
TEA-TIME
WITH

TESTERS
AN INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS

Humans,
AI, and Testing!
THE PROBABILISTIC CHALLENGE

Page 18

THE QA SUPERPOWER IN AGENTIC

AGE

Page 30

OVER A CUP OF TEA WITH DOROTHY

GRAHAM

Page 14

WAKING TESTERS UP SINCE 2011 ISSUE #01/2025



TEA-TIME WITH TESTERS ISSUE #01/2025
3

PEOPLE
IDEAS THAT
SPEAK FROM
THE MINDS
THAT THINK

PRODUCTS
BUILDING
THINGS THAT
PEOPLE WOULD
USE HAPPILY

PROCESSES
ARE YOU DOING
IT RIGHT? FIND
IT OUT

INTERVIEW
OVER A CUP OF
TEA CONVO
WITH GREAT
MINDS IN TECH

0 6 – 0 9

1 0 – 1 2

1 8 – 2 3

STUCK IN DETENTION- HOW REPETITIVE TASKS PUNISH ADULTS

Did anyone reading this ever get in trouble at school and get assigned a
punishment to submit the next day?

WHY DIDN’T TESTING FIND THIS ISSUE?

After 15 years in software testing, this is still a topic I'm dealing with way too
often: people who have a completely misguided understanding of what
testing can and cannot do.

THE PROBABILISTIC CHALLENGE

Picture this: You wake up one morning to find that your company's AI-powered
customer service chatbot has been providing wildly incorrect flight cancellation
advice, or your machine learning model for hiring has systematically discrim-
inated against qualified candidates. These aren't hypothetical scenarios –
they're real incidents that have made headlines as AI adoption skyrockets
across industries.

TESTING
QUALITY
AI
PEOPLE &
MORE!

TEA-TIME WITH
TESTERS

06 14 18 30

EDITORIAL BY LALIT

INTERVIEW: 14-17
A CUP OF TEA WITH
DOROTHY GRAHAM



A NEXT GENERATION TESTING MAGAZINE

2 4 – 2 6TESTING IN RED: HOW TO TURN PANIC IN PROGRESS

When testing projects go off track, it’s rarely because of one big failure — it’s
the small cracks we overlook that turn into chaos.

THE QA SUPERPOWER IN AGENTIC AGE

My VS Code terminal was screaming at me with 54 TypeScript compilation errors.
Red squiggly lines everywhere. The agent I'd been working with had confidently
declared, "Implementation complete. All tests passing."...

TEA-TIME WITH
TESTERS

3 0 – 3 9

As a kid, the greatest gift I received from my father was his love for reading. Buying new books
wasn’t an option for us, so he would borrow different books for me from the school library
every now and then.

Seeing me lost in my books, I still remember how he would gently pat my back and say in my
mother tongue, ‘वाचशील तर वाचशील’ (Vaach-sheel tar vaach-sheel), which means ‘If you
read, you will thrive’ - a simple reminder that knowledge and perseverance will carry me
forward.

I kept reading as I grew up, and fell in love with writing too. And I can tell how much this love
for reading and writing has contributed to my growth as an individual.

When we launched Tea-time with Testers in 2011, its content kept global testing community
quite engaged, interactive, and full of original ideas that kept testing craft moving forward.
And this lasted for more than a decade I must say.

Fast forward to 2025!

The content is everywhere. Actually, more than we can consume. Every day, my feed feels like
a photocopy of yesterday’s photocopy. The same tone, the same clichés, the same “10 tips
to…” nonsense, all those bulleted lists with plastered emoticons as if humanity invented
those yesterday, most of it produced by machines that have never lived a day as a tester,
never struggled with ambiguity, never fought for quality, never worked under time-pressure,
never asked “But what if…?”

And the worst part? People are starting to accept it as “content.” Let’s please not get
comfortable with this system without soul.

At least testers shouldn’t.

We are supposed to think critically, question everything, and dig deeper beneath surfaces. Yet
many in our field silently let generative fluff replace genuine experience. If testers don’t write,
don’t reflect, don’t pen down their unique insights ,then what is left? A community echo
chamber shaped by algorithms that know nothing of risk, curiosity, critical thinking, context,
or consequences.

The testing craft is hungry for substance. Not summaries. Not regurgitated “best practices.”
Not the 100th LinkedIn post written in the same synthetic voice. If there’s one thing our
community needs the most right now, it’s more human stories. Your stories. So please write
more!

And you don’t have to be a “writer” to write. You just have to be someone who cares about
the craft. Every time you reflect on a tough bug, a tricky decision, a surprising pattern, a test
strategy that worked or lessons learned with the failing one, that’s the knowledge worth
sharing. That’s an experience no AI can imitate.

So write. Write not because the world demands it, but because your craft deserves it. Write
because future testers will search for wisdom, and they should find yours, not a soulless
imitation of it.

Tea-time with Testers will continue to hold space for those human voices, the thinkers,
observers, storytellers, and explorers among us.

Once again, we are all set to do what we did a decade ago. With new ideas, new members in
the editorial team, we are ready to welcome stories from humans who live the reality of their
craft every day.

Until next time!

Sincerely,

Lalit

The System without Soul

TEA-TIME WITH TESTERS ISSUE #01/2025
5

LALITKUMAR BHAMARE
CEO, Chief Editor “Tea-time with Testers”
–
Manager - Accenture Song, Germany
Group Lead - Innovation & Thought Leadership,
Accenture QES EMEA
Director - Association for Software Testing
International Keynote speaker.
Award-winning engineering leader.
Software Testing/Quality Coach.

Connect on Twitter @Lalitbhamare or on LinkedIn

https://www.practitest.com/qa-leader-award?utm_source=Linkedin&utm_medium=Organic&utm_campaign=Tea-time%20with%20Testers
https://twitter.com/Lalitbhamare
https://www.linkedin.com/in/lalitkumarbhamare/


~
Pe
op
le

Did anyone reading this ever get in trouble at
school and get assigned a punishment to
submit the next day?

Not a great feeling, right?

Back then, the typical punishment was to write
the same sentence a hundred times—repetitive,
time-consuming, and unproductive. It was
especially frustrating when our friends were
outside enjoying recess while we were stuck
writing line after line.

Fast forward to adulthood, and we sometimes
find ourselves in the same situation at work.
Projects pile up, meetings fill our calendars,

and yet, we still need to make time for
mundane, repetitive tasks that don’t add to
our learning curve but still need to be done.

This is the story of how I broke free from one
such “punishment.” With no background in
coding or AI, I decided to teach myself from
scratch and automate a task that had been
draining weeks of my time.

From Pens to Python

Back in school, the loophole to finishing punishments faster was
simple—stick five pens together and write one sentence instead of five.
At work, however, you can’t just attach five colleagues to yourself to finish
things quicker. That’s where automation comes in.

In my first year on the job, I was assigned the task of analyzing files to
find, filter, and report memory errors. It was repetitive and mind-
numbing—I could feel myself shutting off as I processed the same dull
steps over and over. That’s when I realized: if I was acting like a robot, I
might as well get one to do the job.

And so began my coding journey. I had no experience, no roadmap, and
very little knowledge. But I had an idea, and I believed that if you can
think of it, you can most probably code it.

STUCK IN DETENTION: HOW REPETITIVE TASKS
PUNISH ADULTS

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

6 7TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

ISSUE 01/2025
PEOPLE

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

6 7TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/20256 7TEA-TIME WITH TESTERS ISSUE #01/2025

~
Pe
op
le - ELISSA TAHECH

Elissa graduated in July 2023 with a Bachelor's in Mechanical
engineering and has been working at Murex in the Market Analytics
team since then.

With limited coding experience, she quickly learned Python to
automate manual testing processes and developed a tool that
significantly improved her team's efficiency.

Her journey from novice to automation advocate taught her the
importance of fully understanding each process, thinking creatively,
and looking at problems from new perspectives. She aims to inspire
others to embrace AI and automation, showing that if you can think of
an idea, you can create it.



Breaking Down the Process

The manual workflow looked something like this:

1. Run tests in Valgrind mode (a tool to detect memory leaks).

2. Open the generated files from the application directory.

3. Collect errors: warnings from the first line, the function from the third line, and the file name at the end of the line.

4. Filter duplicates, save the data, identify the responsible team, and report the issue.

Done once, it was fine. Done across 32 folders, 429 files, and 130+ errors, it was torture. Manually, the task took two weeks.

By automating it, the same task shrank to five hours—the script handled the repetitive parts, while I just launched it and reviewed the results.

Building the Script

The key to writing the script was to simplify the path. Every repeated step became a function. Each function’s output became the next function’s
input.

For example, “Check Valgrind logs” turned into:

• Connect to the application directory.

• Read files and scan through them.

• Save extracted data.

From there, improvement was iterative. I didn’t aim for perfect code—just working code. The lesson? Don’t wait to become an expert. Start
messy, refine later.

Enter AI: From Solo Effort to Smart Assistance

Of course, automation wasn’t the end of the story. Logs changed, formats shifted, and scripts broke. Maintenance itself became another
repetitive task.

That’s when I brought AI into the picture. Just as we sometimes dragged a friend in to help with school punishments, AI became that friend at
work.

When looking at AI, we explored three paths:

1. Building a model from scratch – training a brand-new model with no prior knowledge. This approach is powerful but extremely resource-
heavy, requiring massive datasets and computing power. At the time, I wasn’t ready to be the “parent” of a newborn model.

2. Fine-tuning an existing model – starting with a pre-trained model, adapting it with our own examples, and training it to perform the
specific task. This struck a balance between effort and results.

3. Using a pre-trained model with RAG (Retrieval-Augmented Generation) – connecting an existing model to a large database, then guiding
it with prompts. In this case, prompting works like giving a skilled actor a script: the input is the script, and the prompt tells them how to
play the role.

Somewhere in between is Few-Shot Prompting, where we guide the model’s behavior by showing a few examples of inputs and outputs.

For our case, fine-tuning turned out to be the best choice.

Training started with a 1B-parameter model, but accuracy was poor (5%). Scaling to 8B parameters improved accuracy (33%) but also strained
infrastructure. By optimizing training data and filtering redundancies, we found a balance—but also learned an important lesson:

Sometimes, maintaining a script is cheaper and more effective than building AI.

Script, AI, or Both?
There’s no universal answer. A complex process may be better handled by a simple script, while a simple one may thrive with AI. It depends on
the process, the team, the budget, and the bigger workflow.

In my case, the best approach was integration—embedding AI within the script. This hybrid model gave us flexibility and efficiency, without
overspending on infrastructure.

Lessons Learned
What began as a punishment turned into a journey of discovery. Had the task been automated from the start, I would never have learned the
process deeply enough to improve it. The manual drudgery laid the foundation for critical thinking, problem-solving, and eventually, AI
integration.

And the key takeaways?

• Start small—automation doesn’t need perfection at first.

• Use what you have, seek what you need.

• Don’t wait until you’re “ready.” Learning happens in the doing.

• Choose wisely between script and AI—or better yet, combine them.

Now that the punishment is over, it feels like I’ve finally joined my friends outside for recess.

ISSUE 01/2025
PEOPLE

ISSUE 01/2025
PEOPLE

8 9TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025



ISSUE 01/2025
PEOPLE

ISSUE 01/2025
PEOPLE

10 11TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

WHY DIDN’T

TESTING FIND

THIS ISSUE?

After 15 years in software testing, this is still a topic I'm dealing with
way too often: people who have a completely misguided
understanding of what testing can and cannot do.

In the year 2025, too many people think testing is:

• a phase, not a continuous activity that never ends;

• after you "do the testing" you shouldn't find new issues because
you "have tested" (the phase is over).

• when new issues are found after testing, you can blame the
testers for not delivering perfect work. Isn't it their job to find all
the bugs?!

Basically, too many people don't know what the main goal of testing
is, and what the limitations of testing are.

We test because we are imperfect, and cannot blindly trust the output
of our work. With testing, we aim to find crucial information that
threatens the value of our product and then we decide what to do
with that information. Especially that last bit should be drilled into
your skull: if you don't act on the information you find, then you have
not closed the loop and you should ask yourself why you were testing
that bit. Testing costs time and therefore money, so we all should be
aware of opportunity cost.

The core of testing work
The core activity of testing is of the cognitive variety; pushing the
buttons to execute a test case is therefore less important than many
people make it out to be. Designing the test case is an important part
of the work: why test this, and not something else? What risk do you
cover, and why does it matter? What do you hope to gain, information
wise?

Not one person is equiped to design all the valuable tests because we
all have our blind spots. Testing has strong connections and roots in
psychology, and we benefit from diversity in thinking to improve our
testing. That's why testing shouldn't be done by one person, but by the
whole team.

Here's where the first misguided thought often emerges: many
people do think that one person can be responsible for the majority
of test work: Designing the tests, executing the tests, reporting
about the tests.

They don't see the flipside of this: that having just one person do all
this work ignores the fact that they suffer from something we all suffer
from: cognitive biases. It's wrong to view testing as a "task to be
completed, assigned to one person" and not "a continuous activity
that benefits from many people knowing what to do, and doing the
things that need to be done".

Testing can be a role, but it's better when everyone involved in the
software creation process develops at least some skills that belong in
the testing category. Someone with the tester role should be working
to improve the testing capabilities of people in their team and
beyond.

Why does testing miss issues?
If I had received a dollar everytime people said "how did QA miss
this?!" whenever a bug in a heavily used and popular product was
found in production, I would have been rich by now. Example that I
remember, the infamous root bug in Mac OS High Sierra:

Because you desire something non-existent!

- MAAIKE BRINKHOF

Maaike Brinkhof is a software tester and nutrition & strength
training coach who helps people improve their lifestyles. She
enjoys writing and hopes her readers appreciate her stories and
blogs. Together with her partner Oliver Verver, she owns the
company Sensibly. Maaike also speaks about testing at
conferences and meetups, focusing on holistic testing,
exploratory testing, and psychology in testing.

Although she works in technology, Maaike makes time for
analogue pursuits in her life. She's a fountain pen and Hobonichi
planner enthusiast who loves walking, especially in mountains.
Since the Netherlands lack mountains, she usually travels to
Scotland for her "mountain-fix." She values spending quality time
with friends and family and practices strength training three
times a week to build strength. She's also a bookworm, so
instead of gazing at her phone, she's probably gazing at her
Kindle.

My prefered solu�on would be for everyone to read the book Perfect So�ware and Other Illusions
about Tes�ng by the late Jerry Weinberg, but let me a�empt to provide, in my own words and with my
own twist, a TL;DR version of the core message of that book.

https://www.amazon.com/App-Quality-Secrets-Agile-Teams-ebook/dp/B00JVAR7EM
https://forums.macrumors.com/threads/apple-releases-macos-high-sierra-security-update-to-fix-root-password-vulnerability.2091893/?ref=maaikebrinkhof.nl
https://geraldmweinberg.com/Site/Perfect_Software.html
https://geraldmweinberg.com/Site/Perfect_Software.html


ISSUE 01/2025
PLACE YOUR CATEGORY HERE

ISSUE 01/2025
PEOPLE

12 13TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

And I saw many comments like this at the time:

I am sure there is extensive testing done on new versions of Mac OS,
and everyone involved still totally missed this issue.

Sure, I should keep an open mind to the fact that testers could have
done shoddy work, but I think another option is more likely.

It's impossible to test everything, there are simply too many test cases
while there's too little time. And also, like I said before, every human
has blind spots. Before a bug slipped through to production, how
many people have missed it? That's not just on the testers, and if you
think it is, you are still severely misguided on how testing works.

To quote Edsger W. Dijkstra:

"Testing can reveal the presence of bugs, not

their absence.".

It is not possible to test everything, that's why we:

• let risks that threaten the value of our product guide our testing
efforts

• seek input from people who matter in the process of creating,
maintaining and improving the product

• diversify our testing, to increase the chances of finding worthwile
information

• be very mindful of the opportunity cost: what is worthwhile to
test (interesting conditions we identified) and what do we have
time for to test (reduce the test set to a manageable and
affordble level)?

Based on these points, if you apply a little bit of brainpower, you can
see that this is indeed not 100% testing. It is not bug-proof, not
perfect. A risk-free software release doesn't exist! I am sure Apple
added a test case for the specific issue after it was found in
production, but there have still been different bugs in newer Mac OS
releases. That's how the cookie crumbles.

Again, that doesn't mean that testing is always done well (it can be
done shoddily, or skipped altogether), but it's not an either/or clean
story.

But please, stop blaming (only) testers when a bug surfaces in
production. (Ideally, you skip the blame game altogether, especially if
you have little context).

Stop thinking that it is out of the ordinary for new information to
surface at a timing you consider "too late". Testing is never done, it is
not a phase you do only once and then you have complete confidence
that everything will be fine.

Heck, I'd even argue that it's the opposite: even with extensive testing,
you can be sure that there is still worthwhile information to be found
(bugs, risks, you name it).

The solution is to welcome new information, even when it is
something that doesn't make you happy or perhaps a shitty situation
in production, and invest in a process to quickly fix and roll-out a
new release. Problems are so much worse if you cannot quickly roll
out a fix because your infra sucks ass (this is what I mean with "my
own twist", I don't think Jerry would have chosen these words lol). If
your platform is up to par with modern standards, you use CI/CD,
observability, all that good shit, it's much less of a big deal.

2026, the year when we stop believing in fairy
tales?
This is my wish for 2026.

It's the year when people finally understand the powers and
limitations of testing:

• it's not a phase, but a continuous activity.

• testing is always allowed to uncover new information, even when
it is judged as "too late". Better late than never. By all means,
investigate if the "too late" part was a rightful critique and
investigate whether it can be improved, but if not, move on and
don't blame testing only. Many more people have missed the info
that you're blaming on "bad testing"!

• accept the fact that you will find problems in production, that
testing cannot be done perfectly. Improve your delivery pipeline
so bugs can be quickly fixed, at least.

Will my wish come true? No, of course not, but a girl can dream.

Getting noticed is easy.
Getting noticed by the right
people is hard.

Advertise with us.
Connect with the audience
that matter.
Contact us: sales@teatimewithtesters.com

https://geraldmweinberg.com/Site/Perfect_Software.html?ref=maaikebrinkhof.nl
https://teatimewithtesters.com/advertise/
mailto:sales@teatimewithtesters.com


ISSUE 01/2025
OVER A CUP OF TEA WITH DOROTHY GRAHAM

ISSUE 01/2025
OVER A CUP OF TEA WITH DOROTHY GRAHAM

14 15TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

IN
TE

R
V
IE
W

What does future hold
for Testers, Testing,
and Automation?
What changes and
what remains?
Hear from Dorothy
Graham over a cup
of tea.

Greetings, TTwT readers! For this edition’s interview, please join me for a cup of tea with Dorothy Graham, whom many
of you may know from her work in the field of software testing and automation.

Thank you for taking the time to share your thoughts with the TTwT community, Dorothy.

- INTERVIEWED BY SANDEEP GARG

- DOROTHY GRAHAM

Dorothy Graham has been in software
testing for over 50 years, now mostly
retired. She co-authored 5 books: Software
Inspection, Software Test Automation,
Experiences of Test Automation, Journey
Through Test Automation Patterns, and
Foundations of Software Testing. She
holds the European and ISTQB Excellence
Awards in Software Testing.

Dot was programme chair for EuroSTAR in
1993 and 2009, and has been a board
member for conferences and publications
in software testing. She was a member of
the working party that developed the
ISTQB Foundation Syllabus. She has given
over 400 talks at conferences and events.

Her main hobby is choral singing.

as it is supposed to tell whether you are human
or not. It is also encouraging to see that
automation is well-established at unit test level
with continuous integration pipelines.

So yes, automation has much more potential
beyond just GUI/API scripting!

Q2: How would you visualize and define such "A
system thinker’s automation first mindset" -
where teams think holistically about why, what,
when, where, and how automation fits into the
overall system’s testing and not just GUI and
APIs?

I haven’t heard this phrase before, but I would
definitely agree that automation should be
planned from the beginning. There are two
critical aspects: automation objectives and
testware architecture.

The place to start is to ask why. Why do you want
to automate these particular tests? Why
automate any tests? The objectives for
automation should be measurable, and they
should guide the what, when, where and how of
automation. This is where an “automation first”
mindset should start.

The goals for automation are different to goals
for testing, because these are two very different
activities. Goals for testing include finding

important bugs, gathering information about the
system being tested, assessing the adequacy of
tests (possibly coverage), assessing risk (e.g. of
early release) - all related to how effective the
testing is. The goals for automation are related to
efficiency, for example, minimising maintenance
when the system changes, increasing the number
of tests run unattended, minimising failure
analysis time, adding new automated tests more
quickly, being able to easily select subsets of
automated tests to run, etc.

The other important aspect is the design of the
automated testware, a framework. There is a
misconception that GUI automated tests are
fragile and hard to maintain - but that’s only true
if your automation is not well-designed! If layers
of abstraction (and tool independence) are built
in from the start, then, as many have shown, your
automated tests will be easy to maintain and you
will achieve long-lived benefits from your
automation.

If you think about the automation early on, then
manual and automated tests can be designed
and developed in parallel, with each being the
best approach for the area being tested or the
type of testing.

Q1: A good population of test
automation engineers still tend
toward creating and executing
scripts primarily for web-based
GUI apps and related APIs.
However, there seems to be an
immediate need to build a mindset
and expertise creating "A system
thinker’s automation first
mindset".

Based on your decades of
experience, do you also see the
untapped potential in test
automation beyond GUI and API
scripting?

Yes, and always have. It seems that
most people start with manual
tests (including at GUI level) and
then automate those tests. That
can be a good place to start,
depending on how you construct
the automation. However, if you
automate ONLY existing tests, you
are missing a lot because
automation can do things that
aren’t possible or practical
manually. Examples include
randomised input techniques such
as monkey testing or High Value
Automation, most types of
performance testing, etc.

Test automation can also be used
for many other tasks, often small-
scale, or around the core
automated tests. Examples include
automating the set-up for a group
of tests (pre-processing),
populating a spreadsheet or
database for a test, or even
updating a set of automated tests.

The other side of this coin is that
there are also tests that should
NOT be automated. For example,
tests that take a long time to
automate and are not run often,
tests for user perceptions (e.g. user
interaction or colours), or even
something like Capcha - if you can
automate that then it doesn’t work,



ISSUE 01/2025
OVER A CUP OF TEA WITH DOROTHY GRAHAM

ISSUE 01/2025
OVER A CUP OF TEA WITH DOROTHY GRAHAM

16 17TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

Q3: Marshall Goldsmith's from "What Got You Here Won't Get You
There" inspires me to ask these questions.

In the context of GenAI evolution and adoption, what would be your
recommendations for both fresh minds entering automation AND
experienced engineers who've built their careers on current
approaches?

How should they prepare for what might be coming?

I hadn’t heard of that book, but love the title and it looks very
interesting. It reminds me of the phrase attributed to Einstein, that
a definition of insanity is doing the same thing and expecting a
different outcome.

AI is certainly here to stay, in some form or another. So just ignoring
it and hoping it will go away, continuing to test and automate as you
always have, will not be useful for your future career, however useful
it has been in the past. Whether you are experienced or new to the
field, you need to become aware of AI and its strengths and
weaknesses. Experiment with using it to help with testing and
automation, but always be cautious and sceptical - don’t ever just
accept what it produces without any attempt to verify.

However, it’s also important to realise that what has been done and
learned in the past is still relevant. Those of us who have been
around for a long time can see parallels to the various “panacea du
jour” solutions that arise from time to time. And what we have seen
is that after the initial hype, and inevitable disillusionment,
eventually some benefit can be had. I believe that AI is most useful
in very limited areas, where it has been trained on unpolluted data
in a specific discipline. But all AI can ever do is to summarise the
past - and it is only a (very big and very fast) computer, not an
intelligence.

Previous “silver bullets” have been on a smaller scale, and were
predictable and reliable. From what I hear, current AI has significant
bias, frequent “hallucinations” (why are clear and obvious defects/
errors called this?), and may even introduce significant security and
business risks. There are huge challenges in testing and assessing AI
systems - can they even be trusted? And is it worth it?

I fully agree with Brijesh Deb (see his LinkedIn posts) that AI
provides an opportunity for people with testing skills (critical
thinking, scepticism, analytical approaches) to “come into their
own” in evaluating what AI will be producing - not just in the testing
or automation sphere, but in general.

Q4: The testing community has debated the controversial claim that
"anyone can test." Now, with low code-no & code tools and Gen-AI
assistance, we may soon start to hear a new variation: "anyone can
automate.”

What are your thoughts on this evolution of claims?

Do you see parallels between these two statements, and what
concerns or opportunities do they present?

Yes, I well remember the days when the attitude was “anyone can
test”! This was one of the major motivations behind creating
qualifications for testers which began in the 1990s. We wanted
organisations to know that testing is a skilled activity and for testers
to be recognised for having those skills. Of course, simply having
passed a one-hour exam doesn’t make you a skilled tester, but at
least you should have encountered some basic principles and
techniques which can start you on your journey as a tester. The
Foundation level removes a bottom layer of ignorance about testing.

I think we have already been hearing that “anyone can automate”,
but as “any tester can automate”. The term “testing tool” gave the
impression that it would and could easily be used directly by any
manual tester - this is not right. This has resulted in testers who just
want to test - and don’t want to be developers - being pressured
into becoming coders for the tools. I have always strenuously
objected to this attitude. If you want to have successful automation,
you need to have software development skills available, but not

every tester has or wants those skills, and they are not the same as
testing skills! The view that “the only good tester is one who can
write [automation] code” has been very damaging to the software
testing industry. Testers who just want to test are considered
inferior to testers who can code - this is wrong! Job ads for testers
today only want to know what tools you have used. This is like
recruiting a chef for a restaurant based on what brand of food
processor they have used.

However, two things: First, I have no objection at all to people who
want to do both roles, that of tester and that of automator. People
with both skill sets are very useful, especially in agile teams, and
that’s fine with me - provided that they want to do both things.

Second, of course the testers should be using test tools. But not
necessarily directly, i.e. writing code for them. Testers should be
able to write tests in such a way that they can be interpreted and
converted into what a tool can then run, possibly with some form of
structure such as keywords. The so-called “no-code” (really, a tool
that contains no code??) or low-code tools actually do have one
thing right - the testers should be able to write and run tests easily
- without knowledge of the code of the tool. And these tools make
that possible, at least at first and when everything goes well. But if
something goes wrong with the tool or the tests themselves,
technical knowledge (yes of the code) is needed to analyse and fix
the problem. And what if the software is changed significantly - do
the tests fix themselves? The imaginative phrase “self-healing tests”
is a far grander term than the actuality of checking different
element names or locations. The maintenance of the tests may take
a huge amount of effort. What if you can no longer use the existing
tool? Do you then have to start over? Too many people who
responded to my survey about automation last year were in that
category.

There will be changes as AI is integrated into testing. But be aware
of what is actually being done, and make sure you cast your
“tester’s eye” over what any AI is producing.

Q5: If GenAI tools do become widespread in test automation, what
do you believe should be the most critical changes in thinking that
automation engineers should bring to the table?

I don’t think it’s possible to answer this question yet - at least not
for me. What is important is that as GenAI tools do become more
widespread, automation engineers need to keep up with the
changes, both to enable them to leverage the benefits but also to be
aware of the “holes” where traditional approaches may still be
needed. Or even the AI-generated problems that may arise!

Q6: If you were starting your automation journey today - with
access to LLMs, prompt writing, and GenAI assistance - how might
your learning approach differ from the path you actually took?
What would you prioritize differently?

If I were starting in test automation today, it would certainly be a
very different experience! One thing that I would do differently is to
be more formal about learning. In some organisations I worked in,
there was a culture of “we don’t need training, we learn on the job”.
Although some aspects are best learnt on the job, I believe I would
have benefited from more formal learning from people whose
experience was more general than just my company at the time.

Nowadays there is so much information available that it can be hard
to know which are the best sources - don’t believe everything you
see on social media! With the field developing and changing rapidly,
I also think it is important to see learning and training as a
continuous process, not just “I went on a course once.” Even if your
current company doesn’t want to send you on training courses,
invest in yourself and your future career.

Q7: If you were advising a testing team on whether to invest time
learning GenAI tools specifically for test automation, what
approach would you recommend for evaluating andmeasuring the
return on that investment? What metrics or outcomes would
matter most?

When I used to do tutorials at conferences on test automation, I
always asked the attendees what their ROI for automation was. Out
of thousands of delegates, only once did I get an answer that
showed that the attendee actually knew what ROI was. ROI is a
financial calculation: ROI = (benefit - cost) / cost, where both
benefits and cost are quantified, e.g. in money. What most people
volunteered were actually benefits (possibly quantified but not
converted to money). Examples included running tests more often,
in less time, with less human effort, increased coverage, faster time
to market. Those are all great benefits - and you should measure
them, and even more important, communicate them to higher level
management so can see the value of automation (even if not ROI).
But benefits are not ROI.

Measuring ROI (or benefits) depends on what your objectives are.
For example, if your goal for using AI tools in automation is to
decrease maintenance time for human automators, then measuring
time spent on maintenance for a defined type of software change
could be done both with and without AI assistance, to see if the goal
has been achieved. But what if the AI cannot be trusted, due to bias
and errors - can that be factored into ROI?

I used to be very keen on demonstrating ROI for automation. When
Mark Fewster and I wrote our second book (Experiences of Test
Automation), I asked every chapter author how they measured their
ROI. We did get some very impressive stories in reply. But in many
cases, there was no ROI and no need to show it; yet they were very
successful projects. If your company culture demands it, then by all
means try to measure it, though it may not be essential. But do
ensure that you measure benefits - and communicate them - both
for automation in general and for AI, and also be aware of unseen
costs, such as loss of confidence in the results from AI.

One aspect of AI that is worrying is the environmental impact of the
huge amount of computing power required. This makes it more
important to look at ROI for AI than it is for automation -
environmental damage must be taken into account. Brijesh asks: “Does
the insight AI provides justify the energy it consumes?”

Q8: The FOMO-driven question "Will AI replace me?" already
generated responses across the industry from many perspectives.
Given your unique perspective from the last five decades, how would
you like to address this concern for testing and automation
professionals? What advice would you share?

Back in the 1990s, when test tools first became widely available, there
was great fear that these tools would replace testers. Managers
sometimes fired the testers when they bought a tool! What the tools
did do was to replace some of the more tedious tasks that testers were
doing manually. Rather than replacing testers, it freed them to do
better testing as human critical thinkers. I think AI will be the same - it
will free automators from some of the more tedious tasks to enable
them to spend more time on more beneficial things, such as designing
additional probing automated tests. There will also be scope to do
things with AI that are unthinkable or impractical with current
automation, such as large-scale pattern recognition of data.

Any new technology goes through a “hype” cycle and AI is no exception.
It will never replace people, but it will eventually be useful in some
situations. It will be interesting to see how this plays out over the next
few years!

Further information:

• https://automation.eurostarsoftwaretesting.com/test-
automation-survey/

• https://TestAutomationPatterns.org

Any new technology goes through a “hype”
cycle and AI is no exception. It will never

replace people, but it will eventually be useful
in some situations. It will be interesting to see

how this plays out over the next few years!

https://www.linkedin.com/in/debbrijesh/
https://automation.eurostarsoftwaretesting.com/test-automation-survey/
https://automation.eurostarsoftwaretesting.com/test-automation-survey/
https://TestAutomationPatterns.org


~
Pe
op
le

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

18 19TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/202518 19TEA-TIME WITH TESTERS ISSUE #01/2025
TEA-TIME WITH TESTERS ISSUE #01/2025

~
Pr
oc
es
se
s

THE
PROBABILISTIC
CHALLENGE

- ANAMIKA MUKHOPADHYAY

Anamica is a Program Manager and Consultant with over 12 years of experience in
Software Quality Assurance. She expertly navigates the full spectrum of QA—from
strategic planning and test automation to APIs, performance testing, process
optimization, and her secret passion: accessibility. Known for tackling complex
challenges head-on, she's currently immersed in the exciting worlds of AI and Agentic
systems.

An extrovert who thrives on connection, Anamica is always ready to spark engaging
conversations about technology, travel, or discovering the best food spots around.
When she's not exploring innovative ideas in tech, she's dreaming of exploring the
world—one cuisine at a time. At home, she balances her professional pursuits with her
most demanding role yet: being mom to her energetic one-year-old boss.

LinkedIn - www.linkedin.com/in/anamikamukhopadhyay

Picture this: You wake up one morning to find that your company's AI-powered customer service chatbot has been providing wildly incorrect flight
cancellation advice, or your machine learning model for hiring has systematically discriminated against qualified candidates. These aren't
hypothetical scenarios – they're real incidents that have made headlines as AI adoption skyrockets across industries.

The use of generative AI is growing at an extraordinary pace, with organizations embedding it into marketing, sales, product development, and
nearly every aspect of their operations.

Yet beneath this wave of enthusiasm lies a troubling reality: AI systems are failing at an alarming rate. From ChatGPT citing non-existent legal cases
to airline chatbots dispensing dangerous advice, from real estate prediction algorithms going haywire to social media bots behaving
inappropriately – the headlines paint a concerning picture of AI systems that appear under tested and unprepared for real-world deployment.

The fundamental challenge isn't that organizations aren't testing their AI systems – it's that they're applying deterministic testing methodologies
to inherently probabilistic systems. Machine learning doesn't follow the predictable input-output patterns of traditional software. It learns, adapts,
and makes decisions based on probability distributions, making conventional testing approaches woefully inadequate.

This paradigm shift demands nothing short of a revolutionary approach to testing – one that acknowledges the probabilistic nature of AI and
addresses the unique risks, challenges, and complexities that come with machine learning systems.

Understanding ML Testing Complexity beyond the Traditional Pyramid
For decades, software testers have relied on the familiar test pyramid – a simple, unidirectional structure emphasizing unit tests at the base,
integration tests in the middle, and end-to-end tests at the top. This approach worked beautifully for deterministic systems where identical inputs
consistently produced identical outputs.

Machine learning shatters this predictability. The ML lifecycle encompasses problem identification, data acquisition, model creation, deployment,
and ongoing operations – each phase introducing unique testing challenges that traditional methodologies simply cannot address.

The ML test pyramid reflects this complexity: it's multi-layered and multi-directional, with parallel tracks for data testing, model validation, and
functional application testing that eventually merge into a cohesive system. Unlike traditional testing that focuses solely on functional
correctness, ML testing must simultaneously address data quality, model behavior, functionality, and system integration.

WHY MACHINE
LEARNING DEMANDS
A REVOLUTIONARY
TESTING APPROACH

- DEEPSHIKHA

Deepshikha brings over a decade of experience in software testing, leading the
automation testing team at Nagarro and pioneering innovative, AI-driven strategies to
streamline processes and boost efficiency. Her insightful approach enables the
development of solutions that accelerate time-to-market and enhance customer
experiences.

LinkedIn - www.linkedin.com/in/deepshikha709/

https://www.linkedin.com/in/anamikamukhopadhyay
https://www.linkedin.com/in/deepshikha709/


ISSUE 01/2025
PROCESSES

ISSUE 01/2025
PROCESSES

20 21TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

This expanded scope introduces several critical dimensions:

Data Quality and Bias Assessment: Every ML system is fundamentally dependent on its training data. Poor, biased, or "dirty" data creates flawed
models at the most fundamental level. Testing must validate data quality, identify biases, and ensure representative sampling across all relevant
demographics and use cases.

Model Evaluation and Validation: Pre-training tests, model evaluation metrics, and post-training validation become essential components.
Models must be assessed not just for accuracy, but for consistency, robustness, and behavior under various conditions.

Integration and System Testing: ML models don't operate in isolation – they're integrated into larger systems and applications. Testing must
verify that these integrations work correctly and that the overall system behaves as expected.

Continuous Monitoring and Validation: Unlike traditional software that remains static after deployment, ML models continue to learn and adapt.
Ongoing monitoring and validation ensure models maintain their performance and don't drift from their intended behavior over time.

Understanding What Can Go Wrong
Machine learning systems face unique risks that traditional software rarely encounters. Understanding these risks is crucial for developing
effective testing strategies.

Data-Related Risks form the foundation of most ML failures. Poor or biased training data creates models that perpetuate and amplify existing
biases. For instance, if a hiring algorithm is trained primarily on historical data from male-dominated industries, it may systematically
discriminate against female candidates, regardless of their qualifications.

Overfitting represents another critical risk where models perform excellently on training data but fail catastrophically in real-world scenarios.
Consider a model trained to classify animals that associates wolves primarily with snowy backgrounds because most training images of wolves
were taken in winter. When deployed, it might misclassify a dog photographed in snow as a wolf.

Model Decay occurs as the real world evolves while models remain static. The COVID-19 pandemic provided dramatic examples of this
phenomenon, as consumer behavior changed overnight. Demand forecasting models trained on pre-pandemic data failed spectacularly when
faced with 350% increases in yoga pants sales or massive drops in travel bookings.

Adversarial Attacks represent deliberate attempts to manipulate ML systems through carefully crafted inputs. These can range from subtle pixel
changes that fool image recognition systems to sophisticated prompt injection attacks that trick language models into revealing sensitive
information or behaving inappropriately.

Privacy Violations become particularly concerning when models are trained on sensitive personal data. Organizations must ensure compliance
with regulations like GDPR and HIPAA while maintaining model effectiveness.

Testing Methodologies: A Multi-Faceted Approach
Effective ML testing requires a comprehensive strategy that addresses both offline and online testing scenarios, each serving distinct but
complementary purposes.

Offline Testing: Building Confidence Before Deployment
Offline testing occurs before model deployment and focuses on validating model behavior using controlled datasets and scenarios.

The process begins with requirement gathering, where testing scope and objectives are clearly defined. This phase establishes what the ML
system should and shouldn't do, creating the foundation for all subsequent testing activities.

Test data preparation follows, involving the creation of
comprehensive test datasets. These may include samples from
original training data, synthetic data generated to simulate edge
cases, and carefully curated datasets designed to test specific model
behaviors.

The test oracle problem – determining correct outputs for ML
systems – presents unique challenges. Unlike traditional software
with predetermined expected outcomes, ML systems often operate in
domains where "correct" answers aren't definitively known. Testing
strategies must employ techniques like cross-validation, ensemble
methods, and domain expert review to establish acceptable output
ranges and behaviors.

Test execution involves systematically evaluating model
performance across various scenarios, with particular attention to
edge cases and potential failure modes. Any identified issues
undergo thorough analysis and resolution, often validated through
regression testing to ensure fixes don't introduce new problems.

Online Testing: Validating Real-World
Performance
Online testing occurs after deployment, monitoring model behavior
as it encounters real-world data and user interactions.

Runtime monitoring continuously tracks whether deployed models
meet requirements and identify property violations. This includes
monitoring for data drift, performance degradation, and unexpected
behavior patterns.

A/B testing enables systematic comparison between different model
versions by splitting user traffic and analyzing performance
differences. This approach provides quantitative evidence of model
improvements or regressions in real-world conditions.

Multi-Armed Bandit (MAB) testing offers dynamic traffic allocation
based on model performance, balancing exploration of new models
with exploitation of proven performers. This approach optimizes user
experience while gathering performance data.

Specialized Testing Techniques for ML Systems
Machine learning systems require specialized testing approaches
that address their unique characteristics and failure modes.

Adversarial Testing: Preparing for Malicious Inputs

Adversarial testing evaluates system behavior when exposed to
deliberately crafted malicious inputs. This testing approach is crucial
given the sophisticated attack vectors that target ML systems.

Black box attacks simulate scenarios where attackers have no
knowledge of model internals, testing system resilience against
external manipulation attempts.White box attacks assume attackers
have complete model access, evaluating defenses against more
sophisticated threats.

Testing strategies include poisoning attacks (injecting malicious
training data), evasion attacks (crafting inputs to fool deployed
models), inference attacks (attempting to reverse-engineer training
data), and extraction attacks (trying to replicate model architecture
and parameters).

Practical adversarial testing might involve adding imperceptible
noise to images to test classification robustness, or crafting prompts
designed to trick language models into revealing sensitive
information or producing inappropriate content.

Fuzz Testing: Evaluating Graceful Failure

Fuzz testing inputs random, unexpected, or malformed data to
uncover vulnerabilities and assess system resilience. In ML contexts,
this technique evaluates how well models handle irregular inputs
without crashing or producing dangerous outputs.

The process involves defining input spaces, generating fuzz inputs
through mutation or creation, executing tests while monitoring for
failures, and analyzing results to identify vulnerabilities. For
autonomous vehicles, fuzz testing might involve corrupted sensor
data to assess control system responses.

Metamorphic Testing: Validating Consistency

Metamorphic testing addresses the test oracle problem by focusing
on relationships between inputs and outputs rather than specific
output values. This approach applies transformations to input data
and examines whether resulting outputs maintain expected
relationships.

For example, an object detection system should consistently identify
pedestrians regardless of lighting conditions. By transforming a
daytime image to simulate nighttime conditions, testers can verify
that the system maintains classification accuracy across environ-
mental variations.



ISSUE 01/2025
PROCESSES

ISSUE 01/2025
PROCESSES

22 23TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

Behavioral Testing: Ensuring Linguistic Competence

Behavioral testing evaluates ML systems across various linguistic
contexts and inputs, particularly crucial for natural language
processing applications. This testing encompasses vocabulary
assessment, part-of-speech tagging accuracy, named entity
recognition, and negation handling.

Three primary test types support behavioral testing: Minimum
Functionality Tests verify basic capabilities, Invariance Tests assess
output consistency under input variations, and Directional
Expectation Tests evaluate whether input changes produce expected
output modifications.

Fairness Testing: Eliminating Bias

Fairness testing ensures ML systems treat all individuals and groups
equitably, addressing various forms of bias that can emerge
throughout the development pipeline.

Historical bias reflects existing societal prejudices embedded in
training data. Representation bias occurs when datasets poorly
represent the populations models will serve. Aggregation bias arises
when diverse groups are inappropriately combined, creating models
that work well for majority groups but fail for minorities.

Fairness evaluation employs multiple metrics depending on context.
Demographic parity ensures equal positive outcome probabilities
across groups, while predictive parity maintains consistent precision
across demographics. However, achieving fairness often involves
tradeoffs between different metrics, requiring careful consideration
of specific use cases and stakeholder values.

Building Robust ML Testing Practices

Successful ML testing implementation requires organizational
commitment, appropriate tooling, and cultural shifts that
acknowledge the unique challenges of probabilistic systems.

Cross-functional collaboration becomes essential, involving not just
testers but also data scientists, ML engineers, domain experts, and
stakeholders. Testing ML systems often takes longer than
development itself, requiring patience and sustained investment.

Continuous testing integration throughout the ML lifecycle ensures
issues are caught early and addressed systematically. This includes
automated testing pipelines that validate data quality, model
performance, and system integration at each development stage.

Monitoring and alerting systems provide ongoing visibility into
model behavior, enabling rapid response to performance
degradation or unexpected behavior. These systems must be
sophisticated enough to distinguish between normal model learning
and problematic drift.

Documentation and governance ensure testing practices are
consistent, repeatable, and auditable. This includes maintaining
detailed records of testing procedures, results, and decisions that
can support regulatory compliance and organizational learning.

The Path Forward

The transition from deterministic to probabilistic testing represents
more than a technical challenge – it's a fundamental shift in how
we conceptualize software quality and reliability. Traditional notions
of "bug-free" software give way to probabilistic confidence intervals
and acceptable risk thresholds.

This evolution demands new skills, tools, and mindsets from testing
professionals. Testers must become comfortable with statistical
concepts, understand ML fundamentals, and develop intuition for
probabilistic system behavior. Organizations must invest in training,
tooling, and cultural changes that support this transition.

The stakes couldn't be higher. As AI systems increasingly make
decisions that affect human lives – from healthcare diagnoses to
financial lending, from autonomous vehicles to criminal justice – the
quality of our testing practices directly impacts societal wellbeing.

Conclusion: Testing in the Age of Artificial Intelligence

We stand at the threshold of an AI-powered future where machine learning systems will be as ubiquitous as traditional software is today.
The headlines about AI failures serve as stark reminders that current testing practices are inadequate for this probabilistic future.

The testing methodologies outlined here – from adversarial testing to fairness validation – represent essential tools for navigating this new
landscape. However, they're just the beginning. As AI systems become more sophisticated and autonomous, our testing approaches must evolve
accordingly.

Success in ML testing requires acknowledging that we'll never achieve perfect predictability or complete test coverage. Instead, we must focus
on building robust systems that fail gracefully, recover quickly, and learn from their mistakes. We must test across multiple dimensions
simultaneously, prepare for unknown failure modes, and maintain continuous vigilance throughout system lifecycles.

The future belongs to organizations that master this probabilistic approach to quality assurance. Those that continue applying deterministic
testing methods to AI systems do so at their own peril – and at the risk of the users who depend on their technology.

Testing machine learning systems isn't just about preventing bugs – it's about ensuring that the AI revolution benefits humanity rather than
harming it. The responsibility rests with every testing professional to rise to this challenge and help build the reliable, fair, and robust AI systems
our future depends upon.

The age of AI adoption is here. The question isn't whether your organization will deploy AI systems – it's whether you'll test them properly
before you do.

Referrences:

• https://arxiv.org/pdf/2005.04118

• https://arxiv.org/pdf/1906.10742v2

https://arxiv.org/pdf/2005.04118
https://arxiv.org/pdf/1906.10742v2


TEA-TIME WITH TESTERS ISSUE #01/2025
25

TESTING IN RED
HOW TO TURN PANIC
INTO PROGRESS

When testing projects go off track, it’s rarely because of one big
failure — it’s the small cracks we overlook that turn into chaos.

Introduction — Spotting the First Cracks

Every testing professional, at some point in their career, has faced
that difficult moment when a project starts slipping away.

The deadlines blur, defects start piling up, automation scripts fail for
no apparent reason, and confidence starts to fade. It’s that sinking
feeling where you know something is off, but you can’t quite pinpoint
what.

Over the years, working across diverse industries and markets, I’ve
realized that these situations are far more common than we’d like to
admit. Projects rarely fail because of a single dramatic mistake.
Instead, they slowly pile-up & unravel, often hidden behind fancy
dashboards, unalligned metrics, and misplaced optimism.

And when they do, our instinct is to look for quick fixes like a new tool,
a new framework or maybe resort towards AI magic as the buzzword
of the hour to make it all better.

But time and again, I’ve found that no tool can rescue a project if the
fundamentals aren’t right. Whether it was during being a test
manager for a small sub-project or while leading a big multi-shore
test factory project, the root causes of troubled testing projects
almost always came down to three things: Processes, People, and
wrongly/under used Products.

Root Causes: Processes, People, Product

I am not saying this to catch your attention but it’s a pattern that
repeats itself across organizations, technologies, and delivery
models.

Every time I walked into a project that was “in the red,” I saw some
variation of the same story play out. The processes were outdated or
poorly defined & followed, for eg: a test concept exists but never
actually used or the regression suite had become so bloated that no
one knew what it truly covered anymore.

The people were often either disengaged or unclear about their roles
or lacked the right organisational structure. And the products were
either underutilized, misaligned, or not known to begin with.

A Real-World Example: Automating Chaos

I remember one instance during my time at a leading insurance client
where they had a big regression set but it was getting unmanageable
to execute it & defects were still leaking into production.

Since they wanted to manage their regression set, they invested
heavily in a leading automation platform to automate these testcases
as well. On paper, it promised impressive coverage and faster
execution.

In reality, it was generating test scripts faster than the team could
stabilize them. The automation looked good in reports, but the
underlying testcases was lacking proper coverage.

The root cause wasn’t the tool — rather it was the lack of process
discipline and absence of a test coverage overview.

Automating chaos simply creates faster chaos.

That’s why the first step in rescuing any troubled test project isn’t to
buy another tool but to step back and diagnose. My approach to
firefighting a struggling testing project has evolved into a repeatable
playbook that blends structured analysis with critical thinking.

The first principle is simple: stabilize before you optimize. When a
project is in crisis, resist the urge to overhaul everything overnight.
Instead, start by mapping the As-Is situation by asking the right
questions around reports, metrics, underlying processes & know-how
of the team.

- Stabilize First: Map the As-Is

In one project at a major german insurance client, I began by creating
a business process matrix for regression - a visual representation of
most important business processes sorted by their occurrence in
production versus the top products it was used in to map the
regression coverage on it.

Within days, it revealed something the team hadn’t seen for a long
time - that there were some critical flows & combinations missing
from regression, together with certain testcases which could be
optimized or removed to save effort.

That single visualization turned chaos into focus.

- Ask Better Questions and Rebuild Trust

Once you’ve identified the weak spots, the next step is to ask the right
questions quickly.

What assumptions are we operating under? What dependencies are
slowing us down? Are we tracking outputs (like number of tests
executed) instead of outcomes (like risk reduced)?

Asking sharp, uncomfortable questions early saves months of
firefighting later.

- Measure Outcomes, Not Activity

Then comes the crucial step of rebuilding trust.

When a testing project falters, communication tends to break down
first.

Development teams lose faith in test reports, leadership loses
patience, and testers start playing defense.

The best way to reverse that is through transparency & showing
progress. This can be achieved by setting up the right metrics which
tell the As-Is situation & reflect real progress, not perfect numbers.

Track metrics that actually matter — like production defect leakage,
test backlog, defect density, etc.



ISSUE 01/2025
PLACE YOUR CATEGORY HERE

ISSUE 01/2025
PROCESSES

26 27TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

- Use Tools with Intent: AI as an Accelerator, Not a Cure

Only after the team regains stability and trust should you consider
introducing or optimizing tooling.

This is where today’s automation and AI solutions can be genuinely
transformative.

In practice, I’ve seen AI and automation deliver excellent results when
applied with clarity.

For example, during one of my test factory projects, using predictive
analytics to prioritize regression tests based on areas where most
defects were found reduced cycle time and improved defect
detection efficiency.

But I’ve also seen the opposite: teams implementing AI-based test
generation without refining their requirements first, or bringing the
power of AI analysis without having enough data from test tools to
train on - resulting in loss of efforts & negative ROI.

The difference lies not in the capability of the technology, but in the
clarity of purpose.

- Embed Early Warnings: Prevent Repeat Failures

Beyond firefighting, the long-term goal is to ensure that projects
don’t repeatedly fall into the same traps.

That requires embedding early warning indicators into the testing
lifecycle: monitoring coverage gaps, reviewing process health
regularly, and measuring not just efficiency but also team morale.

One of the most overlooked metrics in testing is the confidence &
satisfaction level of the team itself.

If testers don’t feel confident about their work or their efforts are not
recognised, that leads to less dedication & lower quality — which
eventually surface as production defects.

Conclusion - Shift to Learning-Driven Testing

So why should we care about all this?

Because every failing testing project is a symptom of a deeper
cultural challenge: the misbelief that testing is reactive rather than
proactive.

When we shift that mindset, firefighting becomes less about survival
and more about continuous improvement.

The next time you sense a project slipping, don’t panic. Take a pause,
pull out your diagnostic lens, and start asking the right questions.

Look beyond the symptoms and into the system — because more
often than not, the answers are already in front of us, hidden in plain
sight, waiting for someone to connect the dots.

Your turn:

What’s the most common “in the red” testing symptom you’ve seen
in your projects — and how did you turn it around? Let’s connect on
LinkedIn and discuss this further.

- KANAV MATTA

Kanav is an experienced IT Consultant at Accenture Technology Solutions GmbH,
specializing in Software Testing, Quality Assurance, and Quality Engineering. With
over 15 years of professional testing experience, he has held various roles
including tester, IT consultant, test manager, and test lead across leading
international organizations with focus on German insurance market. His expertise
encompasses diverse delivery and sourcing models, automation frameworks, and
GenAI-driven testing approaches. Leveraging his extensive project experience,
Kanav possesses comprehensive knowledge of the end-to-end IT lifecycle, from
requirements analysis to system go-live. He has worked across multiple
technology platforms such as Java, SAP, Oracle HCM, Salesforce, Guidewire, web-
based applications, and data warehouse systems.

LinkedIn - www.linkedin.com/in/kanav-matta-7021282a/

https://www.linkedin.com/in/kanav-matta-7021282a/
https://6dkh4edu54m.typeform.com/to/i6aHqxgy?typeform-source=www.teatimewithtesters.com
https://6dkh4edu54m.typeform.com/to/i6aHqxgy?typeform-source=www.teatimewithtesters.com


TEA-TIME WITH TESTERS ISSUE #01/2025
29

INFOCUS
Do you know all these
amazing articles?

Great things survive the test of time.

Over the last ten years, Tea-time with Testers has
published articles that did not only serve the
purpose back then but are pretty much relevant
even today.

With the launch of our brand new website, our team
is working hard to bring all such articles back to
surface and make them easily accessible for
everyone.

We plan to continue doing that for more articles,
interviews and also for the recent issues we have
published.

Visit our website www.teatimewithtesters.com and
read these articles.

Let us know how are they helping you and even
share with your friends and colleagues.

If you think we could add more articles from our
previous editions, do not hesitate to let us know.

Enjoy the feast!

https://www.teatimewithtesters.com


ISSUE 01/2025
PLACE YOUR CATEGORY HERE

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

30 31TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/202530 31TEA-TIME WITH TESTERS ISSUE #01/2025

~
Pr
od
uc
ts

THE QA SUPERPOWER IN AGENTIC AGE:
WHY YOUR TESTING MINDSET JUST BECAME YOUR COMPETITIVE ADVANTAGE

When 54 TypeScript Errors Revealed Everything

My VS Code terminal was screaming at me with 54 TypeScript compilation errors. Red squiggly lines
everywhere. The agent I'd been working with had confidently declared, "Implementation complete. All
tests passing."

I stared at the screen. Nothing compiled. Nothing ran. Nothing worked.

But here's the thing, this wasn't a failure of AI. This was a moment of clarity.

Because in that moment, I realized: the skills that made me a good tester for 12 years are exactly the
skills that make me effective with agentic systems today.

The agent hallucinated. It "knew" the task was done because it had written code. But my testing mindset
kicked in immediately:

• "Wait, did you actually run this?"

• "What about edge cases?"

• "How do you know it works?"

That questioning mindset, honed through years of breaking software and asking uncomfortable
questions, is now our superpower in the age of autonomous agents.

Let me show you why.

Why This Matters Now

In the last few months, I've built two open-source projects using AI agent swarms: Sentinel (an API
testing platform) and the Agentic QE Fleet (17 specialized testing agents orchestrated through Claude
Code + Claude Flow).

In the process, I've discarded four complete versions before finally getting one that worked. I've saved
60%of UI test development time at my previous company. I've seen agents generate thousands of lines
of code in hours, a task that would have taken a team weeks/months.

But here's what nobody talks about: every single win came from applying classical testing principles
to agentic workflows.

The agents didn't improve my testing skills. My testing expertise made the agents effective.

And if you're reading this thinking "AI is going to replace testers," I'm here to tell you: you've got it
exactly backward.

The Skills That Transfer (And Why They Matter More Now)

1. Risk Identification: From Software to Agents

Then: We identified risks in requirements, code, and integrations.

Now: We identify risks in agent decisions, hallucinations, and
orchestration gaps.

Example from my work:

When building the Agentic QE Fleet, I had a requirements-validator
agent that analyzed specs for testability issues. Sounds great, right?

Except it kept flagging perfectly good requirements as "ambiguous"
because it was trained on generic examples, not my domain context.

My testing mindset kicked in: "What assumptions is this agent
making? What context is it missing?"

I realized the agent needed:

• Domain-specific glossaries

• Historical requirement patterns from past projects

• Examples of good requirements in my context

Classic risk-based testing thinking applied to agent validation. The
agent improved not because the model got smarter, but because I
tested its assumptions.

2. Exploratory Thinking: Finding the Memory Leak Nobody Expected

Then: We explored software to find bugs nobody expected.

Now: We guide agents to explore scenarios they wouldn't generate on
their own, and we catch what they miss.

Real example from building the Agentic QE Fleet:

Every time I asked the agent to start the application, the Claude Code
process would be killed. The application crashed. Docker containers
died. Memory consumption spiked catastrophically.

My first instinct was to blame the tools:

• Is Claude Code broken?

• Are the Docker memory constraints too tight?

• Is there a configuration issue?

But then I switched to exploratory mode. I started observing patterns:

"When does it crash? What's happening right before the crash?"

I noticed that it crashed specifically when running the test suite
before the build. Every single time.

That's when it clicked. The agents had implemented tests with a
memory leak.

And here's the kicker: it was my mistake. I didn't use my QE validator
agents before running the agent-generated tests. I trusted the agent's
"tests complete" declaration without verification.

The lesson: Agents are great at following patterns. But finding the
weird interactions, the unexpected behaviors that emerge from
complex workflows, requires human exploratory thinking.

Your exploratory testing experience? That's your edge now.

3. Critical Thinking: Catching Agent Hallucinations

Then: We questioned assumptions in requirements and design.

Now: We question agent outputs before they become production
decisions.

The "54 TypeScript errors" story I opened with? That happened
because I asked: "Did you actually verify this works?" Agents will
confidently declare success when:

• Tests are written, but don't run

• Code compiles but doesn't meet requirements

• Coverage increases, but quality doesn't

During the development of my projects, agents would frequently
report "task complete" when: The app wasn't building

• Tests didn't pass

• Dependencies were missing

• Type errors existed everywhere

I had to add explicit rules: "Don't commit until the app builds AND all
tests pass." Even then, they'd forget after context compaction.

Your critical thinking muscle, the one that says "prove it", is more
valuable than ever.



ISSUE 01/2024
PRODUCTS

ISSUE 01/2025
PRODUCTS

32 33TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

4. Context-Driven Approach: Choosing the Right Agent Topology

Then: We adapted testing strategies to the project context.

Now: We design agent orchestration based on problem context.

Example: For simple test case generation: A single agent with good prompting works fine.

For complex system validation, I need orchestrated swarms:

• fleet-commander (coordinates other agents)

• requirements-validator (checks specs)

• test-generator (creates tests)

• coverage-analyzer (finds gaps)

• quality-gate (makes go/no-go decisions)

No universal solution. Context determines topology. That's context-driven testing thinking applied to agent architecture.

5. Test Design: Designing Agent Validation Strategies

Then: We designed test cases to maximize coverage and risk mitigation.

Now: We design agent validation workflows to ensure quality orchestration.

Real example from my validation swarm:

When building the Agentic QE Fleet, I ran 8 validation agents in parallel, each checking:

• Pseudocode vs. Specs

• Specs vs. Requirements

• Implementation vs. All Documentation Layers

Why? Because agents drift. They hallucinate. They forget context.

I designed a multi-agent validation strategy using classical test design principles: redundancy, cross-checking, and coverage analysis. This isn't
new thinking. It's Holistic Testing Model thinking applied to agent orchestration.



ISSUE 01/2025
PRODUCTS

ISSUE 01/2025
PRODUCTS

34 35TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

The Tool Evolution: Proof That QA Thinking Scales

Let me walk you through my personal journey with AI tools over the
last year and how each level has required more QA expertise, not
less.

Stage 1: Desktop AI Tools (Claude Desktop, ChatGPT)

What they did: Generated code snippets, answered questions, and
ran simple browser tests.

QA skills needed:

• Reviewing outputs for accuracy

• Catching obvious hallucinations

• Verifying the generated code actually worked

My realization: Even at this basic level, agents needed oversight. My
testing mindset caught errors immediately.

Stage 2: IDE-Based Coding Agents (Cline in VS Code)

What they did: Built our Robot + Playwright UI testing framework from
scratch. Automated 40 end-to-end user journeys in 30 working days,
covering over 80% of our major functionalities.

QA skills needed:

• Writing good code examples (grounding for agents)

• Defining clear acceptance criteria

• Reviewing agent-generated tests for correctness

• Adjusting CSS selectors for complex apps (our AngularJS app
with dynamic forms and ag-grid components)

Result: 60% time saved on UI test development.

But here's the key: That 60% savings only happened because I:

• I knew what good tests looked like (12 years of QE experience)

• Could spot when agents generated boilerplate vs. valuable tests

• Understood our application complexity

The agent didn't replace my expertise. It amplified it.

Stage 3: Multi-Agent Orchestration (RooCode, then Claude Code)

What they did: Coordinated multiple specialized agents (Architect,
Coder, Debugger).

QA skills needed (deeper):

• Designing agent specialization strategies

• Orchestrating agent handoffs

• Detecting when agents contradicted each other

• Preventing context overload

My lesson: Agents working in isolation made mistakes. Orchestration
without oversight was chaos.

Stage 4: Agent Swarmswith Orchestration Frameworks (Claude Code
+ Claude Flow)

What they enabled: Hierarchical agent topologies with 10-15
specialized agents working in parallel.

QA skills essential:

• Architecting validation swarms (multi-agent cross-checking)

• Defining human checkpoints (when to intervene)

• Building shared context systems (Memory Banks)

• Eliminating flaky agent behaviors

The result: Built Sentinel and Agentic QE Fleet > 300K lines of code in

10 working days (though 4 versions were thrown away).

The critical insight:

Each stage required deeper QE expertise:

• Risk identification evolved into agent risk assessment

• Test design evolved into orchestration design

• Exploratory testing evolved into agent-guided exploration

• Critical thinking evolved into hallucination detection

Your testing skills didn't become obsolete. They became the
foundation for effective agentic orchestration.



ISSUE 01/2025
PRODUCTS

ISSUE 01/2025
PRODUCTS

36 37TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

The Reality Check: What Still Doesn't Work

Let me be honest about limitations because you won't hear this from
tool vendors.

1. Context Understanding is Still Weak

Example: My security-scanner agent flagged a "hardcoded API key" as
CRITICAL.

Reality: It was a test fixture for a sandbox environment, clearly
documented, with rate limits and no production access.

The agent recognized the pattern (a string resembling an API key)
but overlooked the context (test fixture, documented, and safe).

Human validation remains essential.

2. Agents Lie (Unintentionally)

They'll report task completion before tests pass. I had to add explicit
rules: "Don't commit until the app builds AND all tests pass."

Even then, they'd forget after context compaction.

3. Verification Takes Longer Than Implementation

Nobody talks about this:

The verification phase (running validation swarms, checking cross-
document consistency) takes longer than the implementation itself.

I run multiple validation agent instances in parallel, consuming
34k-111k tokens each, to analyze:

• Pseudocode vs. Specs

• Specs vs. Requirements

• Implementation vs. All of the Above

For 8 different systems simultaneously.

Why? Because agents have a charming tendency to say "Done!" when
they're... not done.

4. Your Prompting Skills Must Evolve

Versions 1-4 of my projects failed for different reasons:

• Version 1: Overengineered (agents got creative)

• Version 2: Architecture conflicts (agents contradicted each other)

• Version 3: Missing parts (agents skipped APIs and tests)

• Version 4: Language switch failure (JS → TS without success)

Version 5 was successful because I learned how to guide agents
more effectively.

My testing expertise helped me debug agent failures. But my
prompting skills had to evolve, too.

The New QA Role: From Executor to Orchestrator
Here's the shift happening:

But the foundation remains: Risk thinking, critical analysis, context
awareness, and test design principles.

You're not learning a new job. You're applying your expertise at a
higher level of abstraction.

How to Get Started (Practical Steps)

If you're thinking "this makes sense, but where do I start?" here's my
recommendation:

Phase 1: Start Small (Weeks 1-2)

Don't jump into agent swarms. Begin with augmented capabilities:

Pick one high-value, low-risk area:

• Test data generation (agents generating realistic data)

• Coverage gap analysis (agents identifying untested scenarios)

• Flaky test detection (agents running statistical analysis)

Why start here?

• Clear success metrics (time saved, bugs found)

• Low risk (you review agent outputs before action)

• Fast feedback (you learn agent strengths/limitations quickly)

Phase 2: Build Your Grounding System (Weeks 3-4)

Agents need context. Give it to them:

• Create .clinerules or CLAUDE.md files for your projects

• Document code examples of "good tests" in your context

• Build a Memory Bank (SQLite or simple files) for shared context

• Define your domain glossary and patterns

This is where your testing expertise shines: You know what "good"
looks like in your context.

Phase 3: Introduce Agent Pairs (Weeks 5-6)

Start with simple orchestration:

• test-generator + coverage-analyzer (generate tests targeting
gaps)

• production-intelligence + test-generator (create regression tests
from incidents)

Why pairs? You learn orchestration patterns at a small scale before
coordinating many agents.

Phase 4: Measure and Iterate (Ongoing)

Track:

• Time saved (but be honest about verification time)

• Quality of agent outputs (how often do you reject/revise?)

• Hallucination rate (how often are agents wrong?)

• Your own learning curve (what prompting patterns work?)

Iterate based on data, not hype.

The Three Habits of Effective Agentic Testers

From building agent swarms and running them in production, three
patterns consistently emerge:

Habit 1: Be Proactive (Before Development)

Classical: Shift-left testing, catch issues early.

Agentic: Agent-augmented risk identification before code is written.

Example: My requirements-validator agent analyzes specs for
testability issues, generates BDD scenarios automatically, and flags
ambiguities.

But I review its findings. Because agents miss context-specific risks.

Habit 2: Begin With the End in Mind (Strategy First)

Classical: Define test objectives before writing tests.

Agentic: Define orchestration goals before deploying agent swarms.

Questions I ask:

• What quality signals do I need?

• Which agents should provide those signals?

• Where do humans validate vs. agents decide autonomously?

Strategy comes first. Tools follow.

Habit 3: Put First Things First (Automate the Right Things)

Classical: Automate repetitive checks, explore with humans.

Agentic: Agents handle scale and repetition, humans handle
judgment and context.

Example:

My flaky-test-hunter agent runs tests multiple times, detects non-
determinism, and suggests fixes.

But I decide which fixes to apply. Sometimes, "flakiness" is actually an
environmental issue rather than a test issue.

Agents augment. Humans decide.

The Uncomfortable Truth About Agentic Testing

Let me be direct: Fully autonomous testing sounds great until you
realize someone needs to own the outcomes.

The question isn't "Can agents do testing autonomously?"

It's "Where do humans remain essential, and where do agents
augment our capabilities?"

From my experience, here's the pattern:

Humans Are Essential For:

• Defining risk priorities and business context

• Strategic quality decisions (acceptable risk for this release?)

• Ethical considerations (is this test causing harm?)

• Handling exceptions outside agent training

• Validating severity assessments

Agents Excel At:

• Execution at scale (thousands of tests in parallel)

• Pattern recognition (flaky tests, anomaly detection)

• Repetitive analysis (coverage gaps, code smells)

• Cross-referencing vast context (test-to-module mapping)

• Continuous monitoring (24/7 production intelligence)

The keyword: augment, not replace.

Why Your QA Skills Are More Valuable Now

Here's what I believe after months of building with agentic systems:

AI doesn't replace testers. It separates good testers from great ones.

Great testers:

• Understand context deeply

• Think in systems, not just features

• Question assumptions (including their own)

• Design for quality, not just find bugs

• Communicate risk effectively

These skills are more valuable than ever because:

• Agents amplify existing quality approaches (good or bad)

• Someone needs to architect quality orchestration

• Human judgment is the final checkpoint

• Context understanding can't be automated

• Explaining agent decisions requires deep quality expertise

Your testing mindset is your competitive advantage.



ISSUE 01/2025
PPODUCTS

ISSUE 01/2025
PRODUCTS

38 39TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

The Four Versions I Threw Away (And What They Taught Me)

Let me be completely honest about the journey:

Version 1: Overengineered

• Agents got creative and built complex architectures I didn't need

• Lesson: Be explicit about constraints and simplicity
requirements

Version 2: Architecture Chaos

• Different agents made conflicting architectural decisions

• Lesson: Define architecture upfront, don't let agents decide
alone

Version 3: Missing Critical Parts

• Agents skipped entire APIs and test suites

• Lesson: Validate completeness at each phase, not just at the end

Version 4: The Great JavaScript-to-TypeScript Disaster

• Attempted mid-project language switch without proper planning

• Lesson: Major architectural changes need a human-led strategy

Version 5: Success

• Applied all lessons learned

• Used SPARC methodology (Specification → Pseudocode →
Architecture → Refinement → Completion)

• Implemented multi-agent validation at every phase

Total time: 10 working days across all versions.

Working system: Finally achieved in version 5.

The insight: With 12 years of QE experience, I was able to identify the
root cause and develop effective solutions. Without that expertise, I'd
still be wasting time on versions.

The Path Forward
The future of QA/QE isn't about humans vs. agents. It's about
orchestrated quality where:

• Agents handle scale and repetition

• Humans provide strategy and context

• Quality signals flow continuously across the lifecycle

• Explainability is non-negotiable

• Human checkpoints exist at critical boundaries

We're entering an era where testers become quality orchestrators,
conducting agent swarms like a symphony.

And the best orchestras? They know when agents should play louder,
when humans should intervene, and when to let quality speak for
itself.

Your testing expertise isn't becoming obsolete. It's evolving into
your superpower.

Open-source projects:

• Agentic QE Fleet

• Sentinel API Testing Platform

Connect:

• Email: dragan@quantum-qe.dev

• LinkedIn: linkedin.com/in/dragan-spiridonov

• Blog: forge-quality.dev

What's your experience? Where are you applying your QA skills to
work with agents? What's working? What's failing?

Let's share honest lessons; the field is too new for hype and too
important for guesswork.

Remember This

Quality has never been about tools. It's never been about automation
for sake of it.

It's always been about delivering value to customers while managing
risk intelligently.

Classical testing gave us the mindset. Agentic testing gives us the
scale.

But the conductor is still human.

And right now, if you're a tester reading this, you're uniquely
positioned to become that conductor.

Your testing skills - risk thinking, critical analysis, exploratory mindset,
and context awareness - are the superpowers in the agentic age.

Don't doubt them. Embrace them. Evolve them. Orchestrate with
them.

The future needs great testers more than ever. The only question is:
are you ready to step into that role?

- DRAGAN SPIRIDONOV

Dragan is the Founder of Quantum Quality Engineering and an Agentic Quality
Engineer. After 8 years as VP of Quality Engineering at Alchemy Cloud, he's now
focused on bridging classical and agentic quality practices. He's founding the
Serbian Agentic Foundation Chapter and is a member of the global Agentics
Foundation. Dragan has 29 years of IT experience and 12+ years specializing in
QA/QE. He practices context-driven quality through the Context-Driven approach &
Holistic Testing Model, now evolved with PACT principles (Proactive, Autonomous,
Collaborative, Targeted).

Quality has never been about tools.

It's never been about automation for sake of it.

It's always been about delivering value to
customers while managing risk intelligently.

Classical testing gave us the mindset. Agentic
testing gives us the scale.

But the conductor is still human.

https://github.com/proffesor-for-testing/agentic-qe
https://github.com/proffesor-for-testing/sentinel-api-testing
mailto:dragan@quantum-qe.dev
https://linkedin.com/in/dragan-spiridonov
https://forge-quality.dev


RECOMMENDED EVENTS AND YOUR CHANCE TO SUPPPORT TEAM TEA-TIME WITH TESTERS

COMMUNITY ISSUE 01/2025
COMMUNITY

ISSUE 01/2025
PLACE YOUR CATEGORY HERE

40 41TEA-TIME WITH TESTERS ISSUE #01/2025 TEA-TIME WITH TESTERS ISSUE #01/2025

GERMAN TESTING NIGHT
STUTTGART, GERMANY

NOV 20TH, 2025
CHECK IT OUT!

HELSINKI, FINLAND
FEBRUARY 13TH, 2026

CHECK IT OUT!

ROBOCON HELSINKI 2026

https://www.germantesting.de/events/gtn/stuttgart25
https://www.practitest.com/qa-leader-award?utm_source=Linkedin&utm_medium=Organic&utm_campaign=Tea-time%20with%20Testers
https://www.germantesting.de/events/gtn/stuttgart25
https://www.robocon.io/agenda/helsinki#automated-accessibilty-for-%22very-busy%22-teams
https://www.robocon.io/agenda/helsinki#automated-accessibilty-for-%22very-busy%22-teams
https://www.practitest.com/qa-leader-award?utm_source=Linkedin&utm_medium=Organic&utm_campaign=Tea-time%20with%20Testers


W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME
WITH
TESTERS
JOURNAL FOR NEXT
GENERATION TESTERS

CONTENT PREVIEW : ISSUE 01/2026
CURATED CONTENT FOR YOU WRITTEN BY HUMANS!

02

01

03

MENTAL MODELS: TESTER’S TOOLKIT FOR
CRITICAL THINKING

An insightful timely read by Prashant Hegde

MICRO HABITS: A SYSTEM FOR ENGINEERING
YOUR EFFICIENCY

A thought-provoking piece by Nitin SS.

MORE ARTICLES FOR HUMANS BY HUMANS

Send in your submissions beofore Jan 15th, 2026.

W
R
IT
E
FO

R
U
S

TH
E
C
R
A
FT

TEA-TIME WITH TESTERS ISSUE #01/2025
43

mailto:editor@teatimewithtesters.com


TEA-TIME WITH TESTERS
THE SOFTWARE TESTING AND
QUALITY MAGAZINE

This journal is edited, designed and
published by Tea-time with Testers.
No part of this magazine may be
reproduced, transmitted, distributed
or copied without prior written
permission of original authors of
respective articles.

Opinions expressed or claims made
by advertisers in this journal do not
necessarily reflect those of the
editors of Tea-time with Testers.

Editorial and Advertising Enquiries:

- editor@teatimewithtesters.com

- sales@teatimewithtesters.com

Be with us and visit our website:

www.teatimewithtesters.com

Created and Published by:

Tea-time with Testers.

Schloßstraße 41, Tremsbüttel

22967, Germany

INTERNATIONAL JOURNAL FOR NEXT GENERATION TESTERS


