders/adventurers who create and venture
into these new streets end up picking only
punch lines and one-liners from their
leaders. They don’t truly or deeply study
their leader’s work.

One such example is that when the main
minds behind Exploratory Testing,
conceptually merged it years later, and said
it’s what is Testing (although that means a
street replacing a highway), many and most
of the followers continued using Exploratory
Testing as a term even to this day.

On the same lines, the certifications became
more of a business and ecosystem problem
rather than fulfilling the original premise of
learning and self-evaluation. Certifications
which tried to replace them mostly failed to
scale but never admitted openly to how this
absence of scale raised a question on the
whole premise of those certifications in the
context of overall ecosystem. The problem of
a good certification at scale is an unsolved
problem to this day. Whichever exist are
street certifications. And more often than a
not, even a poor version of what that street
demands.

On the certifications front, I volunteered in
various capacities to bring about some
changes. I must confess, across all work that
I’ve done in my career, I wasn’t able to do
much worthwhile in this area. The changes I
could bring were too small. I created a
certification too. It had its own flaws. I tried
to improve it. That didn’t sell because all
participants continued to fail. Are
certifications about knowledge or for
practical purposes they have been
systematically toned down to the level of
knowledge that exists in the wild amongst
testers? Is it a design/creativity constraint on
part of the creators or is it a business
compromise?

Automation in testing had the same fate.
Black-box testing vs White box testing were
such streets too. Static and dynamic testing
were these streets as well. Pick a term and
you’ll find how silly, questionable walls have
been created around those concepts. This
caging has killed many opportunities of
furthering knowledge in testing. The types of
testing slowly became types of testers. The
distinctions became self-imposed cages on
skills. Black-box tester is not an uncommon
word to hear these days, for example.
Exploratory testers, White box testers,
automation testers (what does it even mean?
),… - the list goes on.

In the false dilemma of superiority in an x-
vs-y game of words, common sense often
takes a back seat. Critical concepts like
controlled repetition are often frowned
upon, treated as cheap skills and often made
straw men to sell agendas. Well established
concepts like that of regression testing are
discussed less and less, letting
misinformation propagate, as no one can
take credit for inventing their names.

In short, everything else what one does not
sell himself/herself is snake-oil, biased or
plainly wrong. If the word context has any
weight in testing, how can such extreme
opinions of right or wrong exist in the same

universe as the word context?

The distinctions and the vocabulary which
were supposed to be furthering the craft
ended up damaging it. This damage is at a
point, where the highway is almost forsaken.
What we are left with is a notional highway
and most, if not all, travelers traveling on the
streets.

The Ignored Streets

Most of the testers are focused on testing
functionality by treating test objects as black
boxes. These streets make the most noises. A
damage of this majority bias was the lost
potential of generalization of concepts from
specialization streets. Those who tend to
specialize in fields like performance
engineering, security engineering etc stop
using even the word Tester in their profile at
some stage. In these fields, many non-testers
have great innovations to their credit which
we all as testers could have learned from.
However, it has been as if those who were
focused on functional testing took charge of
what the core of testing should be about. The
core test design techniques, for example,
exist in the shape and form which suits basic
functional testing needs and continue to be
taught and discussed in that manner. We
could have collaboratively helped these
streets in joining the highway. But how we
could have done that, when the foundational
thought was to move away.

As an example, equivalence class
partitioning, a classic foundational testing
technique is heavily limited when it is seen
only in the way it is seen in most testing
books. There is functional testing bias. Usage
of this technique can be seen in
performance engineering world as well in a
more open-ended manner. One has to apply
sampling to use cases, test data, interactions
etc. to come up with a workload distribution
model. Similarly, the same approach is used
in security engineering. That’s the forward
direction. In a backward direction of thought,
there are many extensions to the technique
used in these fields, e.g. the concept of
payload construction, the special meaning of
special characters, sequencing of characters
etc which can be brought back to the
mainstream stance on equivalence class
partitioning. We can do the same to
boundary value analysis, decision tables,
state transition testing and so on. This bi-
directional exchange of thought is lost when
the streets decide never to join the highway.

It can be better understood with some
further examples.

Most of the testers have heard and loosely
used the term defect taxonomy.

Just do a cursory search. Try to find out which
field of work and who has done decent work
in the field of defect taxonomies. Barring a
thesis guided by Cem Kaner, a few pages in
Boris Beizer work, and some random
articles/blogs in the functional testing
world, there’s nothing. Now check how the
security engineering world has treated this
area. Look at the maturity of taxonomies
there. Check CWE website, for example. While
we as testers were busy in proving which of
our streets are better than others, there was

relevant knowledge creation happening
elsewhere. We could have learned the
patterns. We could have built on those
patterns to use them in various other areas
of testing. We didn’t.

Another example? Look at white-box testing.
What have we done as a testing community
in this area? Search for publicly accessible
information. If one wants to do white box
testing, do we really have rich white-box
testing literature created by testers for
testers? Compare it with the black-box
counterpart to understand the majority bias.

What about testing tools? How many of these
tools are created by testers for testers?

You might be tempted to take a few names
as answers here. Pause and think. Is the
totality of their work a justification to the
questions I raise here? There are only a few
and far pockets of hope. Not sufficient. The
names that come to your mind need more
encouragement, reach and space, otherwise
the black-box, functional bias is here to stay
and dominate most of the discussions in the
field. If their knowledge remains in
respective streets, I don’t foresee any
concrete large-scale change happening in
the coming decades, in the way we treat
overall testing knowledge.

For how long, are we going to be busy in
debating and drawing distinctions amongst
error vs mistake vs fault vs bug vs defect vs
failure vs discrepancy vs issue vs incident?
Manual vs automated testing? Can we throw
these words/distinctions at a real-world
problem and solve it?

In a world which does not take testing
seriously and “anyone can do testing” is a
popular opinion, should testers too behave
in a way to treat testing in this manner? Yes,
anybody can talk about testing. Doing testing
and doing it in a focused way is what takes
deeper thinking. When a tester makes testing
as a street problem, s/he is (even if
unknowingly) giving a nod to the statement
that testing is easy.

James Bach in a recent comment on my post
on LinkedIn said that he had expected that
over a period of years, every tester will have
his/her own mental model of testing and will
defend it with reasoning. That’s an important
and beautiful thing to say. In my opinion the
streets are not transient, because most
testers are followers. The day when each
tester has his/her own mental model, the
highway will automatically unfold. As that is
just hope, till that point I guess the leading
voices themselves will need to show the path
from the street to the highway.

We are testers. Despite carrying unique, and
many a times contradicting, ideas, we share
this bond. When I use the word tester here in
this article, I am not addressing guests –
those who are in testing temporarily and
would walk away at the first opportunity.
Those of you and me, who love testing and
are here to stay, can’t we just get along? To
prove an idea is great, should we continue
on the path of constantly proving that the
other idea is less worthy?

“For how long, are we going to be busy in
debating and drawing distinctions amongst
error vs mistake vs fault vs bug vs defect vs
failure vs discrepancy vs issue vs incident?

Manual vs automated testing?”
Let me take an example.

“Manual Testing” as a term is considered demeaning. So, some testers
challenge this term. The thought process is more or less the same
when somebody uses the word ‘resource’ for a human. If it is used to
demean, I can understand the reasoning here. I can respect when
someone interrupts and objects to the usage of this term to say -
there’s nothing called manual testing.

Having said that, I see this at the other extreme now as well. The
moment somebody uses the word ‘manual testing’, many testers
without even thinking or reading the content fully, pounce on it. “There
is nothing called manual testing”. “What do you mean by manual
testing”? Such a question or remark is the only point of discussion they
care about. All of this, without attempting to understand whether the
person used the term to demean human role in testing. Goal
displacement? Isn’t ignoring a testing colleague’s core point of
discussion also demeaning? Aren’t most of such remarks done by
testers who want to sound smart and ridicule others? Without
exaggeration, this extreme in the testing universe is seen when an
influencer who himself shares copy-pasted contents on testing
interview questions, says – “Humans have the complex neurological
system which gives them an amazing sense of experience.” This goes
unchallenged as expected. After all, it will be politically incorrect to do
so and will be an invitation to get trolled. The damage it does is that it
dilutes similar commentary by those few testers out there, who have
spent their career in exploring and talking about human role in testing.

Words are important. I get that. But only the words are not important.
Context in which they are used is equally important. More than both of
these put together, applied knowledge is important. Testing debates
are frequently stuck these days in the war of word choices rather than
the subject. If the goal is awareness, then let me point out something.
There are only a few testers who are publicly vocal. The silent ones are
increasingly becoming disinterested in testing subject knowledge. The
reason is that the vocal testers give them the impression of more of an
Instagram/YouTube influencer constantly either delivering the same
message for the 100th time or blindly roasting others over word
choices.

Are we selling popular opinions in the disguise of debates or ideas?
Have we converted the idea of a “type of testing” to a “type of tester”
and then to “type of testers” who cuddle together in costume parties?
Do we actively ignore misinformation as long as it originates from
testers in our own street and is in favor of what we promote? Are we
serving testing or personal agendas?

A New Street

As we speak, a new street is already founded and is claiming its own
share of travelers.

The Artificial Intelligence/Machine Learning street, already has and will
have many experiments and innovations relevant to testing. Across the
streets, there are contrasting emotions and reactions – that of
excitement as well as that of fear. The experiments on the street are
about testing AI/ML systems as well as using AI/ML systems in testing.
There are a lot of opportunities.

Watch out, or this is going to be another one of those streets which
does not come back to the highway. You’ll think AI/ML will innovate
new stuff in testing. It will do so. However, it will do so on its own street.
If we don’t change our mindset, this street will never join the highway.

Those who want to travel the street, remember that it has a testing
context and in the absence of larger context of knowledge already
created elsewhere, you will be either re-inventing some wheels
unnecessarily or under-utilizing information and tools already
available.

Evidence of both of the above problems co-existing is out there as I
write this article. It’s just the beginning.

A Call From the Highway

I am a minuscule part of testing community as well as what the testing
highway is about. I don’t wear an expert hat. I am a student. My relation
with testing is that of servitude and love. In my limited circle, I show
the variety of streets. I’ve raised the questions in this article numerous
times. I’ve not taken sides. I don’t have any favorites. I don’t write to
abide. I don’t write to sound nice.

I decided during the first few years of my testing career to travel on the
highway of testing. I constantly venture into the streets to learn new
ideas but I come back to the highway with the new learnings.

Many things which need to be done cannot be done alone.

Do you empathize with the theme of what I wrote here? Are you in a
street and would want your work to reach its full potential? Are you
already a traveler of highway, trying to make sense of it all?

Let’s join hands. Let’s talk and put collaborative efforts in creating a
body of knowledge which amalgamates knowledge from the streets
back to the highway.

It will not happen automatically. Abandonment of the highway took
explicit steps. Amalgamation will need explicit steps too and even
more involved efforts.

In case you’ve read it all, thank you for your patience. That’s all for now,
with the following food for thought:

Although there are drops and drops of water in a river

A drop is a drop in which one can see the river

~ Krishna Bihari Noor



ISSUE 01/2021
PEOPLE

ISSUE 03/2023
PEOPLE

16 17TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #01/2021

Two Cats, a Monkey and a Bread

Two cats got hold of a piece of bread. They were debating about it.

They wanted to settle on what it should be called before they eat it. As they didn't seem to settle on what is what,
a monkey came in to resolve the matter.

"It's a manually created bread.".

"Oh, is it?", the monkey asked. "Let me taste and confirm", and took a bite.

"It's a bread created with tools".

"Oh?", another bite.

"No, no. Breads are supposed to be created by hand."

"Hmm", another bite.

"Come on, did the bread bake by itself? Some tool must have been involved."

"Yummy", another bite.

The piece of bread was gone. The cats were still debating.

The monkey thanked them for consulting him and said, "Next time you get hold of another piece, let me know. I'll
be glad to resolve all your dilemma." Tasty dilemma I must add.

The cats, more hungry than ever, started their search for another piece of bread.

The monkey was waiting.

A Fable On Testing

https://www.linkedin.com/pulse/testing-vs-tester-professional-3-fables-rahul-verma/


ISSUE 03/2023
PEOPLE

ISSUE 03/2023
PEOPLE

18 19TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

JERRY WEINBERG
October 27, 1933 – August 7, 2018
–
Gerald Marvin (Jerry) Weinberg was an American computer scientist, author and teacher of the psychology and anthropology of computer software development.
For more than 50 years, he worked on transforming software organizations. He is author or co-author of many articles and books, including The Psychology of Computer Programming.

His books cover all phases of the software life-cycle. They include Exploring Requirements, Rethinking Systems Analysis and Design, The Handbook of Walkthroughs, Design.
In 1993 he was the Winner of the J.-D. Warnier Prize for Excellence in Information Sciences, the 2000 Winner of The Stevens Award for Contributions to Software Engineering, and the 2010
SoftwareTest Professionals first annual Luminary Award.

For over eight years, Jerry authored a dedicated column in Tea-time with Testers under the name “Tea and Testing with Jerry Weinberg”. As a tribute to Jerry and to benefit next generation
of testers with his work, we are re-starting his column.

To know more about Jerry and his work, please visit his official website http://geraldmweinberg.com/

Tea
and

Testing
with
Jerry

Weinberg

Intake is an active, responding process, filtering some of what happens
in the world and allowing other events to come into awareness.

To see this process at work, notice what happens next time you talk to
someone and you become aware that the person isn't listening. Then
say something that totally shifts the context, or change modalities by
touching, or singing, or standing up and drawing a picture. Notice how
the listener's response to your input changes.

Meaning

The Meaning step contains a response as well. All of the many
meanings I can make from my Intake can be broken down into four
major categories in answer to the question, "What does this Intake
mean?" Each of these categories leads to a general type of response
that is partly universal and partly particular to each person, as shown
in figure below.

For me, the responses are, roughly

• "Don't know" leads to a desire for more data to clarify.

• "Not relevant" leads to shutting off some of the intake, turning my
attention elsewhere.

• "Threat" leads me initially at least to stop thinking and go into an
automatic mode in which I lose conscious control of my
responses.

• "Opportunity" leads to more thinking, to clarify what external
response to give next.

Making Meaning is also a responsive process. Some of the responses
control the filtering of further data from the world.

Each person's responses are unique. Somebody else may respond to
"don't know" by shutting off intake. My response labels me as a
"curious" person who is attracted to things I don't understand.

My "stop thinking" response to "threat" is not a characteristic I value in
myself. I prefer that "threat" would lead me to take more data and think
more clearly, but my initial instinctive response is to shut down. I don't
think I can change my basic pattern, but I can change my reaction by
shortening the shutdown period. On the outside, it may now look as if
I instantly move to take more data and think more clearly, but there's
an internal struggle hidden beneath it.

Significance

The significance of each possible meaning can be considered in terms
of the possible consequences to me, as shown in next figure. Of course,
this is only a simplification of the thousands of possible consequences
I may perceive, but my first response at this stage is to simplify into
some broad but important categories of what might happen to me as
a result of this interaction—learning, death, illness, play, creating,
nothing, and so forth. It is the category I choose that determines the
general pattern of my response.

The Technology of Human
Behavior - Part 2

http://geraldmweinberg.com/


ISSUE 02/2021
PEOPLE

20 21TEA-TIME WITH TESTERS ISSUE #02/2021

Who's in charge of the response? Who is in charge of the response?

One of the reasons that "small brain" technology is so complex is that
the human brain seems to operate not as one mind, but as a
"multimind," or team of minds. If I am coping well, I have many different
minds to put in charge for different situations. This, of course, is
precisely what Ashby's Law of Requisite Variety says I must do if I am
to be an effective controller of complex systems. This decision is
sometimes conscious and sometimes unconscious.

Virginia Satir helped people access their different minds through an
exercise called a "Parts Party." At the start of a Parts Party, the host
thinks of real or fictional people to whom they have a strong emotional
reaction—about half positive and half negative. For instance, during
one Parts Party, I selected Albert Einstein, Sir Edmund Hilary, Rambo,
Adolph Hitler, Mimi (from the opera La Bohème), Rasputin (the "Mad
Monk" who aided the downfall of the last Russian Tsar), Billy Jean King,
Woody Allen, Mother Theresa, Elizabeth Barrett Browning, Madame
Curie, and Miss Manners.

The idea behind the Parts Party is that I will have a strong emotional
reaction to a character who resonates with one of my own parts. A part
I accept and value will produce a positive reaction; a part I reject and
despise, a negative reaction. Thus, I would not have a strong reaction
to Adolph Hitler if I didn't have a part that I identify with some aspect
of Hitler. Through my own Parts Party, I learned that my Hitler part is
the part that swats flies, and generally rids me of external irritations.
Generally, my Hitler part is not the least concerned about how the fly
feels, which might be okay for flies, but not for human beings who are
irritating me.

To be continued in next issue…

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

https://leanpub.com/b/thetesterslibrary/
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com


ISSUE 03/2023
OVER A CUP OF TEA WITH GÁSPÁR NAGY

ISSUE 03/2023
OVER A CUP OF TEA WITH GÁSPÁR NAGY

22 23TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

IN
TE

R
V
IE
W

How does BDD help
software teams?
How to deliver together
as a team?
Gáspár Nagy talked to
us over a cup of tea.

Hello, TTwT Readers! It is with great pleasure that I introduce Gáspár Nagy. He is a well-known author, coach, and
consultant specializing in Behavior Driven Development (BDD) practices. He is also a major contributor to SpecFlow.

Greetings, Gáspár ! Welcome back from your vacation, and thanks for taking the opportunity to share your thoughts
with the TTwT community.

- INTERVIEWED BY DAVE LEVITT

GÁSPÁR NAGY
–

Gáspár Nagy is the creator of SpecFlow,
regular conference speaker, blogger (http:/
/gasparnagy.com), editor of the BDD
Addict monthly newsletter (http://
bddaddict.com), and co-author of the
books "Discovery: Explore behaviour using
examples" and "Formulation: Document
examples with Given/When/Then" (http://
bddbooks.com). Gáspár is an independent
coach, trainer and test automation expert
focusing on helping teams implementing
BDD and SpecFlow.

He has more than 20 years of experience
in enterprise software development as he
worked as an architect and agile
developer coach.

Q2: The testing community has no shortage of
opinions as to whether BDD is testing or not,
but before I get to that, I’d like to set the stage
and frame Specification by Example (SBE) and
BDD as techniques teams can use to help drive
ambiguity to clarity, specifically by crafting
acceptance tests (a.k.a. scenarios) that
leverages the language of the business. Do
you care to offer any opinion or thoughts on
this?

My background is in software development, but
I’ve long been interested in testing. What I see
happening is that the industry is trying to
separate development and testing. To further
that point, consider asking yourself what is the
purpose of a particular test? A developer-fac-
ing test verifies what the developer wanted,
while an acceptance-facing test verifies the
expected behavior.

Even the best specification has ambiguities and
context, so the best way to resolve this is for
the team to collaborate and create a shared
understanding. When this happens,
development is no longer separate from
testing. Constructive interaction results during
the creation of concrete examples, which are in
fact tests.

Q1: I’d be interested to learn about
your journey with BDD and SpecFlow.
How and when did you get involved?
What are you especially proud of?
What do you wish you could do over if
you could?

I started to get involved in 2009. At that
time, I wanted to do better testing in
an agile landscape, but Cucumber did
not work well with .NET. I started
development as an in-house effort at a
company called TechTalk. It was then
sold to Tricentis. I am now doing BDD
training and consulting, I am also
doing some tooling work.

I am especially proud of adapting
Cucumber to the .NET ecosystem and
developing a common Gherkin parser.
If I were to do something different, I
would develop a sustainable business
model. For example: there’s not much
SpecFlow development at Tricentis
these days.

Q3: Continuing the above, it takes critical thinking
skills to drive a rich and complete set of happy and
unhappy scenarios. This is where testers can make a
huge contribution. Have you encountered teams or
organizations that still believe testers need to wait
until the software is written to begin testing? If so,
how have you dealt with this?

A culture won’t change overnight. When testers
collaborate during the creation of examples, the
traditional testing, I.e., when the software has been
developed, becomes easier. However, if you can’t
change the habit of testing at the end of a sprint (which
is late feedback), try making the slices smaller, such as
splitting up the testing by examples / scenarios. With
this approach, the feedback loop becomes optimized.
In this regard, testers can try to influence thinking by
testing in smaller slices.



ISSUE 02/2023
OVER A CUP OF TEA WITH FIONA CHARLES

ISSUE 03/2023
OVER A CUP OF TEA WITH GÁSPÁR NAGY

24 25TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Q4: I’ll cover automation shortly, but I have found over many years, and on many teams, that it is possible to create a shared understanding
of what a Product Owner is looking for without automating your scenarios. What advice would you offer a team that is new to BDD?

I don’t have a cookie-cutter approach, but developing concrete examples and user journeys can be very useful, and there’s no better way to
motivate a team than by developing successful products!

Q5: Software literature is filled with test automation failures. What advice might you offer to a team that wants to embark on automating
their scenarios?

Users will be more tolerant of defects in new features, but less so if defects are found in regression testing. Yes, you can certainly do manual
regression testing, but it does not scale. In contrast, when you automate your scenarios, you’re automating the requirements. Automation yields
sustainability, and sustainability is certainly a dimension of quality. Put another way, sustainability drives value!

Q6 : SpecFlow has a very rich and interesting history. How did it all start, where is it now, and if you can share, what lies ahead?

There’s not much work going on now, but I do think things can be improved. For example: reporting. Another area I would like to see is support
for other sources, i.e., markdowns.

Q7: It’s hard to go for a week without reading an opinion on testing and AI / ML. Have there been any discussions on adding some sort of AI /
ML into the discovery process?

Current AI technology requires a lot of learning, and it is effective in domains that are massively used. For example: driving a car or interacting
with a login page. I don’t see AI being effective when domains are unique, which is what testers usually focus on. On the other hand, AI might
be able to help write the scenarios. Example: consistent scenarios.

Q8: I recently read a post that one of your BDD books just got translated to Japanese. Congratulations are in order! Finally, I want to wish you
and Seb Rose all the best with your upcoming book. What will it be covering and where do things stand?

Our goal of the 3rd book is to collect automation patterns that are independent of a language, much like design patterns. Our work is slowing
down though.

Q9: Is there anything I haven’t covered that you would like to share?

I would like to recommend to testers that they view testing as a living thing. Go to conferences, help influence developers, and keep an open
mind.

Thank You, Gáspár, for sharing your thoughts and insights, and again all the best in upcoming endeavors!

“Current AI technology requires a lot of learning,
and it is effective in domains that are massively
used. For example: driving a car or interacting
with a login page. I don’t see AI being effective

when domains are unique, which is what testers
usually focus on. ”



~
Pe
op
le

26 27TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

~
Pr
oc
es
se
s

UNLEASHING
THE POWER
OF TESTING
IN
DESIGN
THINKING

- LISA GUAN

Lisa Guan is a seasoned professional with 18 years of
experience in R&D and finance industries. She excels in
agile adoption, Design
thinking, leadership consulting, OKR implementation, and
performance management.

Lisa played a key role in leading IBM CIO’s large-scale
agile transformation from 2017 to 2019. She is a
published author of the books “Performance
Management for Agile Teams” and “20 Principles on the
Practice of OKR”, selling over 20,000 copies in China.

A Design Thinker’s journey towards user-centric solutions

Have you ever heard of Design thinking? It's an incredible approach that puts humans at the center of problem-solving, focusing on
understanding their needs and perspectives to create innovative solutions.

But here's the thing: just following the steps of design thinking won't automatically make you human-centered and problem-solving oriented.
The real magic lies in the intelligence, collaborations, and mindset of the individuals and teams who embrace it.

The McKinsey’s coverage of this collaboration aspect is quite convincing if you read their report - “The Business Value of Design”. See the exhibit
from McKinsey report below. Designing software is indeed a “cross-functional talent” and it’s done better with continuous iterations.

I can’t agree more. In my experience, bringing together individuals from diverse backgrounds and expertise has proven to be a game-changer
in the design thinking process. And one key role I always would like to involve in my cross functional team is test engineer. Software tester role
highly potent one that truly unleashes the power of design thinking.

Now, I know there might be some disagreement about this because design thinking is often used in the early stages of a project to identify
problems and explore potential solutions. Skeptics may question the role of testers when there are no existing solutions available. However,
I've come to realize that it's precisely during these uncertain times that testers can bring tremendous value to the table. Let me share with you
why.

https://www.mckinsey.com/capabilities/mckinsey-design/our-insights/the-business-value-of-design


ISSUE 02/2023
PROCESSES

ISSUE 03/2023
PROCESSES

28 29TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

1. Facilitating better human-centered design:

To create truly superior human-centered designs, the involvement of
testers is essential. Testers possess a deep understanding of user
behaviors and expectations, making their integration into design
thinking activities crucial for a comprehensive evaluation of the user
experience.

As a UX designer, I have often partnered with the Product Owner and
Software Architect during the product design phase. However, I
occasionally felt the need for someone on the team who had UX/UE
knowledge to brainstorm ideas together and challenge me on certain
UX concepts. While the Product Owner and Software Architect could
contribute, their limited UX/UE background prevented our discussions
from delving deep into the subject.

Then, one day, we happened to include someone with a strong testing
background in a design thinking workshop. This individual provided
valuable insights on usability, intuitiveness, and potential pain points,
enabling the team to refine and optimize the user experience. It was at
that moment I realized the importance of testers in the design process.
They offer unique perspectives, providing valuable insights on
usability, intuitiveness, and potential pain points. By incorporating
their viewpoint, the final product seamlessly aligns with user
expectations, resulting in higher user satisfaction and adoption rates.

Ever since that experience, I never forget to invite a tester to participate
in my design workshops. Their contributions have proven invaluable in
creating user-centric solutions."

2. Making solutions more feasible:

A successful project needs to strike a balance between meeting user
desires, business viability, and technological feasibility. However, one
challenge that UX designers and product owners often face is
becoming too focused on meeting user expectations or becoming
enamored with their own business ideas, which can lead to unrealistic
requirements being imposed on the development team. I have
personally received numerous complaints from development teams
about how my ideas are unrealistic in the past.

However, there is an effective solution to address this issue: involving
testers in the early stages of the design process.

Testers possess a remarkable ability to proactively identify potential
usability, functionality, or performance issues during the design phase
– it's inherent to their job role. By raising concerns and suggesting
improvements at an early stage, testers assist the team in addressing
potential issues before substantial effort is invested, ultimately saving
time and resources in the long run. Furthermore, their involvement
provides valuable insights into the feasibility and practicality of design
choices. Testers contribute to the creation of testable requirements,
aiding in the definition of clear acceptance criteria and measurable
outcomes."

3.Holistic validation of design concepts:

Another unique strength of testers is their skill set that enables them
to identify potential issues and risks early on. When they are involved
in the design thinking process, teams benefit greatly from their
expertise in validating design concepts. Testers can evaluate the
feasibility, technical viability, and testability of proposed solutions,
ensuring alignment with both user needs and quality requirements.

In a nutshell, incorporating testers into the design thinking process
enhances the overall effectiveness and success of the approach. Their
insights, expertise, and ability to identify and address potential issues
contribute to the creation of user-centric and high-quality solutions.

But it doesn't end there. Testers themselves can also benefit greatly
from attending the design thinking process. You see, when testers lack
knowledge of user needs, they may unintentionally test the software
based solely on their own assumptions or technical requirements. This
can create a disconnect between the actual expectations and
preferences of the end-users and the testing efforts.

By participating in the empathize phase of design thinking, testers gain
a deeper understanding of user needs, pain points, and preferences.
This understanding enables them to approach testing from a user-
centric perspective, leading to more meaningful and impactful testing
efforts.

Of course, involving testers in the design thinking process does come
with its challenges. Testers typically have limited collaboration with
business roles, which can present obstacles along the way. However,
I've found that by taking proactive steps, testers can overcome these
challenges and enhance their understanding of business needs and
communication skills. Some of these steps include seeking business
context, improving communication skills, collaborating with analysts or
owners, participating in requirements workshops, engaging in cross-
functional collaboration, embracing an agile mindset, and pursuing
continuous learning.

These actions align testers' efforts with business objectives, provide
valuable insights, contribute to clear requirements, identify risks, stay
updated, and foster collaboration.

In my own journey, I've witnessed the transformative power of
involving testers in the design thinking process. It's a win-win scenario
where testers play a vital role in creating user-centric solutions while
also benefiting from a deeper understanding of user needs.
Additionally, in his work around QX, Lalit has discussed several ideas
around tester+designers collaboration. Give it a read.

So, if you're embarking on a design thinking adventure, don't forget to
invite the testers along for the journey. Together, we can weave a
tapestry of innovation and create solutions that truly make a
difference.

References:

“The Business Value of Design”.- The McKinsey’s Report

QX - QA+UX for Co-creating Quality Experience - Lalit Bhamare

ISSUE 02/2021
PROCESSES

ISSUE 02/2021
PROCESSES

28 29TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

ISSUE 03/2023
PLACE YOUR CATEGORY HERE

ISSUE 03/2023
PLACE YOUR CATEGORY HERE

28 29TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023MISSED OUR ANNIVERSARY ISSUE? IT’S NEVER TOO LATE!

https://talesoftesting.com/quality-experienceqx-co-creating-quality-experience-for-everyone-associated-with-the-product/
https://www.mckinsey.com/capabilities/mckinsey-design/our-insights/the-business-value-of-design
https://talesoftesting.com/quality-experienceqx-co-creating-quality-experience-for-everyone-associated-with-the-product/
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf
https://teatimewithtesters.com/wp-content/uploads/2021/03/TTwT_March_2021.pdf


ISSUE 03/2023
PROCESSES

ISSUE 03/2023
PROCESSES

30 31TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

THE ESSENCE OF
MENTAL MODELS
FOR SOFTWARE TESTERS

- BALAJI SANTHANAGOPALAN

Balaji Santhanagopalan is a passionate and experienced software tester in the field
of Model-based systems engineering. He is working as Project Test Engineer at
Siemens Digital Industries. He is also running a telegram group called Digital
Testers 4.0 where resources related to Embedded systems software testing and IOT
testing have been shared. He is passionate about teaching and writing about
software testing.

He also loves to write Python scripts and work with Linux environments. He blogs
at https://bjtestingtalks.wordpress.com/.

During TestAway Goa 2022 and Worqference 2023, I got an opportunity to attend a hands-on workshop on "Mental Models" by Ajay
Balamurugadas. It made me curious to dig deeper into this topic. I have gone through multiple blogs, and videos, and read some books to explore
more on this topic. In this article, I would like to share my learnings and findings about Mental Models

What are Mental models?

Mental models explain someone's thought process about how something works in the real world. To be more precise, Mental models are a
representation of our thought process of something that is stored in our mind. As humans, we won't be able to process more information about
the world in our minds. So, we use models to store complex information in our minds as understandable and organizable structures.

Why do software testers need to understand mental models?

Mental models help to practice critical thinking. It allows testers to come up with great test ideas and analyze risks. It makes us aware of our
cognitive biases by guiding us to identify blind spots in our own thinking. Mental models provide the base for practicing exploratory testing. This
is an excerpt from the book “A Practitioner's Guide to Software Test Design” that explains the importance of creating a mental model for
designing better tests.

The snippet below is from Software Testing Techniques book, that conveys that testing is a process of creating mental models.

https://testingtitbits.com/jw-excellence-award/
https://www.thetesttribe.com/testaway-goa/
https://www.linkedin.com/in/ajaybalamurugadas/
https://www.linkedin.com/in/ajaybalamurugadas/
https://dahlan.unimal.ac.id/files/ebooks/2004%20A%20Practitioner's%20Guide%20to%20Software%20Test%20Design_Good.pdf
https://www.amazon.in/Software-Testing-Techniques-MISL-DT-Beizer/dp/8177222600/ref=sr_1_3?crid=3NX6MPU3K2F19&keywords=software+testing+techniques&qid=1688052891&s=books&sprefix=software+testing+techniques%2Cstripbooks%2C219&sr=1-3


ISSUE 03/2023
PROCESSES

ISSUE 03/2023
PROCESSES

32 33TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

That’s from Lessons Learned in Software Testing book. It
highlights the essence of creating better mental models for
exploring the software without any product documents.

All these points really helped me to understand the importance
of mental models.

How to practice applying mental models?

Here are some mental models which testers can get started to
practice with:

Inversion:

This mental model helps in inverting a problem and forces us to
look at it differently which helps in unlocking new solutions.
Practicing this mental model, allows us to avoid being stupid and
help to think about the opposites of the action that we need to
perform. Some simple examples can be like giving opposite
characters other than characters supported for a particular line
field, giving the opposite format of an Email ID to check whether
that makes some problem or not etc...

Framing:

This mental model helps in presenting the same information in
multiple ways. Bug Advocacy is one of the examples here.
Because you need to present your bug findings and highlight
their impact to Software developers and Product owners for
convincing them to fix the important bugs. Another example is
creating user personas as we need to frame personas for
different kinds of users under different age categories for using
a particular software. You can know more about framing mental
model here: Framing mental model.

The Map is not the Territory:

This mental model helps to evaluate our assumptions and their
reality, theoretical and practical approach. One example is
whatever we learned from theory books, if we try to apply it in
real life, It might not be accurate or practical or its behavior will
be different from what we learned. So we need to know what
exactly it is by applying it which is actually the territory. From a
software testing perspective, requirements are a great example
here because when we start implementing those requirements,
they might get change over the course of time. Requirements are
like maps here. It can guide us in creating test ideas but it can be
inaccurate or not practical sometimes. You need to check the
technical implementation of both the front end and back end of
the software requirements which all are the actual territories.

Second-order Thinking:

This mental model helps to practice deep thinking. It can help us to
identify risks when we are going to perform some actions or take
some decisions. It can help to evaluate the long-term consequences
of the decision that we make. What If? and 5 whys? can be good
examples and a great way to start practicing this mental model. It's
like charting out the next connecting thought by asking questions
like 'What if we perform this action? What if this action cause this
effect?'

Opportunity cost:

This mental model helps to evaluate the benefits of the options that
we are going to select and we are going to miss. There are two
options A and B. If you select option A, then what is the cost of
missing option B? If the cost of missing option B is lesser, then there
is no problem. Or else there might be a problem.

Fixing a bug earlier than fixing it during production is a better
example here. Because fixing the important software bug during the
production period proves to have the most cost than fixing it during
the software development period.

First principles thinking :

This mental model helps to break down complicated problems into
basic elements and then reassemble them from the base. It's a very
useful mental model for software testers which helps in Test design
and Automation framework development. The Product Coverage
Outline can be a great example here.

I have shared only a few mental models here but there are 100+
mental models which we can learn to improve our thinking.

Relationship between mental models and heuristics:

I had a long discussion with Michael Bolton regarding the difference
between mental models and heuristics. During that conversation, I
was able to figure out the relationship between mental models and
heuristics. I learnt that,

"Mental models are representations of something complex in
simplified form and Heuristics can be a set of tools to develop and
evaluate our mental models"

Through all these learnings, I understood the importance of mental
models. I also found that practicing mental models help software
testers to get better at their test craftsmanship and enhance their
thinking skills. I hope this article benefits software testers to get
started with mental models and help them to become great thinkers.

https://www.amazon.in/Lessons-Learned-Software-Testing-Context-Driven/dp/0471081124
https://www.thetesttribe.com/blog/understanding-bug-advocacy/
https://modelthinkers.com/mental-model/framing
https://developsense.com/resource/pcos.pdf
https://developsense.com/resource/pcos.pdf
https://www.linkedin.com/in/michael-bolton-08847/
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery
https://huddle.eurostarsoftwaretesting.com/resources/test-management/quality-conscious-software-delivery


TEA-TIME WITH TESTERS ISSUE #03/2023
35

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of time.

Over the last ten years, Tea-time with Testers has
published articles that did not only serve the
purpose back then but are pretty much relevant
even today.

With the launch of our brand new website, our team
is working hard to bring all such articles back to
surface and make them easily accessible for
everyone.

We plan to continue doing that for more articles,
interviews and also for the recent issues we have
published.

Visit our website www.teatimewithtesters.com and
read these articles.

Let us know how are they helping you and even
share with your friends and colleagues.

If you think we could add more articles from our
previous editions, do not hesitate to let us know.

Enjoy the feast!

https://www.teatimewithtesters.com


36 37TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Few years back, I was trying to find out solution for below problem statement -

1. Low code API tool for team with less/no coding knowledge.

2. Tool should have good community support.

While working on tool evaluation I came across Karate Framework which was exactly satisfying above
two requirements.

Well while we are going to check out APIs with Karate Framework, let’s quickly touch base it again.

What are APIs?

API specifically stands for Application Programming Interface.

According to Wiki, an Application Programming Interface (API) is a way for two or more computer
programs to communicate with each other.

Below picture illustrates generic communication between Client/Server for a Web application.

Types of API -

1. Libraries and Framework – Software libraries which we consume are API’s. Even frameworks. e.g., Language bindings.

2. Operating System – These API’s act as interface between an application and OS. e.g.- Win32 (older applications may run on
newer versions of Windows)

3. Remote APIs – Allows manipulating remote resources through protocols. e.g., Java Remote Method Protocol

4. Web APIs – They are service accessed from client devices (Mobile Phones, Laptop, etc.) to a web server using the Hypertext
Transfer Protocol (HTTP). They are further classified in public, partner, private and composite.

We are specifically interested in Web APIs as this is where Karate Framework is going to rescue us.

What is HTTP?

Hyper Text Transfer Protocol (HTTP) is a method to communicate between web clients and server. It is the primary protocol for
communication and data transfer across the Internet (WWW).

HTTP has a sibling called HTTPS, which provides more secured mode of communication.

For Testing Web APIs, HTTP protocol provides us with CRUD operations.

What is Karate Framework?

My customized definition for Karate Framework would be “A low code framework which can help you to test UI, API and performance tests.”

I have personally experienced below capability whilst using Karate Framework, the list is exhaustive but sharing few important ones -

1. Uses gherkin keywords while writing tests.

2. All-in-One framework.

3. Easy to learn.

4. Easy to integrate and adapt.

5. Good documentation.

6. Good community presence and support.

7. Frequent enhancements and bug fixes by creators.

8. Easy cloud integration.

9. Karate Reports for easy reporting.

10. Multi-env support.

11. Parallel execution is supported.

12. Allows logging.

13. Allows JavaScript and Java method calls within the test script.

14. Capable of handling various HTTP calls.

15. Open source and paid versions are available.~
Pr
od
uc
ts

GETTING STARTED
WITH KARATE



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

38 39TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Getting started –

Note – Karate supports both MAVEN and Gradle, but for sake of simplicity I am using MAVEN as build tool and https://dummy.restapiexample.com
for examples illustrated below for performing CRUD operations. Working example can be found at https://github.com/JyotiShah/KarateAPITests
link. As a pre-requisite, ensure you have Java 11 or higher installed and additionally, you can use either of Visual Studio Code or IntelliJ as and
IDE for writing your scripts.

1. Dependencies –

You can get the latest version of Karate at - https://mvnrepository.com/artifact/com.intuit.karate/karate-core

Or simply google “Maven Karate Dependency” which will take you to above link. Current latest version is 1.4.0, which I would be using in my GitHub
repo as well.

2. Config

The heart of Karate Framework is karate-config.js.

This file has a function which returns JSON Object and all variables configured in the function in key and values. This file is mandatory as Karate
Framework reads this file upon initialization.

It contains information about -

1. Environment with default environment

2. BaseURL, appID, secret, credentials etc.

3. Global karate configuration like connectTimeout, readTimeout etc.

4. You can have customizations per environment using karate-config-env.js where env stands for env like “test”, “UAT”, “E2E” etc.

A sample config file looks like this – (source – https://github.com/karatelab)

3. Karate Runner

This is another important class where you should be able specify the features you want to run as below –



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

40 41TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

4. TESTING CRUD OPERATIONS

Explanation –

1. Our base URL is https://gorest.co.in

2. Endpoints are specified using path keyword e.g.

Given path '/public/v2/users'

3. Authorization is handled using bearer token.

4. Requests are sent in JSON format for POST and PATCH methods.

5. Existing resources are modified/deleted in patch and delete requests

I hope with above examples, you should be able to create your first test script using Karate Framework.

BDD REQUIREMENTS
DISCOVERY WITH
TESTCOMPASS

Often there appears to be confusion about the concept of Behavior Driven Development (BDD) and far too often BDD is seen as a testing
approach. Is this maybe because BDD grew from a response to Test Driven Development (TDD), as explained by BDD pioneer Daniel Terhorst-
North?

Although there may be misunderstandings regarding the concept of BDD, this blog does not intend to delve deeply into the complete concept
of BDD or provide a comprehensive guide on how to perform BDD correctly. Numerous other blogs have already extensively covered these topics.
However, for the purpose of this blog, it is important to at least acknowledge that BDD emphasizes the importance of collaboration between
developers, testers, and business stakeholders. It centers around creating a common language that is easily understood by everyone involved,
to get a deeply shared understanding of the requirements.

TestCompass

In this article we explore how the collaborative modeling tool TestCompass, in addition to the early Model Based Testing (eMBT) approach (see
our other blog https://www.compass-testservices.com/embt-with-testcompass-in-practice), supports BDD in a very easy to use way. And
specifically for the BDD phases Discovery and Formulation. Therefore we will take a closer look how to perform the BDD requirements Discovery
practices 'Example mapping' and 'Feature mapping' (known as 3-amigos sessions) in TestCompass and how to turn the results (concrete
examples) of these Discovery practices automatically into business readable language (as Gherkin feature files), in the Formulation phase.

As described in the intro of this blog, Behavior-Driven Development (BDD) is a powerful approach to software development that emphasizes
collaboration and communication between all stakeholders (business and technical). However, executing the 3 different phases of BDD
(Discovery, Formulation and Automation) can be challenging. Fortunately, there are tools and practices available to help teams execute these
BDD phases more effectively.

TestCompass is such a tool, which can help you streamline, simplify and automate the BDD phases Discovery and Formulation.

- JYOTI SHAH

Jyoti is a passionate test practitioner. With over 13 years of experience She has had
various roles from a Tester to a Test Consultant/Test Lead.

Jyoti has been extensively involved in Delivery and Test Management in a
multicultural environment supporting stakeholders across different geographies.

https://testingtitbits.com/jw-excellence-award/


ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

42 43TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Feature Map Refund

Formulation

The BDD phase Formulation will start once the ‘Example mapping’ or
‘Feature mapping’ session in the BDD phase Discovery, is completely
done and the goal of this phase - a shared understanding - has been
achieved. In this phase we need to answer the question “What should
it do?”. Now all the examples (and counter examples) created in the
Discovery phase will be turned into a more proper and formalized
language. And often this is done by the so called ‘Gherkin-gang’ by
describing all the examples in Gherkin syntax (Given-When-Then
format), so that they later can be used as executable tests.

During the formulation phase, TestCompass can help to convert the
Example map or Feature map into a graphical model with a high level
of abstraction and thus readable for both business stakeholders as
technical stakeholders. This promotes the ability to have the graphical
model reviewed within the team and ensure that all results from the
requirements discovery practice have been properly interpreted and
worked out in the graphical model and there is a deep shared
understanding of what needs to be built (requirements). After all, a
graphical representation is still much easier to read and to understand
than a text, even if this text is plain English. It is also possible to add
extra comments or new upcoming questions in the model itself by
using a special balloon node. This makes the result of this phase even
more readable and well documented.

See figure 2b for an example of how the first business rule of the
Example map ‘Reservation charges’

(figure 1) has been converted to a graphical model in TestCompass
(figure 3). For clarity, the relevant part of the Example map is also
shown.

And what about the Gherkin feature files, which are a common delivery
of this phase? Well, after the Example map or Feature map in converted
to a graphical model in TestCompass and has been reviewed, the
Gherkin feature files can be automatically generated from the model.
This is of course a great advantage. You no longer have to write out all
the Gherkin feature files by hand and thus less time consuming and
less chance of making writing errors. Furthermore, within TestCompass
it is possible to select a requirements coverage form (from weak to
strong) before the Gherkin feature files are generated. With this, the
generated Gherkin feature files are related to the pre-selected coverage
and therefore all the different scenarios in the Gherkin feature file are
coverage based.

It is also possible to include the background in the graphical model. In
addition, you can include any examples and tables in the details of the
model. These are then automatically included in the automatically
generated Gherkin feature file (outline scenarios).

See in figure 4 on next page, an example of the automatically
generated Gherkin feature file with 3 scenarios from TestCompass
based on the selected requirements coverage form ‘Path Coverage’.
Also included is a general section containing the date, name of the
project and model and the coverage used for generating the Gherkin
feature file. Of course, it is always possible that later, one or more
changes may need to be made to the requirements, and as a result, the
Example map or Feature map may also require updating. This can
potentially impact the scenarios in the previously created Gherkin
feature files. However, in TestCompass, implementing such changes is
a breeze, as you can effortlessly incorporate them and instantly
generate the Gherkin feature files automatically once again. This means
you don't have to manually update existing Gherkin feature files or
create new ones from scratch.

A significant additional advantage provided by TestCompass is its
ability to perform an Impact analysis. This means that when a change
occurs, TestCompass automatically generates a comprehensive
overview of the scenarios from the related Gherkin feature files,
highlighting their new status, such as updated, unchanged, removed,
and added. With this feature in TestCompass, it becomes entirely
transparent which scenarios of the previously generated Gherkin
feature file were affected by the change and in what manner. This
allows for a clear understanding of the precise impact brought about
by the change in question.

Discovery

In the BDD phase Discovery, we need to answer the question “What could it do?” and collaboration between business stakeholders, developers and
testers is essential here. The goal of this phase is to ensure that everyone is on the same page regarding the requirements. To facilitate this
collaboration, often workshops or meetings are hold, like ‘Example mapping’ and ‘Feature mapping’ (also known as requirements discovery workshops
and 3-amigos sessions). In this meeting, a group of individuals (including at least a business stakeholder, developer and tester) convene to discuss a
user story and document specific examples on index cards or sticky notes that serve as illustrations for that user story. These examples, typically
associated with a particular business rule, generally comprise of the context, action, and outcome, effectively demonstrating the behavior described
by the story.

TestCompass can support these requirements discovery practices, ‘Example mapping’ and ‘Feature mapping’, by the possibility to model out the
Example map and Feature map by simply drag and drop different used colored sticky notes onto the canvas. For ‘Example mapping’ normally yellow
sticky notes for the story, blue for the rules, green for the examples and red sticky notes for the questions that arise, are being used. In `Feature
mapping’ normally yellow sticky notes for the story, blue for rules, green for examples, yellow for the steps and purple for the consequences are used.
Also here red sticky notes for the questions that arise.

See below an example of an Example map (figure 1) and a Feature map (figure 2) modelled in TestCompass.

Example map ‘Reservation charges’

Modeling the Example map or Feature map directly in TestCompass is very easy and works really intuitive. It has many advantages over running a
manual requirements discovery session. Besides the fact that all information from the sessions is automatically documented and saved in
TestCompass, there are many other advantages. For e.g. in TestCompass it is easy to make changes or add extra comments to the Example map or
Feature map. But also better visibility is an advantage, especially when the session is done online. And better visibility makes it easier to share and
discuss ideas and examples. Another advantage is reusability. TestCompass allows the sessions to be reused for similar project or features. This can
save time and effort in future projects and help to ensure consistency across different teams and projects. And do not forget a lower chance of making
typos in the next phase Formulation, where the examples will be described in a formalized language. In TestCompass we can re-use a lot of the text
from the Example map or Feature map (see next phase Formulation).



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

44 45TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

To summarize, some of the key advantages of using TestCompass for the
Discovery and Formulation phases of BDD:

• Streamlined collaboration: TestCompass facilitates communication
and collaboration between business stakeholders, developers, and
testers. It provides a platform where everyone can work together to
create a common language that is easy to understand and interpret.

• Automated documentation: TestCompass automatically documents
all information from the requirements discovery sessions. This
means that there is no need to manually record or transcribe the
results, saving time and effort.

• Better visibility: TestCompass provides better visibility of the
requirements discovery and formulation processes. This makes it
easier to share and discuss ideas and examples, especially when
the session is done online.

• Reusability: TestCompass allows sessions to be reused for similar
projects or features. This saves time and effort in future projects
and helps to ensure consistency across different teams and
projects.

• Lower chance of errors: By using TestCompass, there is a lower
chance of making typos or other errors in the next phase of BDD
formulation, where the examples will be described in a formalized
language.

• Graphical representation: TestCompass can convert the example
map or feature map into a graphical model with a high level of
abstraction. This makes it easier for both business stakeholders
and technical stakeholders to understand and review the
requirements.

• Automatically generate coverage-based Gherkin feature files
directly from the graphical model.

• Automated Impact analysis after a change in the requirements.
Provides an overview which previously generated Gherkin feature
files were affected by the change and in what manner.

Overall, TestCompass is a powerful collaborative modeling tool that in
addition to the early Model Based Testing (eMBT) approach, can support
the Discovery and Formulation phases of BDD in a very easy to use and
intuitive way. TestCompass can be an excellent choice for organizations
that are looking to adopt a BDD approach and improve collaboration and
communication between all stakeholders involved in the software
development process.

References:

Example mapping - https://cucumber.io/blog/bdd/example-mapping-
introduction/

Feature mapping - https://johnfergusonsmart.com/feature-mapping-a-
lightweight-requirements-discovery-practice-for-agile-teams/

- SILVIO CACACE

Silvio Cacace is an experienced and passionate context driven test professional
with long experience in software testing field (since 1994).

Silvio is also founder of TestCompass®, the easy to use and early Model Based
Testing tool (eMBT) and Behavior Driven Development (BDD)-supported
Collaborative modeling tool, in the cloud.

https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://johnfergusonsmart.com/feature-mapping-a-lightweight-requirements-discovery-practice-for-agile-teams/
https://johnfergusonsmart.com/feature-mapping-a-lightweight-requirements-discovery-practice-for-agile-teams/
https://testingtitbits.com/jw-excellence-award/
https://www.linkedin.com/in/silviocacace/
https://www.compass-testservices.com/


ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

46 47TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

PHASE SPACE -
THE CONTROLLED CHAOS

FAIZA YOUSUF - PRODUCT MANAGER AND COMMUNITY BUILDER

Faiza Yousuf is a software engineer with 13 years of experience building products
and teams. She is a serial founder focusing on women’s financial inclusion initiatives
and improving gender parity in tech. Faiza is a multi-award-winning community
leader. She founded WomenInTechPK and cofounded CodeGirls and CaterpillHERs.

Faiza is an Expert-Vetted freelancer on Upwork and was featured in many of their
campaigns. She is a well-known international speaker, loves to read, and enjoys
writing about tools and practices.

The greatest challenge for testing software is
controlling the time alongside the
completeness of test cycles, in contrast to the
complexity of the software application.

In the case of development, this is resolved by
adopting agile methodologies or continuous
delivery methods, but if we look closely, it is
easily perceivable that these practices are
exerting an enormous amount of pressure on
quality assurance and testing practices, not
only in terms of delivery timelines but also in
addressing the definitions of “done.”

Most of the decision-making is on retesting a
certain feature while regression is happening
inside a tester's head. They (testers) take
these decisions as on their experience with

that specific application or any other
applications they have tested before that.

So, there is no Project Manager who would
know about the density of testing, and this is
not something that is properly discussed. So,
it can create loopholes.

Impact analysis and risk analysis of certain
features in testing are also not conducted
formally, so again, implicit knowledge is only
in the tester's head and if the tester is not
experienced, then you are in dangerous
territories.

This also never becomes part of the
conversation between developers, testers,
and PMs. No matter if they write test cases or

test scenarios or if the product has a
requirement document or not.

We need to address this problem from the
testers' and users’ perspectives. To achieve
this, there is a need to view the application as
a complex interconnected ecosystem. Once
the application is contained in a finite space
of time and context, it will be easier for testers
to determine which objects to be tested for
which release, even though for the
development team those components are not
appended within the scope.

ARSLAN ALI - PRESALES AND SOLUTIONS CONSULTANT

Arslan Ali is a veteran software tester and solutions consultant from Pakistan. Having more
than 20 years of diverse experience in information technology services and IT education,
Arslan's main focus now is community building and consulting.

He is the founder of the BeingTester initiative and also co-founder of the Pakistan Software
Testers Society and SQAs from Pakistan, where testers from around the country share
experiences, assist other testers and help build a stronger QA community.

We believe that there is a presence of “gravitational” force in effect
within software objects, and if we can determine this delicate
relationship, then explore phase space and complexities of the system
embedded within that phase space in order to determine the full
coverage of testing in a limited timeline might become possible.

This research will assist software testers and business analysts in
determining the layered structure of the application, help them
discover areas of vulnerabilities and bugs, and also propose a
suggestive approach for the development team.

We have extended the software definition and heuristics from the
Context-Driven School of thought to a much more in-depth approach
to understanding the existence of software application components
and their relationships.

Introduction:

Software Systems are dynamic by nature which eventually makes
them complex. This aggressive behavior is relative to users and market
evolution. The dynamics of a software application depend on many
factors, such as its architecture and coding structure, the data it is
going to process, the function it's going to perform, its platform
dependencies, its users. Its users' behavior and its life cycle.

The concept of containing software systems in phase space is to
visualize systems with all their state and complexities. This complexity
can be calculated down to singularity to the extent of the entire
software application, subsequently providing testers with an approach
to drill up and down the details as per their testing requirements,
requirement specifications, context, and scope of testing.

The Challenges for Testers and Test Teams:

Thence, if we put things in perspective, testers can focus/de-focus on
features we need to test more often than the others;

• As there are frequent changes reported by the clients and/or
internal teams there is a high risk associated with the feature,
and the vulnerability assessment is extremely necessary to be
tested and verified

• The Impact zone of the system object(s) expands beyond system
boundaries, and a failure can affect customers, data, and internal
functions. At the time of scheduled builds or main application
releases the test team has the burden to find these impact zones,
but this is easier than said than done. No matter how many test
cases are written the business and human context keep
contracting and expanding the impact boundaries. Usually,
people find solutions to this in automation, but in reality, a good
map of the application with the identification of go-no-go areas
can help testers better.

• The high business value of a certain application component, a
marketable feature, or a claim that works as a potent to sell the

system to its client, increase sustainability and retain existing
market clients

• For humans, the interaction with these applications differs due
to several contextual dependencies. Therefore, the perception of
value for each user becomes dependent on several known and
unknown factors.

• It carries independent relational factors from entity to entity,
developers, testers, business analysts/product owners,
customers, and users.

• We can measure this with certain inflation factors affecting
requirements, release reworks, and the number of changes being
incorporated after the market release of the application.



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

48 49TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

The Test Coverage Concerns: (Infinite Space /
Finite Time)

Thence, if we put things in perspective,
testers can focus/de-focus on features we
need to test more often than the others; As
there are frequent changes reported by the
clients and/or internal teams

There is a high risk associated with the
feature, and the vulnerability assessment is
extremely necessary to be tested and verified

The Impact zone of the system object(s)
expands beyond system boundaries, and a
failure can affect customers, data, and
internal functions. At the time of scheduled
builds or main application releases the test
team has the burden to find these impact
zones, but this is easier than said than done.

No matter how many test cases are written
the business and human context keep
contracting and expanding the impact
boundaries. Usually, people find solutions to
this in automation, but in reality, a good map
of the application with the identification of
go-no-go areas can help testers better.

The high business value of a certain
application component, a marketable feature,
or a claim that works as a potent to sell the
system to its client, increase sustainability
and retain existing market clients

For humans, the interaction with these
applications differs due to several contextual
dependencies.

Therefore, the perception of value for each
user becomes dependent on several known

and unknown factors.

It carries independent relational factors from
entity to entity, developers, testers, business
analysts/product owners, customers, and
users.

We can measure this with certain inflation
factors affecting requirements, release
reworks, and the number of changes being
incorporated after the market release of the
application.

Reworks, Cost of Quality, and Software
Release Inflation:

The following data is extracted from JIRA
trends of application maintenance release
trains. The data reflects a sequence of
scheduled releases for the clients during a
period of two years. What the project
managers needed help to grasp was the effect
of reworks on each release due to limitations
in JIRA data.

For this, a complete combined picture of data
was required. The table, therefore, represents
an exclusive chronological representation of
the data of main releases and further on the
subsequent patches of these releases.

In the table below and the graphical
representation, one can see that the rework
creates each release to inflate around 20% on
average. Small releases with very less amount
of testing and regression effort and quick
timelines have even a higher percentage, as
the testing time applied on these releases
due to their volume is reduced, in contrast to

the impact created by each release.

Also to be noted is the “Code Fix” percentage
per release, meaning to fix the reported bug,
the development has to do code changes in
the application, and with this, the testing time
and test coverage concerns for the test team
become big challenges.

This graph represents the chronological
release-wise data. As a release manager, the
biggest challenge is to manage the content
and time of each release.

There are five releases here, and the contents
overlap each other, meaning the
requirements established even at the same
time are not delivered to the client together.
They are either prioritized or delayed. The
priority is manageable, whereas the “delay”
creates backlogs for the test team, and this
creates an overhead.

The above pattern reflects that the drag of
these backlogs results in a crumbling effect
toward the release date and exerts a force on
both release boundaries.

In case of minor code changes resulting in
modification of a multi-connected function
will eventually result in testers executing all
the test cases to provide test coverage, and
this also means the expense of more time and
effort, even if these test cases are automated.

On the other hand, the tickets other than
Code-fixes, such as “understanding issues”,
“system configuration”, “environment setups”,
“not reproducible”, and “system updates”,
actually become overhead for testing efforts
because as a preventive measure, it is still
considered as a good practice where test team
close all the tickets whether these are not
created nor reported by the Test team
members. Consider something marked as a
bug and is in an open state but with a flag as
“Configuration”, which will be an overhead to
the QA team unless it is rechecked and closed.

This creates pressure, not only on the QA team
on their regression and automation timelines
but also creates inefficient implementation
schedules for business teams.

The determined numbers of changes here are
contextual as different software applications
and their release strategies may differ as per
their Industry/domain, team capacity, and
business objectives.

Dissecting the challenges:

Incorporating changes or new enhancements
in an in-use application also depends on how
much expansion or wobble can be introduced
by the solution providers where the
application can pass its sanity tests, and the
code remains controllable.

Now, to understand the below-mentioned
challenges it is important to understand that
there can be several examples to depict here,
but we have chosen two distinct scenarios;
first, a traditional ERP development approach
where there are sequenced releases with fixed
schedules and the risk of inflated release is
pretty much controlled. And second, where the
development is chaotic and the release
frequencies depend on the customer request
for changes, this is also scheduled - today we
called this continuous delivery with
continuous integrations.

There are a couple of aspects that can

fluctuate application complexity and how
much development can expand with changes

Common code-base for several different
clients operating on different business
domains:

This approach is fast in delivery but higher in
risk, as one change on a single client may
affect many clients, the same happens in
terms of bug fixes. Therefore, test teams are
faced with the challenge of impact analysis,
and multi-domain-based testing (in a limited
timeline), meaning separate lines of tests to be
executed for different business domains in
which the application is running, the example
of such domains is “Finance”, “Textile”,
“Education”, “Services”, “Retails”, “FMCG”,
“Pharmaceuticals”, “Human Resource”, etc.

Thence expansion and wobbling are very
carefully managed by the development
manager, and the system can stretch its
boundaries to a certain limit only. Not
everything can be changed as per the client’s
requests and wish lists, therefore some of the
system aspects are either pushed back to the
timeline while others are deferred.

The most efficient way to cater to multi-
domains on a single code base is a
“configuration dashboard” approach. Where
the delivery team can toggle the features of
the entire application and customize changes
after every gap analysis they are doing.

The changes are also done on form levels
where certain features and UI aspects are
carefully marked for the clients, so if an FMCG
client is using a Purchase order, they may not
use/want to use certain buttons/options/
fields on the form, as they may belong to
“Textile” domain.

Multiple branches cater to several clients,
although the business domain remains the
same

The second approach for release managers is

to create multiple code branches and keep
updating the main branch with the changes to
code and delivery lines, this works for smaller
applications, but the system can experience
wobbling of the boundaries as soon as the
data, the issue tracker and release timelines
get entangled with each other. This
phenomenon occurs when a feature for a
certain client is to be delivered and is not
scheduled for other clients due to its lower
priority.

In another case, a completely independent
release train is managed with all independent
deliveries for one specific client. However, on a
“major release” event, the changes are merged
with the master branches. This entanglement
is tricky and creates reworks on maintenance
and regression levels for both development
and testing teams, respectively.

The Layered Cake Approach:

On one hand, this mix is highly creative and
interesting, but on the other hand, it is a
daunting challenge, as finding balance for the
application for each entity, namely, customers,
developers, business teams, and testers, is not
something that can be dealt with at the coding
level, we need to see things from a different
vantage point.

It is similar to viewing applications in the form
of a layered cake, where the outer layers
represent a more presentable form and the
inner layer represents a stable structure and a
solid base. Viewing each of these layers is
contextual in nature. For frontend developers,
testers, and customers, the outer layers matter
the most, but for core developers, and
automation engineers, the inner layers
become the focal point of change and chaos.

This also depends on the problems and the
discovery of the bugs, therefore in so many
words, the balance is to keep the application
sanity in order, and to an extent, work with the
controlled chaos.



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

50 51TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

Software testing of any Hardware in Loop (HIL) system is a very critical
and challenging task. Primarily, during the testing of the software, other
critical aspects related to hardware such as the state of device, power
supply control, communication channels / modes and much more
need to be managed continuously. All these other aspects create a
challenge if we want to scale automated software tests on n hardware
devices as they include a manual test step per device per session.
Moreover, manual intervention is required for software tests related to
device.

This article focuses on an in-house developed Ethernet controlled
relay-based mechanism for achieving a fully automated test execution
process. In this solution, relay boards are used for controlling the
device process along with any test-specific step. Although, standard
ethernet controlled relay solutions are available in the market, we
decided to create a custom board solution as it offers the following
advantages:

1. Customization: A custom-made relay board can be designed to
meet the specific needs of a particular application, whereas a
purchased relay board may not have all the desired features or
may have features that are not needed.

2. Cost: Depending on the complexity of the relay board, building
one may be more cost-effective than purchasing a pre-made one.

3. Quality: A custom-made relay board can be made with higher
quality components and more precise construction, which may
result in improved reliability and longer lifespan compared to a
purchased relay board.

4. Learning opportunity: Building a custom relay board can be a
valuable learning experience, as it allows you to understand how
the board works and how to troubleshoot any issues that may
arise.

5. Unique solution: Building a custom relay board allows you to
create a unique solution that may not be available on the market.

Introduction

A controller may be a microchip or separate hardware device for the
control of a peripheral device. For our system, we are using the ifm
ecomat mobile series controllers. The ifm ecomat mobile series
controllers are designed for use in harsh and rugged conditions. They
are suitable for direct installation in vehicles and mobile machines. For
safety-critical tasks, safety controllers are also available. The signals
produced by sensors are quickly and reliably processed by the
controllers and provided to the actuators. Besides multifunctional

inputs and outputs for different applications, each controller has
several CAN interfaces and an RS232 (Serial) interface. Some controllers
also support Ethernet interface. The programming tools are in line with
IEC 61131-3 for control systems used in mobile machines provide the
programmer with a variety of programming languages for fast project
implementation and management through an SDK API solution, which
is known as ifm SDK API. A powerful visualization module for graphic
visualization of the machine and installation functions, also known as
Maintenance Tool, completes the package. ifm's control systems can be
completely operated via the programs developed using ifm SDK API.
The connection to the device is established via a standardized serial
interface (RS232) or a CAN interface and in some cases using an
Ethernet interface also. The software allows setting of all
communication parameters of the connected controller, programming
of the controller, and diagnosis/visualization of the available data in
the controller.

MNTT Auto Tester is a test automation hardware setup built to meet
testing requirements of Maintenance Tool and ifm SDK API project.
Using the Auto Tester, it is possible to execute positive as well as
negative tests on both Maintenance Tool software and ifm SDK API
software. The commands supported on the controller are available
under three categories, i.e., read, write, and execute software
commands.

Hardware Block Diagram and Description

Auto Tester consists of following hardware components:

a. A Host PC with configuration:

• Processor: Intel Core i5-4590 CPU @ 3.30 GHz

• Internal RAM: 8 GB

• Operating System: Windows 10 Pro 64-bit

b. NCD ProXR Enhanced Ethernet Controlled Relay Controller.

c. Industrial Rack by APW President.

The Host PC and the relay controller boards are routed via LAN. The
Power Supply, CAN, RS232 (Serial), and Ethernet connections from the
Device-Under-Test (DUT) are routed through the relay.

Using appropriate commands from the host PC, the relays can be
turned ON or OFF, which in turn connects or disconnects the DUT's
power supply and communication supply buses.

TEST AUTOMATION
USING
ETHERNET
CONTROLLED
RELAYS

- RAHUL PARWAL AND ABHISHEK BAWKAR

https://testingtitbits.com/jw-excellence-award/


ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

52 53TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

1. Controller Classification

The Controllers can be classified on various parameters such as:

1. Family

i. Basic System

ii. Classic / R360 System

iii. Ecomat / R360 III System

2. Safety Type: Safe, Non- Safe

3. Architecture: 16 Bits, 32 Bits

4. Communication Support

i. CAN Support only

ii. CAN + RS232 Support only

iii. CAN + RS232 + Ethernet Support

2. Communication Interfaces Classification

1. CAN (Controller Area Network) Communication

A Controller Area Network (CAN bus) is a robust vehicle bus standard
designed to allow microcontrollers and devices to communicate with
each other. Popular CAN interfaces for which the controllers are tested
are as mentioned below:

i. CANfox

ii. CAN-PEAK

iii. IXXAT

iv. Kvaser

Each CAN cable has two main wires for data communication:

i. CAN High (CAN_H)

ii. CAN Low (CAN_L)

For successful communication between receiver and transmitter using
CAN protocol, the CAN High (CAN_H) of transmitter device must be
connected to the CAN High (CAN_H) of the receiver device and CAN
Low (CAN_L) of transmitter device must be connected to the CAN Low
(CAN_L) of the receiver device. There should be a 120 ohm termination
resistance between the CAN_H and CAN_L lines.

2. RS232 Communication

RS232 is a serial information transfer protocol standard that defines
the protocol (method of transmission of data) as well as the physical
hardware required. Fundamentally it is a method of transferring data
across a single wire. Data is transmitted serially in one direction over
a pair of wires.

Each RS232 cable has two main wires for data communication:

i. Transmission (Tx)

ii. Reception (Rx)

Data going out is labeled Tx (indicating transmission) while data
coming in is labelled Rx (indicating reception). For successful
communication between receiver and transmitter using RS232
protocol, the Tx of transmitter device must be connected to the Rx of
the receiver device and vice versa.

3. Ethernet Communication

Ethernet is a standard communication protocol embedded in software
and hardware devices. Ethernet is widely used for home and industry.
The Internet Protocol is commonly carried over Ethernet, and is
considered one of the key technologies that make up the Internet.

Each Ethernet cable has four main wires for data communication:

i. Transmit Data Plus (TxD+)

ii. Reception Data Plus (RxD+)

iii. Transmit Data Minus (TxD-)

iv. Reception Data Minus (RxD-)

For successful communication between receiver and transmitter using
Ethernet protocol, all the main wires for data communication of
transmitter device must be connected to the same wires of the receiver
device, i.e. TxD+ of transmitter device with TxD+ of receiver device, RxD+
of transmitter device with RxD+ of receiver device, TxD- of transmitter
device with TxD- of receiver device and RxD- of transmitter device with
RxD- of receiver device.

3. Relay

A Relay is an electrically operated switch. It consists of a set of input
terminals for a single or multiple control signals, and a set of operating
contact terminals. A SPDT (Single Pole Double Throw) Switch and DPDT
(Double Pole Double Throw) Switch are the basis of Relay / Relay
Board.

1. SPDT (Single Pole Double Throw) Switch

A Single Pole Double Throw (SPDT) switch is a switch that only has
a single input and can connect to and switch between 2 outputs.
It has one input terminal and two output terminals.

The input terminal is known as COM (Common). The output
terminal connected to the internal terminal is known as NC
(Normally Closed), whereas the output terminal not connected to
the internal terminal is known as NO (Normally Open).

2. DPDT (Double Pole Double Throw) Switch

A Double Pole Double Throw (DPDT) switch is a switch that has 2
inputs and 4 outputs; each input has two corresponding outputs
that it can connect to.

Each of the terminals of a double pole double switch can either
be in one of the two positions. This makes the double pole
double throw switch a very versatile switch. With two inputs, it can
connect to four different outputs. It can reroute a circuit into two
different modes of operation. A Double Pole Double Throw (DPDT)
Switch is a combination of two single pole double throw (SPDT)
switches. This DPDT switch arrangement is called a Relay.

Similar to SPDT, in the above diagram, each input terminal is
known as COM (Common). Each output terminal connected to the
internal terminal is known as NC (Normally Closed), whereas each
output terminal not connected to the internal terminal is known
as NO (Normally Open).

3. Relay (DPDT) connection for RS232 and CAN Communication

A DPDT arrangement can be used as a relay for connecting the
RS232 and CAN Communication wires:

In the above figure(s):

i. CAN_H --> CAN High

ii. CAN_L --> CAN Low

iii. Rx --> Receive

iv.Tx --> Transmit

Note: Tx is connected to Rx and vice versa for Serial Transmission and
Reception.

4. Relay (DPDT) connection for Ethernet Communication

Two DPDT(s) arrangement can be used for connecting single
Ethernet Communication wire as shown in the figure below:

In the above figure:

i. TxD+ → Transmit Data Plus

ii. RxD+ → Reception Data Plus

iii. TxD- →Transmit Data Minus

iv.RxD- → Reception Data Minus

5. Relay Board And Auto Tester

Relay Boards are electronic boards with an array of relays and
switches. They have input and output terminals and are designed to
control the voltage supply. Relay boards provide independently
programmable, real-time control for each of several onboard relay
channels. A single relay board is a collection of eight relays.

Single Relay Board = 8 Relays = {R1, R2, R3, R4, R5, R6, R7, R8}

Auto Tester is a collection of two or more relay boards i.e. no of relay
boards * 8 relays.

Two types of Auto Testers have been developed to control devices
having CAN and RS232 (optional) support and CAN, RS232 and Ethernet
Support.

The Auto Tester that supports only the classic industrial
communication protocols (i.e. CAN and RS232) is called as the Classic
Auto Tester. The Auto Tester that supports all the industrial
communication protocols supported by the ecomat controllers (i.e.
CAN, RS232 and Ethernet) is called as the Ecomat Auto Tester.

The Relay Boards are classified into the following types as per their
functionality:

i. Communication Relay Boards

ii. Power Supply Relay Boards

a. Communication Relay Boards

Communication Relay Boards is a relay board for connecting
communication interfaces.

For Classic Auto Tester, Communication Relay Board = CAN {R1, R2, R3,
R4} + RS232 {R5, R6, R7, R8}

For Ecomat, Auto Tester, Communication Relay Board = CAN {R1, R2, R3,
R4} + RS232 {R5, R6, R7, R8} + Ethernet {(ER1, ER2), (ER3, ER4), (ER5, ER6),
(ER7, ER8)}

Each Tuple of Ethernet Relay in the above statements forms a single
Ethernet Connection:

Each CAN Relay is a DPDT with CAN_H and CAN_L:

Each RS232 Relay is a DPDT with Rx and Tx:



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

54 55TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

b. Power Supply Relay Boards

Power Supply Relay Boards is a relay board for connecting power
supply cables.

Power Relay Board = Power Relays {P1, P2, P3, P4} + Free / Empty
Relays {P5, P6, P7, P8}

Each Power Relay is a DPDT with GND and Vcc:

6. Classic Auto Tester

Classic Auto Tester consists of two relay boards (1 Communication
Relay Board + 1 Power Relay Board)

Communication Relay Board = CAN {R1, R2, R3, R4} + RS232 {R5, R6, R7,
R8}

Power Relay Board = Power Relays {P1, P2, P3, P4} + Free / Empty Relays
{P5, P6, P7, P8}

The classic Auto tester (Basic / R360 System) can thus be visualized
as in the chart diagram given below:

Assume Device Under Test as D1, D2, D3, and so on.

Each device would have 1 RS232 Relay, 1 CAN Relay (For
Communication Interface) and 1 Power Supply Relay connected to it.

The Classic Auto Tester only supports maximum four devices.

We currently have four Classic (Basic+R360) Auto Testers = 4 * 4 = 16
devices support.

Each Auto tester is assigned a particular IP address.

7. Ecomat Auto Tester

Ecomat Auto Tester consists of 3 Relay Boards (2 Communication
Relay Boards + 1 Power Relay Board)

Communications Relay Board = CAN {R1, R2, R3, R4} + RS232 {R5, R6, R7,
R8} + Ethernet {(ER1, ER2), (ER3, ER4), (ER5, ER6), (ER7, ER8)}

Each Tuple of Ethernet Relay in the above statements forms a single
Ethernet connection.

Power Relay Board = Power Relays {P1, P2, P3, P4} + Free / Empty
Relays {P5, P6, P7, P8}

The Ecomat Auto Tester can thus be visualized as per the chart
diagram you see next.

Assume Device Under Test as D1, D2, D3 & D4 and so on.

Each device would have 1 Ethernet Connection (2 Ethernet Relays), 1
RS232 Relay, 1 CAN Relay [For Communication Interface] and 1 Power
Supply Relay connected to it.

Therefore, it is evident from the above representation that one Ecomat
Auto Tester supports maximum four devices only.

The below image shows the fully implemented autotester rack with all
the relay boards (communication, power) and autotesters (classic,
ecomat):

8. Software System Overview

Autotester PC uses different test solutions for testing the ifm SDK API
and Maintenance Tool. In both the testing solutions, a byte array for
the appropriate command (such as Start or Stop Power, Start or Stop
Communication, etc.) are sent to the socket of the relay board. The
socket communication over ethernet controls the various relay
boards and autotesters.

The Autotester PC has the following software(s) installed for the test
execution on the ifm SDK API:

a. Python 3+

b. Pytest 5+

The Autotester PC has the following software(s) installed for the test
execution on the Maintenance Tool:

a. WinAppDriver

b. .NET Framework 4.7+

c. NUnit

A JSON configuration file is maintained for defining the environment
parameters for the test execution. It contains parameters like:

• Test PC MAC address

• Communication type to be used (0 = CAN, 1 = RS232, and 2
= Ethernet)

• Autotester(s) available for testing



ISSUE 03/2023
PRODUCTS

ISSUE 03/2023
PRODUCTS

56 57TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

• IP Address of the Autotester(s) to test (To establish Ethernet
connection with the Autotester)

• Port of the Autotester (For socket connection)

• Execution flag per Autotester

• Controllers available per Autotester for testing

• Execution flag per controller

• Controller type (16 bit or 32 bit)

• Controller safety supported info (To run safe controller related
tests also)

• Controller node id

• CAN baud rate

• RS232 baud rate

Based on the values in the configuration file, the test engine initiates
an auto tester setup function which performs the setup operation for
the specific test device.

For example, In the above sample file, the test execution for CR0032
controller is set to true. Also, the CommTypeUnderTest is set to 0, which
implies that the test must be executed on a CAN communication
interface. Thus, the auto tester setup function would initiate a socket
command to turn ON the power and communication (CAN) supply lines
for CR0032. This would set up the environment for test execution to
work on CR0032.

The test scripts call the power or communication ON & OFF blocks
based on the test flow. These functions read the parameters from the
autotesterconfig file and accordingly send the commands to the
appropriate relay lines of the specific device under test.

For manual troubleshooting, we also have a GUI application that
comes along with the NCD relay boards. However, the GUI application
needs to be turned off when controlling the NCD relay boards via
socket commands as the NCD relay boards can only have one exclusive
connection at a time.

9. Results & Analysis

The initial basic setup for the testing without any relay board or
autotester setup involved a lot of manual testing or human
interventions during the entire test execution cycle. There were
repeated manual interruptions on communication channel or power
supply for executing the test cases. The initial basic setup for testing is
shown in the below figure:

Initial Setup:

• Total test cases: 150 (approx.)

• Time taken to execute a single test case on a single controller: 15-
16 mins (approx.)

• Total execution time per controller: 150 x 16 mins = 2400 mins = 40
hours = 5 person-days (or 1 week)

• Total number of R360 Classic series controllers (device under
test): 5

• Total execution time for complete test cycle: 5 x 1 week = 5 weeks

After establishing communication channel or power supply through
Ethernet controlled switches i.e. relays and performing communication
channel or power supply failure via Ethernet controlled relays, we are
able to significantly reduce the overall execution time and improve the
overall efficiency of our testing.

Our Python and C# scripts now, programmatically control controller’s
power supply and communication lines removing the manual
interventions and need to do attended testing. Now, we can run most
of our test cycle tests in an automated and unattended mode.

Relay Assisted Test Execution Setup:

• Total test cases per controller: 150 (approx.)

• Time taken to execute a single test case on a single controller: 50-
55 seconds (approx.)

• Total execution time per controller: 150 x 50 seconds = 7500
seconds = 125 mins = 2 Hours (approx.)

• Total number of R360 Classic series controllers (device under
test): 5

• Total execution time for complete test cycle: 5 x 2 Hours = 10
Hours

Overall test cycle time has been reduced from 5 weeks (200 Hours) to
10 Hours. % Time Saving = x 100 = 95%

10. Conclusion

This paper presents test automation using ethernet controlled relays
for hardware in loop testing. The relay-based mechanism is a time and
cost-effective solution for the repetitive manual interventions required
in any hardware in loop testing setup.

We have found several benefits of using a relay-based automation
mechanism over a manual approach:

• Increased efficiency: Automated systems can operate faster and
more accurately than humans, leading to increased efficiency and
productivity.

• Reduced errors: Automated systems are less prone to errors than
humans, leading to improved quality and accuracy.

• Reduced costs: Automated systems can operate around the clock
without the need for breaks or time off, leading to high availability
and provision for scheduling in off work hours.

• Increased flexibility: Automated systems can be easily
programmed and reprogrammed to perform a variety of tasks,
increasing the flexibility of the system.

• Enables remote working: This setup can also enable engineers to
work remotely once the setup is ready. During the Covid Pandemic
phase, where teams were forced to work from home and the
physical access to the controller device setups in office was not
available, relay-based auto tester solution proved to be highly
robust, reliable, and efficient. This solution is a great enabler for
virtual mode of working.

Also, one of the most common challenges for any IoT Testing Team is
the tasks to manually setup the tests that involve devices as they often
need power or communication breaking and connecting mechanism
for various types of tests. With a relay-based mechanism, it is possible
to easily create remote setups that can be controlled using socket
commands. Also, as the relays are controlled via socket programming
(commands), it is possible to control them using any high-level
programming language that facilitates socket programming.

When compared to the existing ready to use hardware in loop testing
solutions that are readily available in the market, our evaluation shows
that the relay board is highly customizable and cost-effective solution.
The simple and easy customizability gives a testability edge for any
application that needs to be tested using such a hardware in loop
setup.

We have been using the relay-based auto tester setup for test
automation since 2017 and all our evaluations demonstrate that it is an
effective, practical, and promising solution for any hardware in loop
testing requirement. Currently, we are in the process of adopting a
similar setup for our IoT testing requirements.

Acknowledgment

We would like to thank, Aniket Patil (Team Lead, ifm engineering, Pune)
and Kalpak Nikumbh (Associate Director, ifm engineering Pune) for
their guidance, review, and continuous support from the draft to
completion.

This article is co-authored by Rahul Parwal and Abhishesk Bawkar
(abhishekbawkar@gmail.com)

References

[1] B. S. Achary, S. Mishra and A. Kumar, "Real time hardware in loop
testing of single phase grid connected PV system," 2014 Eighteenth
National Power Systems Conference (NPSC), 2014, pp. 1-6, doi: 10.1109/
NPSC.2014.7103878.

[2] TPT | Testing Hardware-in-the-Loop (HiL) via ASAM XIL API
(piketec.com)

[3] S. Palla, A. K. Srivastava and N. N. Schulz, "Hardware in the Loop Test
for Relay Model Validation," 2007 IEEE Electric Ship Technologies
Symposium, 2007, pp. 449-454, doi: 10.1109/ESTS.2007.372125.

[4] J. Wu and N. N. Schulz, "Experimental Design for Remote Hardware-
In-the-Loop testing," Proceedings of ASNE Reconfiguration and
Survivability Symposium, Jacksonville, Florida, Feb. 2005.

[5] A. Clerici, R. Chiumeo and C. Gandolfi, "Real Time Control Hardware
in The Loop test of a novel MVDC solid-state breaker," 2020 22nd
European Conference on Power Electronics and Applications (EPE'20
ECCE Europe), 2020, pp. 1-9, doi: 10.23919/
EPE20ECCEEurope43536.2020.9215863.

[6] CP9030 - maintenance for PC with operating system WINDOWS or
LINUX - ifm

[7] CP9031 - maintenance for ifm displays with LINUX - ifm

[8] Controllers - ifm

[9] Shop - store.NCD.io

[10] Double Pole Double Throw (DPDT) Switch
(learningaboutelectronics.com)

https://piketec.com/tpt/test-environments/hardware-in-the-loop-testing/?gclid=Cj0KCQjw1ZeUBhDyARIsAOzAqQIcu0qYZyanoiQwcdeHHiGM92foNvQaMbb5_JaAPRuuBYSC-xmRAWEaAkhjEALw_wcB
https://piketec.com/tpt/test-environments/hardware-in-the-loop-testing/?gclid=Cj0KCQjw1ZeUBhDyARIsAOzAqQIcu0qYZyanoiQwcdeHHiGM92foNvQaMbb5_JaAPRuuBYSC-xmRAWEaAkhjEALw_wcB
https://www.ifm.com/in/en/product/CP9030
https://www.ifm.com/in/en/product/CP9030
https://www.ifm.com/in/en/product/CP9031
https://www.ifm.com/us/en/category/250_010_010_010#!/S/BD/DM/1/D/0/F/0/T/50
https://www.ifm.com/us/en/category/250_010_010_010#!/S/BD/DM/1/D/0/F/0/T/50
https://store.ncd.io/?fwp_product_type=controllers&fwp_relay_type=dpdt
http://www.learningaboutelectronics.com/Articles/Double-pole-double-throw-switch-DPDT#:~:text=A%20Double%20Pole%20Double%20Throw,switch%20a%20very%20versatile%20switch.
http://www.learningaboutelectronics.com/Articles/Double-pole-double-throw-switch-DPDT#:~:text=A%20Double%20Pole%20Double%20Throw,switch%20a%20very%20versatile%20switch.


ISSUE 03/2021
PRODUCTS

ISSUE 03/2023
COMMUNITY

58 59TEA-TIME WITH TESTERS ISSUE #02/2023 TEA-TIME WITH TESTERS ISSUE #03/2021

COMMUNITY ISSUE 03/2023
COMMUNITY

ISSUE 03/2023
PLACE YOUR CATEGORY HERE

58 59TEA-TIME WITH TESTERS ISSUE #03/2023 TEA-TIME WITH TESTERS ISSUE #03/2023

https://avoautomation.ai/products/automated-software-testing-avoassure/
https://go.avoautomation.ai/avo-foundation-league


W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 04/2023
MORE AWESOMENESS IS ON YOUR WAY THIS SEASON!

02

01

03

DATA MIGRATION TESTING

Begin with end in mind strategy by Sandeep Garg..

TEA AND TESTING WITH JERRY WEINBERG
We are bringing back the treasure of knowledge that Jerry Weinberg has left behind for us. More
awesomeness on its way….

YOUR ARTICLE HERE
Got ideas worth sharing with rest of the world? We are here to help

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME WITH TESTERS ISSUE #03/2023
61

mailto:editor@teatimewithtesters.com


TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS


